硫辛酸杂质

硫辛酸杂质
硫辛酸杂质

产品名称产品名/结构式CAS号

硫辛酸杂质117370-41-1

硫辛酸杂质2N/A

462-20-4硫辛酸杂质3

N/A

硫辛酸杂质4

代理中检所/EP/BP/USP/LGC/TRC/DR/TLC/MC/SIGMA/BACHEM/STD 等品牌

1.依托考昔杂质

2.替格瑞洛杂质

3.替诺福韦杂质

4.舒更葡糖钠杂质

5.阿德福韦杂质

6.恩替卡韦杂质

7.阿普斯特杂质

8.达格列净杂质等等,更多杂质请直接联系湖北扬信医药科技有限公司。

硫辛酸杂质51204245-29-3硫辛酸杂质6108015-78-7

1硫辛酸的生化作用是

一、选择题 1.硫辛酸的生化作用是: a.为递氢体b.转移酰基c.递氢和转移酰基d.递电子体e.递氢及递电子体 2.下列辅酶或辅基中哪一种含有硫胺素: a.FAD b.FMN c.TPP d.NAD+e.CoA-SH 3.丙酮酸氧化脱羧不涉及的维生素有: a,硫胺素b.核黄素c.生物素d.烟酰胺e.泛酸 5.转氨酶的作用,需要下列哪一种维生素? a.烟酰胺b。硫胺素c核黄素d.吡哆醛e泛酸 6.泛酸是下列哪种辅酶或辅基的组成成分? a.FMN b.NAD+c.NADP+d.TPP e.COA—SH 7.羧化酶(如乙酰CoA羧化酶)的辅酶为: a.核黄素b,硫胺素c.生物素d.烟酰胺e.叶酸 9.有关维生素作为辅酶与其生化作用中,哪一个是错误的? a硫胺素——脱羧b.泛酸——转酰基c.叶酸——氧化还原d.吡哆醛——转氨基e核黄素——传递氢和电子 10.下列哪种维生素不属于B族维生素? a,维生素C b.泛酸c.生物素d.叶酸e.维生素PP 11.下列哪一种酶的辅酶不含维生素? a谷草转氨酶b.琥珀酸脱氢酶c.乳酸脱氢酶d.糖原合成酶e.丙酮酸脱氢酶12.有关维生素B2的叙述中哪一条不成立? a又名核黄素b.组成的辅基在酰基转移反应中作用c.组成的辅基形式为FMN和FAD d.人和动物体内不能合成e.组成的辅基起作用的功能基团是异咯嗪环 13.下列反应中哪一个需要生物素? a.羟基化作用b.羧化作用c脱羧作用d.脱水作用e.脱氨基作用 14,丙酮酸脱氢酶所催化的反应不涉及下列哪个辅助因子? a.磷酸吡哆醛b.硫胺素焦磷酸c.硫辛酸d.FAD e.辅酶A 15.叶酸所衍生的辅酶不是下列哪个核苦酸在体内合成时所必需的? a.AMP b.GMP c.IMP d.dTMP e.CTP 二、是非题 1.人类缺乏维生素B1,会产生脚气病。 2.FMN中含有维生素B2的结构。 3.只有D型抗坏血酸才有生理作用。 4.生物素又称为维生素B7,它本身就是羧化酶的辅酶。 5.四氢叶酸的主要作用是作为一碳单位的载体,在嘌岭、嘧啶等的生物合成中起作用。6.所有的辅酶都含有维生素或本身就是维生素。 7.维生素是机体的能源物质,而且可以作为组织的构成原料。 8.泛酸的结构成分包括喋啶、对氨基苯甲酸和L一谷氨酸。 9.四氢叶酸是多种羧化酶的辅酶。 10.所有的维生素都能作为辅酶或辅基的前体。 三、填空题 1.维生素B2分子中异咯嗪环的第___和第___两氮位可被氧化还原,在生物氧化过程中有___作用。 2.维生素B3又称泛酸,是组成___的成分之一,其功能是以___形式参加代谢,后者

硫酸锌溶液深度净化除钴的现状与发展

硫酸锌溶液深度净化除钻的现状与发展 1概述 在湿法炼锌过程中,锌焙砂经过中性浸出所得的硫酸锌溶液含有许多杂质,其中有电位较锌正的杂质铜、镉、钻、碑、撲等,也有阴离子杂质氯、氟等。这些杂质的存在对电解极为有害,如降低电流效率、增加电能消耗,影响产品质量等。因此在电解前必须对这种溶液进行净化,把有害杂质除至允许含量。中性浸出所得上清液和净化后新液成分要求各厂不完全一样,概括如表1所示。 随着电解法生产锌越来越多地被应用,硫酸锌溶液的净化成为保证电解顺利进行的基本条件。为了强化生产,而采用较高的电流密度,为此必须进行深度净液,使溶液中各种杂质的含量尽可能降低,以保证获得优质的电锌产品。 由于工业技术的发展,国外的很多电锌厂都不同程度地实现机械化和自动化,机械化剥锌不仅省去了繁重的体力劳动,而且还大大地提高了劳动生产率,然而实现了机械化剥锌的基本保证是析出的锌具有光滑平整的表面和一定的厚度,要获得这样的析出锌也要求对硫酸锌溶液进行深度净化,使杂质含量降到足够低的程度,以满足生产的要求。 由于热酸浸出的普遍采用,深度净化显得更为重要,由此看来,硫酸锌溶液的深度净化,对电锌生产起着非常重要的作用,因此国内外近年对深度净液都十分重视,作了大量的试验研究工作,有的已应用于大规模生产。 表1中性上清液和净化后新液要求成分 溶液/ (mg-lZ ) 元素 中性上清液净化后新液 Zn130?150/ (g,L、) 130 ~ 150/ (g-L-1) Cu240 ?4200.2-0.5 Cd460-680 1 ~7 As0.18-0.360.06-0.2 Sb0.30-0.400.05 ~ 0.1 Ge0.20-0.500.05 ~ 0.1 Ni20-700.1~ 0.5 Co10-350.2-0.6 Fe 1 ~7 1 ~5 F50 ~ 10050 ~ 100 Cl100-300100 - 300 Mn 3 000 - 6 000 3 000 ~ 6 000 SiO.50-7040-50

