第一章电力电子器件

第一章电力电子器件
第一章电力电子器件

电力电子技术试题(第一章)

一、填空题

1、普通晶闸管内部有 PN结,,外部有三个电极,分别是极极和极。

1、三个、阳极A、阴极K、门极G。

2、晶闸管在其阳极与阴极之间加上电压的同时,门极上加上电压,晶闸管就导通。

2、正向、触发。

3、、晶闸管的工作状态有正向状态,正向状态和反向状态。

3、阻断、导通、阻断。

4、某半导体器件的型号为KP50—7的,其中KP表示该器件的名称为,50表示,7表示。

4、普通晶闸管、额定电流50A、额定电压700V。

5、只有当阳极电流小于电流时,晶闸管才会由导通转为截止。

5、维持电流。

6、当增大晶闸管可控整流的控制角α,负载上得到的直流电压平均值会。

6、减小。

7、按负载的性质不同,晶闸管可控整流电路的负载分为性负载,性负载和负载三大类。

7、电阻、电感、反电动势。

8、当晶闸管可控整流的负载为大电感负载时,负载两端的直流电压平均值会,解决的办法就是在负载的两端接一个。

8、减小、并接、续流二极管。

9、工作于反电动势负载的晶闸管在每一个周期中的导通角、电流波形不连续、呈状、电流的平均值。要求管子的额定电流值要些。

9、小、脉冲、小、大。

10、单结晶体管的内部一共有个PN结,外部一共有3个电极,它们分别是极、极和极。

10、一个、发射极E、第一基极B1、第二基极B2。

11、当单结晶体管的发射极电压高于电压时就导通;低于电

压时就截止。

11、峰点、谷点。

12、触发电路送出的触发脉冲信号必须与晶闸管阳极电压,保证在管子阳极电压每个正半周内以相同的被触发,才能得到稳定的直流电压。

12、同步、时刻。

13、晶体管触发电路的同步电压一般有同步电压和电压。

13、正弦波、锯齿波。

14、正弦波触发电路的同步移相一般都是采用与一个或几个的叠加,利用改变的大小,来实现移相控制。

14、正弦波同步电压、控制电压、控制电压。

15、在晶闸管两端并联的RC回路是用来防止损坏晶闸管的。

15、关断过电压。

16、为了防止雷电对晶闸管的损坏,可在整流变压器的一次线圈两端并接一个或。

16、硒堆、压敏电阻。

16、用来保护晶闸管过电流的熔断器叫。

16、快速熔断器。

二、判断题对的用√表示、错的用×表示(每小题1分、共10分)

1、普通晶闸管内部有两个PN结。(×)

2、普通晶闸管外部有三个电极,分别是基极、发射极和集电极。(×)

3、型号为KP50—7的半导体器件,是一个额定电流为50A的普通晶闸管。()

4、只要让加在晶闸管两端的电压减小为零,晶闸管就会关断。(×)

5、只要给门极加上触发电压,晶闸管就导通。(×)

6、晶闸管加上阳极电压后,不给门极加触发电压,晶闸管也会导通。(√)

7、加在晶闸管门极上的触发电压,最高不得超过100V。(×)

8、单向半控桥可控整流电路中,两只晶闸管采用的是“共阳”接法。(×)

9、晶闸管采用“共阴”接法或“共阳”接法都一样。(×)

10、增大晶闸管整流装置的控制角α,输出直流电压的平均值会增大。(×)

11、在触发电路中采用脉冲变压器可保障人员和设备的安全。(√)

12、为防止“关断过电压”损坏晶闸管,可在管子两端并接压敏电阻。(×)

13、雷击过电压可以用RC吸收回路来抑制。(×)

14、硒堆发生过电压击穿后就不能再使用了。(×)

15、晶闸管串联使用须采取“均压措施”。(√)

16、为防止过电流,只须在晶闸管电路中接入快速熔断器即可。(×)