α-硫辛酸在糖尿病领域中的临床应用

α-硫辛酸在糖尿病领域中的临床应用 α-硫辛酸在糖尿病领域中的临床应用 中国医科大学第一临床医院刘赫刘国良 α-硫辛酸(Alpha Lipoic Acid ,LA) 是一种独特的氧化-还原双向的氧化应激的强效抑制剂,LA 不仅可清除体内的多种反应性氧自由基(ROS) ,而且还能还原人体内的抗氧化系统,增强机体的抗氧化能力。氧化应激不仅是健康机体走向衰老,而且是许多疾病过程中的致病环节,特别是反应性氧自由基将随血糖的增高,而呈正相关的增高,因此α2硫辛酸在糖尿病的治疗中,将占有重要位置。 1 糖尿病面临的挑战多个循证医学结果告诉我们,死亡率与其它几个严重疾病相比,至今唯独糖尿病不仅未降还在上升,其致死的主要原因是心脑血管并发症。著名的DCCT 研究结果提示,6 年半的研究,看到了胰岛素强化疗法显著地改善着微血管并发症,使微血管病变减少发生达35 % ,神经病变减少达76 % ,但未见到大血管并发症的改善〔1〕;同样U KPDS 结果,也见到微血管并发症减少约1/ 3 ,但也未见到大血管并发症的改观。这些著名的里程碑式的研究,应该说在推动糖尿病事业的发展方面,将给人类带来极大的启迪;但我们也不得不重新审视当前的糖尿病治疗方案,还未能做到使糖尿病的死亡率趋向下降。这种严峻的现实,应该说是对人类的一次挑战,有必要促使人们重新思考今天或未来的糖尿病治疗策略。 2 自由基与自由基损伤自由基是指含有未配对电子的原子、原子团或分子。在生物体中主要指反应性氧自由基(ROS) ,是指由氧诱发的自由基:如超氧阳离子(O -2 ) 、羟自由基(OH·) 、单线态氧1O2 等非脂性自由基;还有氧自由基与多聚不饱和脂肪酸作用后生成的中间代谢产物,如烷自由基(L - ) 、烷氧(LO- ) 、烷过氧基(LOO- ) 等属于脂性自由基;此外还有氮中的自由基:如一氧化(NO·) 、过氧亚硝基阴离子(ONOO- ) ,半醌类自由基(黄素类蛋白) 、辅酶Q的单电子还原(或氧化) 型等。自由基是正常代谢、衰老或疾病等状态下,所有细胞在能量代谢过程中,都会伴随ATP 的产生,在线粒体电子转移过程而产生的高反应性分子结构的副产品。当ROS 的生成超出了生理范围和机体的抗氧化防卫能力时,就会造成细胞的损伤,此即为自由基损伤,也称为氧化应激,是任何组织损伤的一个主要的病理机制。可致DNA 损伤,引起突变、凋亡、坏死等。据有关专家估计DNA 的氧化损伤频率可高达: 10000 次/ 每个基因组·每个细胞·每天〔2〕。蛋白质也是其攻击的主要目标,引起氨基酸残基的修饰、交联、肽链断裂、蛋白应质性,改变了蛋白质的功能。对脂质的损伤,特别是膜脂质的氧化,可引起细胞的多种损伤:膜结构的破坏、核酸的损伤等。因此,一个来源于细胞线粒体代谢过程中的副产品———自由基,又成了主要攻击、损伤细胞、细胞膜、核内DNA、线粒体内DNA 的伤害因子。具估计每人每年可以产生1000 克自由基〔2〕,并伴随年龄增长和疾病状态而产生增多,使之氧化应激成为机体衰老和疾病过程中的伤害原头。氧化应激存在一切疾病过程的始终,既是疾病的起因又是后果。 3 氧化应激是引起胰岛素抵抗、糖尿病和心血管疾病的“共同土壤”〔3〕氧化应激做为源头去伤害β细胞引起或加重糖尿病,伤害肌肉及脂肪细胞去加重胰岛素抵抗,伤害内皮细胞促成内皮细胞功能障碍,引发动脉粥样硬化等心血管并发症。 311 α-硫辛酸与β细胞保护自由基来源于细胞线粒体,同时细胞线粒体又是自由基主要攻击对象,所以氧化应激可以损伤β细胞。更糟糕的是,在各种细胞中,β细胞又是抗氧化能力相当差的。在高糖、高脂的背景下,促使线粒体ROS 增加, 通过升高NF2κB、p35MAPκ、JNκ/ SAPκ、Hex2osamines ,增强内质网病理性应激,促进β细胞凋亡,也可通过IRS22 丝氨酸/ 苏氨酸磷酸化导致β细胞凋亡〔4〕。事实上,在当今糖尿病治疗理念上,在实现血糖尽早达标的同时,更越来越看重对β细胞的早期保护,最大限度的去延缓β细胞的衰竭进程。正如所说,糖尿病程的本质,就是β细胞衰减的进程。如果我们能去早期截断氧

黄芩苷的提取

黄芩苷的提取 黄芩苷(Baicalin)是从黄芩根中提取分离出来的一种黄酮类化合物,具有显著的生物活性,具有抑菌、利尿、抗炎、抗变态及解痉作用,并且具有较强的抗癌反应等生理效能。在临床医学已占有重要地位。黄芩苷还能吸收紫外线,清除氧自由基,又能抑制黑色素的生成,因此既可用于医药,也可用于化妆品,是一种很好的功能性美容化妆品原料。 1 仪器与试剂 1.1 仪器 1000烧杯1 250ml烧杯2 铝锅1 50ml容量瓶5 漏斗1 紫外分光计1 纱布1 1.2 试剂 黄芩饮片乙醇盐酸 2 黄芩苷含量测定的方法 2.1标准曲线的绘制精确称取黄芩苷标准品50mg,用50%乙醇溶解并定容于100ml容量瓶,配制0。5mg/ml黄芩苷标液,分别吸取标液0。5,1。0,1。5,2。0,2。5,3。0,3。5,4。0ml于100ml容量瓶中,用50%乙醇定容,紫外可见分光光度计278nm处测吸光值,得到吸光度-浓度回归曲线为y=0。064x-0。0102,r2=0。9982。 2.2样品含量的测定精确称取实验所得黄芩苷粗品50mg用50%乙醇溶解定容于100ml容量瓶。用干燥滤纸过滤,弃去初滤液,吸取续滤液2。5ml于100ml容量瓶中,用50%乙醇定容。另取50%乙醇作空白,于278nm波优点测吸光度,由回归方程式计算出对应浓度,按下式计算黄芩苷含量。 黄芩苷含量(%)=[对应浓度(μg/ml)×100×40]/样品重(mg) 3.实验步骤 黄芩苷的提取方法参考胡应权的方法,黄芩→粉碎→称取黄芩粗粉20g→加水煎煮→趁热分离出滤液→40℃下加盐酸调pH1~2→80℃下保温→静置→分离出沉淀→洗涤干燥→黄芩苷粗品,其含量用紫外分光光度法测定。按下式计算黄芩苷收率:黄芩苷收率(%)=M/M0×100%式中:M-所得黄芩苷粗品重量M0-提取时用黄芩的重量 不同溶媒不同溶媒剂量不同提取时间和次数都对黄芩苷提取有影响。 3.1 不同溶媒对黄芩苷含量的影响:将提取次数固定为1 次,溶媒倍量固定为10倍(重量比),提取时间固定为1h,分别以7006、950,6的乙醇及水为溶媒进行提取,考察不同溶媒对黄芩苷含量的影响,结果详见表1。 表1 不同溶媒对黄芩苷含量的影响 —————————————————————————— 溶媒种类黄岑苷含量(mg/ml) —————————————————————————— 水提取 70%乙醇 9596乙醇 —————————————————————————— 3.2 不同溶媒倍量对黄芩苷含量的影响:将提取次数固定为1次,提取时间固定为1h,分别以8、10、12、14、16倍于黄岑粉的水进行提取,考察不同溶媒倍量对黄芩苷含量的影响,结果详见表2。

硫辛酸的保健作用

路远硫辛酸的保健作用 路远硫辛酸是一种抗氧化效果胜过维生素A、C、E,并能消除加速老化与致病的自由基的物质。美国加州大学的莱斯特派克博士曾在今夜世界新闻的访谈中指出,路远硫辛酸可能是人类所知的天然抗氧化剂中效果最强的一种,莱斯特派克博士和他的同事经过近年来的研究发现,路远硫辛酸还有多种对人体有益的作用。 一、辅助治疗糖尿病改善胰岛功能与葡萄糖代谢。补充路远硫辛酸可改善糖尿病患者的胰岛功能,增强葡萄糖代谢。它可使葡萄糖的燃烧利用增加,从而降低血糖。同时,它还能改善糖尿病患者的血糖控制,使患者减少使用胰岛素或降糖药物。保护神经细胞。糖尿病的一大并发症就是神经组织病变。路远硫辛酸可使糖尿病患者的神经病变明显减轻并对尚未出现神经病变的糖尿病患者有预防保护作用。 二、预防白内障。谷胱甘肽能帮助保持正常的免疫系统的功能,并具有抗氧化作用和整合解毒功能,它包含的巯基为其活性基团,易与某些药物、毒素等结合,而具有整合解毒作用。谷胱甘肽具有广谱解毒作用,而路远硫辛酸则具有谷光甘肽的数种生化功能,如维持维生素C的在血液中浓度以及确保维生素E的再循环的功能。实验证实,路远硫辛酸可预防白内障,白内障的产生是由于眼睛内的晶体受到氧化造成的,而路远硫辛酸可以。 三、治疗肝坏死及乙肝、丙肝。美国的一位医师曾对3名食用毒蘑菇造成肝坏死的患者,采用路远硫辛酸治疗,结果发现3名患者的病情在短时间内得到控制,肝功能均恢复正常。研究路远硫辛酸发现可结合并分解肝内毒素,减轻肝炎症状,恢复肝功能。 四、预防肌肉损伤,加速肌肉复原。路远硫辛酸可帮助运动员在进行训练时预防肌肉及组织损伤,加速肌肉复原。这是由于甲型路远硫辛酸不仅能使维生素C和E再生,而且能使细胞质中的谷光甘肽及线粒体内的辅酶Q10 再生。甲型路远硫辛酸可消灭数种不同的自由基,并可使其他的抗氧化剂再生,帮助消除自由基。 五、改善艾滋病患者的血液状态HIV 患者的抗氧化防御系统通常较薄弱。由于抗氧化剂缺乏,所以在氧化剂刺激病毒时无法防止病毒繁殖。美国专家报告,路远硫辛酸可刺激患者血液中维生素C、总谷光甘肽、总硫化物浓度增加,改善T4/T8 淋巴细胞比例,从而降低自由基对患者的损伤。此外,路远硫辛酸还有预防心血管疾病、老年性痴呆、帕金森氏病、中风、糖尿病等作用,并有益于皮肤美容,延缓人体各重要器官的衰老。