17、快速熔断器必须与其它过电流保护措施同时使用。(√)

18、晶闸管并联使用须采取“均压措施”。(×)

22、在电路中接入单结晶体管时,若把b1、b2接反了,就会烧坏管子。(×)

23、单结晶体管组成的触发电路也可以用在双向晶闸管电路中。(√)

24、单结晶体管组成的触发电路输出的脉冲比较窄。(√)

25、单结晶体管组成的触发电路不能很好地满足电感性或反电动势负载的要求。(√)

三、单项选择题把正确答案的番号填在括号内(每小题1分,共10分)

1、晶闸管内部有(C)PN结。

A 一个,

B 二个,

C 三个,

D 四个

2、单结晶体管内部有(A)个PN结。

A 一个,

B 二个,

C 三个,

D 四个

3、晶闸管可控整流电路中的控制角α减小,则输出的电压平均值会(B)。

A 不变,

B 增大,

C 减小。

4、单相半波可控整流电路输出直流电压的平均值等于整流前交流电压的()倍。

A 1,

B 0.5,

C 0.45,

D 0.9.

5、单相桥式可控整流电路输出直流电压的平均值等于整流前交流电压的()倍。

A 1,

B 0.5,

C 0.45,

D 0.9.

7、为了让晶闸管可控整流电感性负载电路正常工作,应在电路中接入(B)。

A 三极管,

B 续流二极管,

C 保险丝。

8、晶闸管可整流电路中直流端的蓄电池或直流电动机应该属于(C)负载。

A 电阻性,

B 电感性,

C 反电动势。

9、直流电动机由晶闸管供电与由直流发电机供电相比较,其机械特性(C)。

A 一样,

B 要硬一些,

C 要软一些。

10、带平衡电抗器的双反星型可控整流电路适用于(A)负载。

A 大电流,

B 高电压,

C 电动机。

11、晶闸管在电路中的门极正向偏压(B)愈好。

A 愈大,

B 愈小,

C 不变

12、晶闸管两端并联一个RC电路的作用是(C)。

A 分流,

B 降压,

C 过电压保护,

D 过电流保护。

13、压敏电阻在晶闸管整流电路中主要是用来(C)。

A 分流,

B 降压,

C 过电压保护,

D 过电流保护。

14、变压器一次侧接入压敏电阻的目的是为了防止(C)对晶闸管的损坏。

A 关断过电压,

B 交流侧操作过电压,

C 交流侧浪涌。

15、晶闸管变流装置的功率因数比较(B)。

A 高,

B 低,

C 好。

16、晶闸管变流器接直流电动机的拖动系统中,当电动机在轻载状况下,电枢电流较小时,变流器输出电流是(B)的。

A 连续,

B 断续,

C 不变。

18、普通晶闸管的通态电流(额定电流)是用电流的(C)来表示的。

A 有效值

B 最大赛值

C 平均值

20、普通的单相半控桥可整流装置中一共用了(A)晶闸管。

A 一只,

B 二只,

C 三只,

D 四只。

四、问答题(每小题6分,共计24分)

答:电力电子变流技术现在一般都应用在可控整流、有源逆变、交流调压、逆变器(变频器)、直流斩波和无触点功率静态开关等几个方面。

1、晶闸管的正常导通条件是什么?晶闸管的关断条件是什么?如何实现?

答:当晶闸管阳极上加有正向电压的同时,在门极上施加适当的触发电压,晶闸管就正常导通;当晶闸管的阳极电流小于维持电流时,就关断。只要让加在晶闸管两端的阳极电压减小到零或让其反向,就可以让晶闸管关断。

2、对晶闸管的触发电路有哪些要求?

答:为了让晶闸管变流器准确无误地工作要求触发电路送出的触发信号应有足够大的电压和功率;门极正向偏压愈小愈好;触发脉冲的前沿要陡、宽度应满足要求;要能满足主电路移相范围的要求;触发脉冲必须与晶闸管的阳极电压取得同步。

3、正确使用晶闸管应该注意哪些事项?

答:由于晶闸管的过电流、过电压承受能力比一般电机电器产品要小的多,使用中除了要采取必要的过电流、过电压等保护措施外,在选择晶闸管额定电压、电流时还应留有足够的安全余量。另外,使用中的晶闸管时还应严格遵守规定要求。此外,还要定期对设备进行维护,如清除灰尘、拧紧接触螺钉等。严禁用兆欧表检查晶闸管的绝缘情况。

4、晶闸管整流电路中的脉冲变压器有什么作用?

答:在晶闸管的触发电路采用脉冲变压器输出,可降低脉冲电压,增大输出的触发电流,还可以使触发电路与主电路在电气上隔离,既安全又可防止干扰,而且还可以通过脉冲变压器多个二次绕组进行脉冲分配,达到同时触发多

个晶闸管的目地。

5、一般在电路中采用哪些措施来防止晶闸管产生误触发?

答:为了防止晶闸管误导通,①晶闸管门极回路的导线应采用金属屏蔽线,而且金属屏蔽层应接“地”;②控制电路的走线应远离主电路,同时尽可能避开会产生干扰的器件;③触发电路的电源应采用静电屏蔽变压器。同步变压器也应采用有静电屏蔽的,必要时在同步电压输入端加阻容滤波移相环节,以消除电网高频干扰;④应选用触发电流稍大的晶闸管;⑤在晶闸管的门极与阴极之间并接0.01μF ~0.1μF 的小电容,可以有效地吸收高频干扰;⑥采用触发电流大的晶闸管。

7、晶闸管的过电流保护常用哪几种保护方式?其中哪一种保护通常是用来作为“最后一道保护”用?

答:晶闸管的过电流保护常用快速熔断器保护;过电流继电器保护;限流与脉冲移相保护和直流快速开关过电流保护等措施进行。其中快速熔断器过电流保护通常是用来作为“最后一道保护”用的。

8、对晶闸管的触发电路有哪些要求?

计算题 (每小题10分,共计20分)

1、 单相半波可控整流电路,电阻性负载。要求输出的直流平均电压为50~92V 之间连续可调,最大输出直流电流为30A ,由交流220V 供电,求①晶闸管控制角应有的调整范围为多少?②选择晶闸管的型号规格(安全余量取2倍,

d

T

I I =1.66)。 解:① 单向半波可控整流电路的

U L =0.45U 22

COS +

当U L =50V 时

COS α=

20452U U L —1=220

04550

2??—1≈0 则α=90° 当U L =92V 时 COS α=

20452U U L —1=220

04592

2??—1=0.87 则α=30°

∴控制角α的调整范围应为0~90° ②由

d

T

I I =1.66知 I=1.66I d =1.66×30=50A 为最大值

∴ I T(AV)=2×57.1TM I =2×57.150

=64A 取100A

又 U yn =2U TM =2×2×220=624V 取700V

晶闸管的型号为:KP100-7。

2、 一台由220V 供电的自动恒温功率为1kW 的电炉,采用单相半控桥整流电路。通过计算选择晶闸管和续流二极管的型号。

解:电炉电阻丝的电阻

R d =d

P U 22=1000220220?≈48Ω

当α=0°时晶闸管与整流管的电流有效值才最大为 I Tm =I Dm =

Rd

U 2παπαπ2241-+SIn =48

220π

ππ20

0241-+?=3.2A 选择晶闸管和整流管的型号

I T(AV)=(1.5~2)57.1Tm I =(1.5~2)57

.12

.3=34A

取5A(电流系列值)

U Tn =(2~3)U TM =(2~3)2×220=625~936V

所以,晶闸管的型号为KP5-8 同理,整流管的型号为ZP5-8

3、 单相半波可控整流电路中,已知变压器次级U 2=220V ,晶闸管控制角α=45°,负载R L =10Ω。计算负载两端的直流电压平均值、负载中电流平均值和每只晶闸管流过的电流平均值。