抗自由基药物研究状况

抗自由基药物研究状况 自由基(Free Radical,FR),即外层轨道有不成对电子的原子、原子团或分子的总称。其中95%以上是氧自由基(OFR),如超氧阴离子(O2 -)、羟自由基(OH)、单线态氧(O12)、过氧化氢(H2O 2)、脂质自由基(RO- ,ROO- )、氮氧自由基等。OFR参与许多疾病发生,如肺气肿、癌症、帕金森氏病、老年性痴呆、冠心病、衰老等。因此抗氧化治疗对防病延衰有重要作用。 许多抗氧化剂如V itE、褪黑素、谷胱甘肽(GSH)等,享有很高的声誉。人们又发现:一些抗冠心病药如丙丁酚,降压药如卡托普利、维拉帕米、地尔硫,解热镇痛药如阿司匹林等,也有抗氧化活性。FR与这些疾病发展相关,给人以启示:这些药物是否也通过清除FR 发挥疗效?从“标本兼治”的角度讲,能否治疗其他由FR介导的疾病呢?本文综述了兼具有抗氧化活性的药物分类、代表药,研究现状及进展,通过发现这些药物结构的相似性,提出抗氧化剂研发的新方向,为利用现有的抗氧化剂及发掘新的抗氧化剂提供一些信息。 市面上主要抗氧化药物: 1 维生素类 VitE、VitC、VitA是强抗氧化剂,硫辛酸和二氢硫辛酸能清除O2 -、OH、O12、H2O2[1]。 2 激素类 褪黑素清除OH、O12、H2O2,提高SOD、CA T活性,与V itC、VitE、GSH协同,使DNA、Pro和细胞膜脂质免受氧化损伤。促红细胞生成素提高抗氧化酶活性,减少NO释放[2]。EE 3 是雌激素,阻止LDL过氧化,提高抗氧化酶活力,清除体内FR。其他如糖皮质激素(氢化考地松,地塞米松,21-氨基类固醇代表药Tirilazad),β-蜕皮激素等。 3 钙拮抗剂 维拉帕米降低家兔缺血再灌注损伤(I/R)肝GOT、GPT、MDA含量,抑制XO活性[3]。地尔硫降低MDA含量,增强SOD活性[4]。赛庚啶和拉西地平抗脂质过氧化。其他还有尼莫地平、硝苯地平、拉西地平、硫氮酮、汉防己甲素等。 4 ACEI类及A TⅡ受体拮抗剂 卡托普利降低家兔I/R组心肌Ca 2+ ,MDA、LDH、CPK含量。培哚普利诱导SOD生成[5]。氯沙坦减轻脂质过氧化反应,抑制OX-LDL,提高抗氧化酶活性[6]。 5 他汀类辛伐他汀 降低食饵性AS家兔血清MDA含量,提高SOD活性[7]。洛伐他汀降低血MDA 含量[8]。普伐他汀增强高脂血症患者血清LDL和VLDL的抗氧化性[9]。 6 其他丙丁酚 抑制LDL氧化和LPO生成[10]。异丙酚清除O 2 ?- 和过氧化硝酸盐[11]。TA9901可清除FR,螯合金属离子[12]。TA9902是EGB761配伍TA9901形成,抗氧化性强于TA9901。N-乙酰半胱氨酸清除FR,维持体内GSH活性[13]。GSH提高抗氧化酶活性。其他如巯丙基甘氨酸,巯基乙醇等[14]。 7 酶抑制剂 别嘌呤醇抑制黄嘌呤氧化酶,阻止FR及其介导的脂质过氧化。氧嘌呤醇和二甲基硫脲也能抗氧化。单胺氧化酶抑制剂司立吉林与其类似物4-Methyldeprenyl,Methylam-phetamine,Clorgyline抑制OH、O12、H2 O 2。消炎痛降低I/R家兔脑组织LPO含量,增加SOD活力。APC清除OH,抑制SiO 2诱导的细胞脂质过氧化和DNA损伤[15]。同类还有前列环素、吲哚美辛等。 8 脱水剂

α-硫辛酸—护肤美容的明珠

α-硫辛酸α-lopoic acid—护肤美容的明珠 彭冠杰1,汪小源2 (1、广州欣浪生化有限公司,广州 510006, 2、广州美尔生物科技有限公司,广州 510006) 摘要:介绍化妆品产品的抗氧化剂,对比α-硫辛酸的抗氧化机理以及性能,描述α-硫辛酸在 化妆品中的出色性能和缺陷,同时提出水溶性的包合硫辛酸能够保持强大的抗氧化性并且解决硫辛酸本身存在的气味、变色等缺陷。 关键词:抗氧化,抗自由基,包合硫辛酸 一抗氧化在化妆品中的重大意义 人体生理活动本身会产生大量自由基(或活性氧),日光照射、污染、情绪紧张等也会加剧自由基的生成。人体组织、细胞的衰老从某一角度讲就是一个氧化过程。事实上,许多保健品具有一定的延缓衰老作用,就是因为保健品含有抗氧化剂,如:α-硫辛酸、白藜芦醇等。 国外化妆品对于抗氧化非常重视,几乎就是抗衰老的同义词,可见抗氧化对皮肤的重要性。一些我们耳熟能详的名字,如;SOD、维生素C、谷胱甘肽、辅酶Q、α-硫辛酸、维生素E 等都是抗氧化剂。 1 自由基或活性氧加快皮肤的老化,而抗氧化剂可以清除自由基。抗氧化对于皮肤抗衰老的意义甚至远远大于保湿对于皮肤的意义。 2 糖化作用使皮肤中的胶原蛋白交联,抗氧化是抗糖化的基础。 3 抗氧化也是使皮肤美白的重要基础,所以许多抗氧化性能优异的原料同样是好的美白原料,如:α-硫辛酸、白藜芦醇,维生素C的各种衍生物也同时用于抗皱和美白。 二具有神奇的多面性的物质—α-硫辛酸 性能都是其结构决定,不同于其它抗氧化剂(绝大部分抗氧剂为多酚结构中H含羟基-OH),α-硫辛酸的抗氧化性(还原性)是因为独特的双硫健结构和硫氢结构。

黄芩苷和黄芩素的最新提取方法与应用研究

黄芩苷和黄芩素的最新提取方法与应用研究 摘要黄芩苷和黄芩素是中药黄芩的重要单体,具有多种功效,在抗菌、抗病毒、保肝、利胆、抗癌、抑制炎症反应等方面具有较高的应用价值。本文就两者的新提取工艺和新的应用进行概述,为黄芩的进一步开发和应用提供参考。 关键词黄芩苷黄芩素提取方法药理作用 Recent review in extraction techniques and pharmacological study of Baicalin and Baicalein Li Xue , Guo Yan-xia,Ren Hui-xia (Department of Pharmacy,Shandong University. Ji Nan,Shandong,China) ABSTRACT Baicalin and Baicalein are important components of traditional Chinese herb ,Scutellariae Radix ( HuangQin) , and have various efficacies , including antibacterial , antivirus , antiinflammation , protecting the liver function , antitumor , and show good values in clinical application. This article reviews latest developments in their extraction techniques and pharmacological action and provides theoretical evidences for exploiting of Scutellaria . KEYWORDS Baicalin ;baicalein ; extraction techniques ;pharmacological study 黄芩为唇形科植物黄芩(Scutellaria baicalensis Georgi)的干燥根,具清热燥湿、泻火解毒、止血、安胎之功效。现代药学研究证明,黄芩含有多种黄酮类化合物,其中黄芩苷、黄芩素、汉黄芩苷、汉黄芩素是主要有效成分[1],其黄芩苷和汉黄芩苷的苷键被水解厚,即产生葡萄糖醛酸和苷元(黄芩素和汉黄芩素),传统上通常以黄芩苷作为中药黄芩的标志性检测物和主要研究对象,但近年来研究发现黄芩素(黄芩苷元)在临床上有更好的药理活性,如抗菌、抗病毒、保肝、利胆、抗癌、抑制炎症反应等,因此本文将两者最新的提取方法与药效分别汇总,为工业生产与临床用药提供参考。 1.黄芩苷提取新方法 黄芩苷的提取工艺很多,过去主要有浸渍法、渗滤法、煎煮法、回流提取法和加碱温浸法等。但都存在提取时间长、效率不高、溶剂消耗量大、操作烦琐、过滤困难等缺点。随着提取和分离技术的不断提高,黄芩苷的提取方法也发生很大的变化,主要概括如下: 1.1 超声提取 超声能产生空化效应,具有粉碎、搅拌等特殊作用,使黄芩植物组织在溶剂中瞬时产生的空化泡的崩溃,而使组织中的细胞破裂,以利于溶剂渗透到植物细胞内部,使细胞中的黄芩苷成分进入水溶剂之中,加速相互渗透、溶解,以增加黄芩中的主要成分黄芩苷在水中的溶解度。郭孝武等[2]研究了不同频率超声对提取黄芩苷成分的影响,比较在同一提取时间, 频率分别为20, 800, 1100 KHz 时从中药黄芩中提取黄芩苷成分的得率, 以20 KHz 下得率最高, 认为原因是该频率下超声空化效应强, 加之粉碎化学效应, 有利于有效成分转移和黄芩苷与水的混合。但超声波法对设备的要求较高,实现工业化生产,成本较高。

α—硫辛酸抗氧化治疗糖尿病周围神经病变效果分析

α—硫辛酸抗氧化治疗糖尿病周围神经病变效果分析目的探讨α-硫辛酸抗氧化治疗糖尿病周围神经病变的临床效果。方法选 择90例患者,随机分为两组,各45例,观察组使用α-硫辛酸,对照组口服甲钴胺片,比较两组患者治疗后1月内疼痛V AS情况,及治疗前后正中神经和腓总神经传导速度。结果治疗后3周开始,疼痛V AS评分达到较低水平,且低于治疗后1和2周(P<0.05),治疗后观察组正中神经和腓总神经传导速度均快于治疗前及对照组治疗后(P<0.05)。结论α-硫辛酸治疗糖尿病周围神经病变其效果显著,能更好的缓解患者疼痛,改善患者的神经传导功能,值得临床推广。 标签:α-硫辛酸;糖尿病;周围神经病变 糖尿病主要病变是累及患者的周围神经系统,常常表现为手套袜套样感觉障碍,肢端指端发麻等,微观学认为其病理基础主要与体内的线粒体产生的超氧化物过关[1],机体出现氧超载等过氧化物反应,而出现相应的临床表现,如感觉异常和疼痛等,α-硫辛酸是一种新型的抗氧化剂,静脉运用后能有效的减少机体的氧自由基形成,具有抗氧化作用,减少血管神经的氧化应激,从而改善糖尿病患者的周围神经病变,本研究主要探讨α-硫辛酸治疗糖尿病周围神经病变的临床效果,现报道如下。 1 资料与方法 1.1 一般资料 选择2010年1月~2012年12月我院收治的糖尿病存在周围神经病变的患者90例,随机分为两组,各45例,其中观察组:男23例,女22例,年龄51~88岁,平均(66.3±3.8)岁,病程10~50年,平均(23.5±3.1)年;对照组:男24例,女21例,年龄50~86岁,平均(66.5±3.9)岁,病程10~51年,平均(23.6±3.2)年,两组性别、年龄及病程等差异无统计学意义(P>0.05)。 1.2 方法 所有患者入院后均实施饮食控制、运动疗法、健康教育并结合胰岛素控制血糖,其中对照组根据患者血糖,使用短效结合长效胰岛素皮下注射控制血糖,并加快患者健康教育,同时口服甲钴胺片(海南斯达制药有限公司,H20050997)一次1片(0.5mg),一日3次,进行神经营养处理,观察组则使用α-硫辛酸(山东齐都药业有限公司,H20100152)口服,0.2g/次,3次/d,抗氧化处理,比较两组患者治疗后1月内疼痛VΑS情况,及治疗前后正中神经和腓总神经传导速度。 1.3 统计学处理 应用SPSS13.0进行,计量资料以()表示,两组间均数的比较使用t检验,

2013-2018年中国硫辛酸原料药行业发

2013-2018年中国硫辛酸原料药行业发展分析及投资研究报告 [xx]: 《2013-2018年中国硫辛酸原料药行业发展分析及投资研究报告》立足于我国硫辛酸原料药行业现状,从硫辛酸原料药行业的发展环境、进出口状况、竞争格局、行业内主要企业发展情况以及行业未来发展趋势等多方面深度剖析,全面展示硫辛酸原料药行业现状,揭示硫辛酸原料药的市场潜在需求与潜在机会。同时对我国硫辛酸原料药行业重点企业的发展情况、财务状况进行了分析,并重点剖析了我国硫辛酸原料药市场各细分产业的发展状况以及行业发展策略。 中金企信在此基础上针对投资者需求进行了行业投资风险分析和大量的市场调查,详尽的描述了硫辛酸原料药行业的市场风险,投资风险,政策风险,以及竞争风险,为企业及投资者深入了解硫辛酸原料药行业的发展动态和企业定位提供帮助。 [报告目录]: 第一章硫辛酸原料药产业概述 第一节硫辛酸原料药业的概念界定 一、硫辛酸原料药业的定义 二、硫辛酸原料药业的基本特征 三、硫辛酸原料药业与其他相关概念的区别 四、硫辛酸原料药与传统制造业之间的关系 第二节硫辛酸原料药业的分类简述 第二章xx硫辛酸原料药行业市场环境分析 第一节行业政策环境分析

一、行业监管部门 二、行业监管体制 第二节行业经济环境分析 一、宏观经济与行业的相关性分析 二、国际宏观经济走势分析 三、国内宏观经济运行特点 第三节行业贸易环境分析 一、行业贸易环境发展现状 二、行业贸易环境发展趋势 三、行业贸易环境风险预警 第四节行业技术环境分析 一、行业技术水平分析 二、行业技术特点分析 三、行业最新技术动态分析 第三章2012年中国硫辛酸原料药行业整体运行形势透析第一节2012年中国硫辛酸原料药行业运行总况 一、中国硫辛酸原料药行业已步入最佳变革期 二、中央经济会议对硫辛酸原料药行业的影响 三、中国硫辛酸原料药行业已经到“拐点”的因素剖析 四、xx硫辛酸原料药业发展的产业化道路 五、xx硫辛酸原料药产品设计的流行趋势