4、 某感性负载采用带续流二极管的单相半控桥整流电路,已知电感线圈的

内电阻R d =5Ω,输入交流电压U 2=220V ,控制角α=60°。试求晶闸管与续流二极管的电流平均值和有效值。

解:首先求整流使出电压的平均值

U d =0.92

COS +=0.9×220×26010COS +=149 V

再求负载电流

I d = U d / R d = (149 / 5) ≈ 30 A

晶闸管与续流二极管的电流平均值和有效值分别为

I dT = 00360180α- I d = 30360

601800

0?- = 10 A I T = 00360180α- I d = 0

0360

60180- ×30 = 17.3 A I dD =

180

α

I d =

180

60

× 30 = 10 A I D =0180α I d = 0

180

60 ×30 = 17.3 A 5、 某小型发电机采用的单相半波晶闸管自励励磁电路(见图)。L 为励磁绕

组,发电机满载时相电压为220V ,要求励磁电压为45V ,励磁绕组内阻为4Ω,电感量为0.2H 。试求满足要求时,晶闸管的导通角及流过晶闸管、续流二极管的电流平均值和有效值。

解:

6、 单相半控桥式整流电路对恒温电炉供电,电炉电热丝电阻为34Ω。直接由220V 输入,试选用晶闸管与计算电炉功率。

解:I = U / R = 220 / 34 = 6.47 A

I T = I / 2 =6.47 / 2 = 4.59 A

7、 单相全控桥式整流电路带大电感负载时,若已知U 2=220V 。负载电阻R d =10Ω,求α=60°时,电源供给的有功功率、视在功率以及功率因数为多少? (P=980.1W,S=2.178VA,cos φ=0.45) (P160)

解:

识、作图题 (10分)

1、 画一个有整流变压器的单结晶体管触发电路,并指出改变哪些元件的参

数,就可以改变输出触发脉冲的相位角,通常是采用改变什么元件的参数来实现改变相位角的?

2、 画一个有整流变压器的单结晶体管触发电路,并分别画出①变压器二次绕组电压U2波形;②稳压管V1两端的波形;③电容C 两端的波形;④该电路输出的电压波形(R1两端)。

3、要让图示电路能正常、可靠地工作,还应在电路中增设哪些元器件?(直接画在图中)

6、单相半波可控整流电路中,如:⑴晶闸管内部短路,⑵晶闸管内部短开,

⑶晶闸管门极不加触发信号。画出上述三种情况晶闸管两端电压uT与负载两端电压ud的波形。

7、画出单相半控桥可控整流电路,并分析电路的工作过程。

8、画出单相半波可控整流电路控制角α=60°时,下列五种情况的u d、i T、u T波形。①电阻性负载;②大电感负载不接续流二极管;③大电感负载接续流二极管;④反电动势负载不串入平波电抗器;⑤反电动势负载串入平波电抗器还并接续流二极管。