α-硫辛酸

硫辛酸 这是一种既可以溶于水,也可以溶于脂肪的全能营养素。可以到达身体的每一个部位。并且,与Q10一样,可以直接给细胞充电,帮助细胞释放能量。 硫辛酸由于参与每个细胞的能量释放工作,在产生三磷酸腺昔过程中起关键作用。因而可以使细胞的活力恢复,所以,在几乎每一种慢性疾病的康复都扮演重要的角色。 硫辛酸是一种很有价值的抗衰老营养素,对女人来说,是改善皮肤、延缓衰老的一个帝王级的营养补充,更是抗癌的先锋。因为它独特的大小和化学结构,硫辛酸是既能渗透到身体的脂溶性部分(如维生素E),也是可以渗透到身体的水溶性部分(如维生素C)的抗氧化剂。这使得硫辛酸能遍布全身,在身体的各个部位发挥抗氧化作用,而大多数抗氧化剂只能保护身体的独立的某个区域。 硫辛酸的抗氧化能力比维生素E高20倍,并有利于维生素C 、A、B的循环利用。 硫辛酸可预防糖基化反应。糖基化反应的意思是说糖分子结合血液、细胞膜、神经组织等的重要蛋白质。糖基化反应是发生灾难性的“制革作用”,就像在制革过程中,将柔软的牛皮变成硬皮革一样。无论是血管、神经、或者肌肉,糖基化将使得组织迅速老化。只要3周,硫辛酸营养补剂能逆转糖尿病的周围神经病。硫辛酸改善了进人神经的血液流动,然后提高了神经传导。因此建议每一个糖尿病人都使用,同时,硫辛酸可以降低糖尿病人的并发症。 硫辛酸更能对癌症患者有很好的支持。因为它在有氧新陈代谢中的作用,补充硫辛酸营养补剂,能够使得到达心脏的氧增加了72%,到达肝脏的氧增加了128%。由于癌是厌氧生长,加强癌症患者的有氧新陈代谢就像是在吸血鬼身上照射日光,而使得癌细胞无法生长。静脉注射硫辛酸,在短短一小时内,帮助那些由于食物中毒而造成肝脏坏死的病人完全恢复。硫辛酸更可以帮助乙型、丙型肝炎患者免于换肝,而逐渐恢复。 硫辛酸增加了体内其他抗氧化剂的可获得的量,如谷胱甘肽。 硫辛酸可以帮助身体内四个重要的抗氧化剂再生:维生素C、E、谷胱苷肽、Q10。这个作用,有着非常的意义,如果你在帮助病人的时候,同时使用这几种营养,效果将达到极至。 硫辛酸是一种完美的抗氧化剂。这种“完美的”抗氧化剂具有以下的作用: .中和自由基。 .被身体细胞迅速吸收、快速利用。 .能加强其他抗氧化剂的作用。 .能集中在细胞和细胞膜的内外。 .促进正常基因表达。 .螯合金属离子,或将有毒金属排出体外。 硫辛酸通过使血糖进人细胞起到了改善胰岛素功效的作用。从而帮助糖尿病病人的康复。对于过胖和过瘦的二型糖尿病患者来说,是个福音,每天500毫克的剂量,是葡萄糖的燃烧运用渐趋改善。并对于由于糖尿病所引起的神经病变,有显著的作用。 硫辛酸在对爱滋病的治疗中,也帮助抗氧化剂的再生,以及增加重要的T淋巴细胞,这几乎是帮助爱

硫辛酸的测定方法

HPLC法测定食品中α-硫辛酸的含量 硫辛酸,亦称α- 硫辛酸(α- L ipo ic ac id, LA ) ,是一种具有生物活性的天然产物,被誉为“万能抗氧剂”,其抗氧化作用及医用价值受到国际生物医学界的高度关注。近年来,含α- 硫辛酸的保健食品正不断涌入中国市场。1951年,科学家首次从猪肝中分离得到α- 硫辛酸结构式见图1,化学名称为1, 2 - 二硫戊环- 3- 戊酸。一系列研究证明硫辛酸在治疗听力损伤、糖尿病及并发症、肝病变等方面有良好的疗效;同时,由于具有强效抗氧化作用,也被制成保健食品,起到抗衰老等功效。本方法用高效液相色谱进行定性、定量检测,流动相提取试样,外标法定量。 液相色谱条件色谱柱Phenom enex - C18柱( 416 mm ×250 mm ,5 μm ) 。 图 1 α- 硫辛酸结构式 B eckm an高效液相色谱仪,配二极管阵列检测器及数据处理器;超声波清洗器;水最好由纯水仪制得; 乙腈: 色谱纯;α- 硫辛酸对照品,纯度≥99 % ; 1 材料与方法 111仪器与试剂流动相 由于α- 硫辛酸结构式中含羧基,因此采用酸性流动相011%三氟乙酸水溶液+乙腈= 50 + 50。 检测波长 设定210 nm 作为检测波长 分析方法 标准曲线绘制 精密称取α- 硫辛酸对照品29115 m g于25 m l 容量瓶中, 加选定的流动相溶解, 准确定容, 制得11166 m g /m l 的标准储备液。逐级稀释成浓度为4166、9133、23132、46164、93128、466140 μg /m l 的一系列标准溶液,各进样20 μl(α- 硫辛酸在4166~466140μg /m l的浓度范围内,线性良好)。 样品处理取含α- 硫辛酸的样品内容物适量,粉碎并混匀,称取 1 g (精确至01001 g)于25 m l容量瓶中,加入约20 m l提取液,超声提取15 m in,取出放冷,用流动相准确定容,摇匀。用0122 μm 滤膜过滤,待测。 测定方法取样品处理液HPLC进样20 μl,比较样品与标准组分的保留时间及吸收光谱特性进行定性,外标法定量。 计算: 根据标准曲线和硫辛酸对照品浓度,用外标法一般计算方法计算得硫辛酸含量。