9、画一个具有完整保护措施,能正常工作的单相全控桥式晶闸管可控整流带大电感负载的主电路。

电力电子技术第2章-习题-答案

第2章电力电子器件课后复习题 第1部分:填空题 1. 电力电子器件是直接用于主电路中,实现电能的变换或控制的电子器件。 2. 主电路是在电气设备或电力系统中,直接承担电能变换或控制任务的电路。 3. 电力电子器件一般工作在开关状态。 4. 电力电子器件组成的系统,一般由控制电路、驱动电路、主电路三部分组成, 由于电路中存在电压和电流的过冲,往往需添加保护电路。 5. 按照器件能够被控制的程度,电力电子器件可分为以下三类:不可控器件、半控型器件 和全控型器件。 6.按照驱动电路信号的性质,电力电子器件可分为以下分为两类:电流驱动型和电压驱动型。 7. 电力二极管的工作特性可概括为单向导电性。 8. 电力二极管的主要类型有普通二极管、快恢复二极管、肖特基二极管。 9. 普通二极管又称整流二极管多用于开关频率不高,一般为1K Hz以下的整流电路。其 反向恢复时间较长,一般在5μs以上。 10.快恢复二极管简称快速二极管,其反向恢复时间较短,一般在5μs以下。 11.肖特基二极管的反向恢复时间很短,其范围一般在10~40ns之间。 12.晶闸管的基本工作特性可概括为:承受反向电压时,不论是否触发,晶闸管都不会导 通;承受正向电压时,仅在门极正确触发情况下,晶闸管才能导通;晶闸管一旦导通, 门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降至维持电流以下。 13.通常取晶闸管的U DRM和U RRM中较小的标值作为该器件的额定电压。选用时,一般取 为正常工作时晶闸管所承受峰值电压2~3 倍。 14.使晶闸管维持导通所必需的最小电流称为维持电流。晶闸管刚从断态转入通态并移除 触发信号后,能维持导通所需的最小电流称为擎住电流。对同一晶闸管来说,通常I L约为I H的称为2~4 倍。 15.晶闸管的派生器件有:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管。 16. 普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10微秒左右。 高频晶闸管的不足在于其电压和电流定额不易做高。 17.双向晶闸管可认为是一对反并联联接的普通晶闸管的集成。 18.逆导晶闸管是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。 19. 光控晶闸管又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。光触 发保证了主电路与控制电路之间的绝缘,且可避免电磁干扰的影响。

第一章电力电子器件

电力电子技术试题(第一章) 一、填空题 1、普通晶闸管内部有 PN结,,外部有三个电极,分别是极极和极。 1、三个、阳极A、阴极K、门极G。 2、晶闸管在其阳极与阴极之间加上电压的同时,门极上加上电压,晶闸管就导通。 2、正向、触发。 3、、晶闸管的工作状态有正向状态,正向状态和反向状态。 3、阻断、导通、阻断。 4、某半导体器件的型号为KP50—7的,其中KP表示该器件的名称为,50表示,7表示。 4、普通晶闸管、额定电流50A、额定电压700V。 5、只有当阳极电流小于电流时,晶闸管才会由导通转为截止。 5、维持电流。 6、当增大晶闸管可控整流的控制角α,负载上得到的直流电压平均值会。 6、减小。 7、按负载的性质不同,晶闸管可控整流电路的负载分为性负载,性负载和负载三大类。 7、电阻、电感、反电动势。 8、当晶闸管可控整流的负载为大电感负载时,负载两端的直流电压平均值会,解决的办法就是在负载的两端接一个。 8、减小、并接、续流二极管。 9、工作于反电动势负载的晶闸管在每一个周期中的导通角、电流波形不连续、呈状、电流的平均值。要求管子的额定电流值要些。 9、小、脉冲、小、大。 10、单结晶体管的内部一共有个PN结,外部一共有3个电极,它们分别是极、极和极。 10、一个、发射极E、第一基极B1、第二基极B2。 11、当单结晶体管的发射极电压高于电压时就导通;低于电 压时就截止。 11、峰点、谷点。 12、触发电路送出的触发脉冲信号必须与晶闸管阳极电压,保证在管子阳极电压每个正半周内以相同的被触发,才能得到稳定的直流电压。 12、同步、时刻。 13、晶体管触发电路的同步电压一般有同步电压和电压。 13、正弦波、锯齿波。 14、正弦波触发电路的同步移相一般都是采用与一个或几个的叠加,利用改变的大小,来实现移相控制。 14、正弦波同步电压、控制电压、控制电压。 15、在晶闸管两端并联的RC回路是用来防止损坏晶闸管的。 15、关断过电压。 16、为了防止雷电对晶闸管的损坏,可在整流变压器的一次线圈两端并接一个或。 16、硒堆、压敏电阻。 16、用来保护晶闸管过电流的熔断器叫。 16、快速熔断器。 二、判断题对的用√表示、错的用×表示(每小题1分、共10分) 1、普通晶闸管内部有两个PN结。(×) 2、普通晶闸管外部有三个电极,分别是基极、发射极和集电极。(×) 3、型号为KP50—7的半导体器件,是一个额定电流为50A的普通晶闸管。() 4、只要让加在晶闸管两端的电压减小为零,晶闸管就会关断。(×) 5、只要给门极加上触发电压,晶闸管就导通。(×) 6、晶闸管加上阳极电压后,不给门极加触发电压,晶闸管也会导通。(√) 7、加在晶闸管门极上的触发电压,最高不得超过100V。(×) 8、单向半控桥可控整流电路中,两只晶闸管采用的是“共阳”接法。(×) 9、晶闸管采用“共阴”接法或“共阳”接法都一样。(×) 10、增大晶闸管整流装置的控制角α,输出直流电压的平均值会增大。(×) 11、在触发电路中采用脉冲变压器可保障人员和设备的安全。(√) 12、为防止“关断过电压”损坏晶闸管,可在管子两端并接压敏电阻。(×) 13、雷击过电压可以用RC吸收回路来抑制。(×) 14、硒堆发生过电压击穿后就不能再使用了。(×) 15、晶闸管串联使用须采取“均压措施”。(√)

第1章 电力电子器件王兆安

第1章电力电子器件 填空题: 1.电力电子器件一般工作在________状态。 2.在通常情况下,电力电子器件功率损耗主要为________,而当器件开关频率较高时,功率损耗主要为________。 3.电力电子器件组成的系统,一般由________、________、________三部分组成,由于电路中存在电压和电流的过冲,往往需添加________。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为________、________、________三类。 5.电力二极管的工作特性可概括为________。 6.电力二极管的主要类型有________、________、________。 7.肖特基二极管的开关损耗________快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为 ____ 正向有触发则导通、反向截止 ____ 。 9.对同一晶闸管,维持电流I H与擎住电流I L在数值大小上有I L________I H。 10.晶闸管断态不重复电压U DRM与转折电压U bo数值大小上应为,U DRM________Ubo。 11.逆导晶闸管是将________与晶闸管________(如何连接)在同一管芯上的功率集成器件。 12.GTO的________结构是为了便于实现门极控制关断而设计的。 13.功率晶体管GTR从高电压小电流向低电压大电流跃变的现象称为________。 14.MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的________、前者的饱和区对应后者的________、前者的非饱和区对应后者的________。 15.电力MOSFET的通态电阻具有________温度系数。 16.IGBT 的开启电压U GE(th)随温度升高而________,开关速度________电力MOSFET 。 17.功率集成电路PIC分为二大类,一类是高压集成电路,另一类是________。 18.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为________和________两类。 19.为了利于功率晶体管的关断,驱动电流后沿应是________。 20.GTR的驱动电路中抗饱和电路的主要作用是________。 21.抑制过电压的方法之一是用________吸收可能产生过电压的能量,并用电阻将其消耗。在过电流保护中,快速熔断器的全保护适用于________功率装置的保护。