Alpha硫辛酸

Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases Marilia Brito Gomes1* and Carlos Antonio Negrato2 α-硫辛酸作为潜在治疗糖尿病和其它慢性疾病多功能成分,α-硫辛酸的化学名为:(± -5-[3-(1,2-二硫杂环戊烷)]-戊酸,是天然存在的物质,其主要功能作为氧化代谢的不同酶,1937年Snell发现ALA,1951年Reed分离到ALA。1959年德国首次用于临床治疗毒鹅膏急性中毒,这是一种分布于欧洲的蘑菇,通常食用后会引起中毒死亡。然而很快同一作者叙述用于治疗神经病变的症状。当今认为ALA或它的还原形式二氢硫辛酸(DHLA)具有许多生化功能,如作为生物抗氧化剂、金属络合剂,还原其它抗氧化剂如维生素C,维生素E和谷胱甘肽(GSH)的氧化形式,调制一些信号传导通路,如胰岛素和NFκB。有证据表明ALA有改善失调的内皮功能和减少运动训练后的氧化应激,它也保护性抑制动脉粥样硬化的发展。现已经假定ALA以上提到的这些作用可能成为许多很大流行病意义的慢性疾病潜在的治疗药物,同样有经济意义和社会影响,如糖尿病及并发症,高血压,阿尔茨海默病,唐氏综合征,认知缺陷和某些肿瘤 目前作为食物补充物的ALA在患者医学和营养处置方面的应用不断增长。 生物合成、生物化学特性,吸收和生物利用度 ALA是通常食物的一种成分,如存于蔬菜(菠菜,卷心菜和番茄)和肉类(主要内脏),在许多食物补充物中也有ALA存在。在植物的动物的线粒体通过辛酸和半胱氨酸(作为硫的供体)的酶反应合成ALA, 作为含硫的物质,认为ALA是一巯基成分。哺乳类细胞可以通过线粒体硫辛酸合成酶(LASY) 的作用合成ALA,在不同的临床状态下可以下调该酶的活性。 ALA存在两种对映体(光学异构),R和S型,对于线粒体氧化代谢酶,R型是主要的辅助因子,因为它加入到与赖氨酸残端(硫辛酰胺)氨基有联系的酰胺键.,R-ALA作为以下酶的辅酶, 在两个关键性的氧化脱羧反应中起作用,即在丙酮酸脱氢酶(PDH)复合体和α-酮戊二酸脱氢酶复合体中,丙酮酸脱氢酶是由3种酶组成的多种酶的复合物,通过3步催化不可逆丙酮酸氧化脱羧化成为乙酰辅酶A(acetyl-CoA),它是三羧酸循环的一个成分。硫辛酸可以接受酰基与丙酮酸的乙酰基,形成一个硫酯键,然后将乙酰基转移到辅酶A分子的硫原子上。形成辅基的二氢硫辛酰胺可再经二氢硫辛酰胺脱氢酶(需要NAD+)氧化,重新生成氧化型硫辛酰胺。α-硫辛酸含有双硫五元环结构,电子密度很高,具有显著的亲电子性和与自由基反应的能力,因此它具有抗氧化性。丙酮酸脱氢酶、α-酮酸脱氢酶分支链(KGDH)。以上其它酶也催化其它α-酮酸的氧化脱羧化如α-酮戊二酸盐, valine, 亮氨酸,异亮氨酸。R-ALA也是甘氨酸裂解系统降解甘氨酸为丙酮酸的辅酶。 ALA(以R,S的混合物存在)的吸收和生物利用度已进行研究,两种对映体的绝对生物利用度不超过40%,随食物的摄取而降低。因此ALA必须在进食前30min摄取。某些研究已经表明:R-ALA 在一些代谢通路比S-ALA有更强的生物活性。ALA口服后被胃肠道吸收并转运到不同器官,因为它容易通过血脑屏障如脑。独立于最初来源(食物或营养补充物),在肝脏ALA还原为DHAL 并代谢成不同产物,如二去甲硫辛酸盐和四去甲硫辛酸盐和肾排泄。一些系统已经于ALA的细胞转运有关,如钠依赖转运,通过SLC5A6基因产生跨膜蛋白,该蛋白也位移其它维生素和辅酶。这两种转运体也应答ALA小肠摄取。 抗氧化特性 目前认为ALA和它的还原形式DHLA是强大的天然抗氧化剂,具有清除多种活性氧能力。值得注意的是没有提出两者一致的特殊清除能力,如在实验研究(意味环境对于证实它的清除能力可能是重要因素的实验研究水相和膜相ALA与DHLA的清除能力不同。 这些结果在表1中显示,由于它们有两型特性(在细胞膜和细胞浆抗氧化作用)ALA/DHLA有一些超过其它抗氧化剂如维生素E和C的重要优点。ALA/DHLA可以使其它抗氧化剂,如维生素E和C,还原/氧化型谷胱甘肽(GSH/GSSG) 再生。谷胱甘肽是含谷氨酸、半胱氨酸和甘氨酸的

硫辛酸的功效

硫辛酸可以减少动脉粥样硬化 用小老鼠所做的一项新的研究发现,补充硫辛酸可以抑制形成血管病变,降低甘油三酯,减轻血管炎症和抑制体重增加;所有效果的关键都在于解决心血管疾病问题。 实验室的研究人员报告认为,补充硫辛酸作为一种廉价而有效的干预策略,对减少动脉粥样硬化的发生和其他血管炎症性疾病等已知的危险因素对人类的危害,是很有用的。 这项研究结果是由莱纳斯·鲍林研究所和在俄勒冈州立大学的兽医学院,以及华盛顿大学的医学系的科学家们得到的。 研究发现,补充了硫辛酸的两种小鼠,分别减少了55%和40%的动脉粥样硬化病变的形成几率;同时也减少了将近40%的体重增长,降低了甘油三酯的水平。 因此,作者得出结论:“硫辛酸对动脉粥样硬化这类血管疾病的预防和治疗是有辅助作用的。” “我们很高兴,特别是因为补充硫辛酸的这些成果的出现提供了多种不同的机制来改善心血管健康”,巴尔兹弗雷说(莱纳斯·鲍林研究所,教授,主任):“他们通过帮助恢复正常的代谢过程,可以帮助解决西方世界最重要的健康问题之一。” 弗雷说:“这些发现还需要加强更全面的临床研究,这将是我们研究的下一个步骤。” 硫辛酸是一种天然的营养物,食物中能够发现的含量是非常低的,比如绿叶蔬菜,土豆和肉类,尤其是动物内脏如肾脏,心脏或肝脏。在本项研究中所使用的分量将不会影响到任何正常的饮食习惯。即使在维持在一个较低的饮食水平,硫辛酸也可以在能量代谢中发挥了关键作用。 动脉粥样硬化,或称为“血管硬化”,是一个长期的过程。现在被看作是一种慢性炎症性疾病,开始时,某些类型的白血细胞与单核细胞结合形成的“粘附分子”吸附在动脉壁。这反过来又使单核细胞进入动脉壁,在那里他们成为低密度脂蛋白的存在,可以变身为充满脂质的泡沫细胞。最终这些泡沫细胞脱落,在血管壁里堆积,形成动脉脂肪沉积。 这是一个很缓慢的过程,往往在青春期就开始了,延续了一辈子。目前它已被证实为肥胖,不良饮食习惯,缺乏运动,糖尿病,高血压,遗传易感性等原因造成的。而这些动脉中的脂肪沉积,最终引致心脏病发或者中风。 研究人员现在相信防止这种过程中,高浓度的α-硫辛酸是特别有用的。通过抑制形成粘附分子,同时它还能降低甘油三酯,以及其他导致心血管疾病发作的重要危险因素。它作为一种非常有效的抗氧化剂,有助于保护胰岛,维持胰岛素的正常分泌和葡萄糖代谢正常化。 “以我们目前的了解知道,这是一种非常有价值的预防机制。对于一些存在先天性心血管疾病的人,他就能够很好的对疾病做出预防。”弗雷说。“而且,无论心血管疾病患者处在何种阶段,他都能够有一定的减缓作用,并且还有治疗糖尿病并发症的价值。”

硫辛酸的工艺流程简介新(1)

硫辛酸的简介 1.概述 1)产品简介 药物名称:硫辛酸 英文名::thioctic acid 别名:DL-α-硫辛酸;阿尔法硫辛酸;类脂酸;DL-硫辛酸;α-硫辛酸 结构式: CAS登记号:62-46-41077-28-7 分子式:C8H13O2S2 分子量:206.3182 熔点:58-63℃ 沸点:362.5°C at 760 mmHg 闪点:173°C 蒸汽压:3.07E-760mmHg at 25°C 性状:浅黄色澄明液体 用途:硫辛酸(Thioctic Acid)又名二硫辛酸,属于维生素 B 类化合物,是人体内不可缺少的抗氧化剂,具有极高的医用价 值及抗衰老潜能。其制剂在临床上主要用于治疗糖尿病的微 血管病变。自1989年硫辛酸作为一种高效的抗氧化剂被认 识后,日益受到人们的青睐,成为提高生活质量、抵抗衰老、 延长寿命不可或缺药品。

资料来源:化化网、百度搜索 2)生产方法的选择及生产流程的确定 常见的硫辛酸生产工艺有6,8-二氯辛酸乙酯法、Baryer-Villiger氧化方法、普林斯反应方法、环己酮和乙烯基乙醚法等,现简介如下: (1)6 , 8 - 二氯辛酸乙酯法 以 6, 8 - 二氯辛酸乙酯为起始原料,经过环合反应、碱性水解、盐酸酸化等反应合成外消旋A-硫辛酸。合成路线如下: 6 , 8 - 二氯辛酸乙酯法-硫辛酸合成路线1 工艺特点:此路线的总收率接近50%,产品纯度为99% ,工业化成本相对较低,是一条值得推广的工艺路线。 (2)Baryer-Villiger氧化方法 以环己酮为起始原料, 经烯胺化、加成、过氧化、取代、氧化共 5 步反应得到最终产物,总收率为25%。合成路线如下:

黄芩苷的研究概况

综述 黄芩中黄芩苷的研究概况 一前言 黄芩苷(baicalin)是由唇形科植物黄芩Scutellariabaicalensis Georgi 的干燥根中提取的一种黄酮类化合物。其原植物主要产于东北、河北、山西、河南、陕西、内蒙古等地,以山西产量最大,河北承德产的质量最好。黄芩味苦,性寒。归肺、肝、胆、大肠、小肠经。功能清热燥湿,泻火解毒,止血,安胎[1]。黄芩苷是黄芩的主要有效成分之一,是黄芩及其制剂的主要质量控制指标成分,据药理学研究报道,黄芩苷具有抗微生物、抗变态反应、降压和镇静、利胆、保肝和解痉等作用[2]。本文对黄芩苷的最新研究现状作一综述。 二药理作用研究概况 黄芩苷(baicalin)是唇形科植物黄芩(scutellaria baicalensisgeorgi)的有效成分之一,属葡萄糖醛酸苷类,水解后产生黄芩素和葡萄糖醛酸,具有清热解毒、抗炎、利胆、降压、利尿、螯合金属离子、抗变态反应等多方面的作用[3]。近年来随着国际上对黄芩苷研究的持续升温以及认识的逐步深入,认为黄芩苷在清除氧自由基、减轻组织的缺血再灌注损伤、调节免疫、促进细胞凋亡以及抗肿瘤和HIV等多方面均有作用。 1 解热作用 发热是一个多环节多因素参与的复杂过程,若其中某些因素、环节被抑制或阻断,则可防止体温升高,从而产生解热效应。目前。对

于黄芩苷解热机制方面的研究报道甚少。综合近几年研究发现,黄芩总提物及单一活性成分(黄芩苷野黄芩苷)在整体动物实验、方面表现出显著的解热作用,且在一定剂量下其作用强度可高于以临床剂量折算的阿司匹林[4]。 2 抗炎作用 张罗修等[5]报道了黄芩苷对刺激剂Ca2+载体A23187诱导大鼠腹腔巨噬细胞PGE2的合成有抑制作用,这可能提示了黄芩苷抗炎作用的部分机理。陈先福等[6]应用兔感染性脑水肿模型,测定了黄芩苷、川芎嗪、甘露醇对血清和脑脊液(CSF)中磷脂酶A2 活性的抑制作用及改善脑水肿关系,结果显示黄芩苷与川芎嗪均可抑制磷脂酶A2 活性和脂质过氧化,从而减轻脑水肿、降低颅内压。 3对肝损伤的保护作用 采用D-氨基半乳糖及D-氨基半乳糖与内毒素合用建立的小鼠急性肝损伤模型,测定小鼠血清中谷草转氨酶(GOT)、谷丙转氨酶(GPT)的含量。结果,腹腔注射200mg?kg-1或500mg?kg-1黄芩苷可以明显降低因D-氨基半乳糖及D-氨基半乳糖与内毒素合用所致肝损伤小鼠血清中已升高的GOT及GPT含量。提示黄芩苷对于受损的小鼠肝脏有一定的保护作用[7]。静脉注射黄芩苷(90、10mg?kg-1)能显著增加肝组织、血清中超氧化物歧化酶(SOD)活性及谷胱苷肽(GSH)水平,进一步提高组织的抗氧化能力,通过抑制自由基的产生,降低四氯化碳(CCL)、D-氨基半乳糖对小鼠肝组织的损伤作用,降低生物膜脂质过氧化的产生,增强生物膜的稳定性,从而降低小鼠血清中丙氨酸氨基转移酶(ALT)、

相关文档
最新文档