第2章 电力电子器件概述 习题答案

第2章 电力电子器件概述 习题 第1部分:填空题 1. 电力电子器件是直接用于(主)电路中,实现电能的变换或控制的电子器件。 2. 主电路是在电气设备或电力系统中,直接承担(电能的变换或控制任务) 的电路。 3.处理信息的电子器件一般工作于放大状态,而电力电子器件一般工作在(开关)状态。 4. 电力电子器件组成的系统,一般由(控制电路)、(驱动电路)、(保护电路)、(主电路)四部分组成。 5. 按照器件能够被控制的程度,电力电子器件可分为以下三类:(半控型)、(全控型) 和(不控型)。 6.按照驱动电路信号的性质,电力电子器件可分为以下分为两类:(电流驱动型) 和(电压驱动型) 7. 电力二极管的主要类型有(普通二极管)、( 快恢复二极管)、(肖特基二极管)。 8. 普通二极管又称整流二极管多用于开关频率不高,一般为(1K )Hz 以下的整流电路。其反向恢复时间较长,一般在(5us)以上。 9.快恢复二极管简称快速二极管,其反向恢复时间较短,一般在(5us)以下。 10.晶闸管的基本工作特性可概括为:承受反向电压时,不论(门极是否有触发电流),晶闸管都不会导通;承受正向电压时,仅在(门极有触发电流)情况下,晶闸管才能导通;晶闸管一旦导通,(门极)就失去控制作用。要使晶闸管关断,只能使晶闸管的电流(降到接近于零的某一数值以下)。 11.晶闸管的派生器件有:(快速晶闸管)、(双向晶闸管)、(逆导晶闸管)、(光控晶闸管)。 12. 普通晶闸管关断时间(一般为数百微秒),快速晶闸管(一般为数十微秒),高频晶闸管(10us )左右。高频晶闸管的不足在于其(电压和电流定额)不易提高。 13.(双向晶闸管)可认为是一对反并联联接的普通晶闸管的集成。 14.逆导晶闸管是将(晶闸管)反并联一个(二极管)制作在同一管芯上的功率集成器件。 15. 光控晶闸管又称光触发晶闸管,是利用(一定波长的光照信号)触发导通的晶闸管。光触发保证了主电路与控制电路之间的(绝缘),且可避免电磁干扰的影响。常应用在(高压大功率)的场合。 16. GTO 的开通控制方式与晶闸管相似,但是可以通过在门极(施加负的脉冲电流)使其关断。 17. GTR 导通的条件是:(0CE u >) 且( 0B i > )。

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

电力电子第二讲晶闸管

2.3 半控型器件—晶闸管 全称晶体闸流管,又称可控硅整流器(SCR)。 1、晶闸管的结构与工作原理 晶闸管结构图、双晶体管模型图、工作原理图和符号图如图1所示,晶闸管的管芯是P1N1P2N2四层半导体,形成3个PN结J1、J2和J3。可等效为PNP和NPN两个三极管。 图1 晶闸管结构图、双晶体管模型图、工作原理图和符号图 晶闸管的工作原理是:门极电流I G↑→I b2↑→I c2(I b1)↑→Ic1↑→I K↑,阳极A、阴极K饱和导通。 2、晶闸管工作特点是: (1)承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。 (3)晶闸管一旦导通,门极就失去控制作用。 (4)要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。 3、闸管静态特性 晶闸管静态V-I特性曲线图如图2所示。 图2 晶闸管静态V-I特性曲线图 (1)正向特性:I G=0时,器件两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。正向电压超过正向转折电压U bo,则漏电流急剧增大,器件开通。随着门极电流幅值的增大,正向转折电压降低。晶闸管本身的压降很小,在1V左右。 (2)反向特性:反向特性类似二极管的反向特性。反向阻断状态时,只有极小的反相漏电流流过。 4、动态特性 晶闸管的开通和关断过程波形如图3所示。 图3晶闸管的开通和关断过程波形 (1)开通过程:延迟时间t d:0.5~1.5?s。上升时间t r:0.5~3?s。开通时间t gt:以上两者之和,t gt=t d+ t r。 (2)关断过程:反向阻断恢复时间t rr,正向阻断恢复时间t gr,关断时间t q是以上两者之和t q=t rr+t gr。普通晶闸管的关断时间约几百微秒。 5、晶闸管的主要参数 (1)电压定额 断态重复峰值电压U DRM:在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。

第一章电力电子器件

第1章 电力电子器件 1. 使晶闸管导通的条件是什么? 2. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 3. 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 1、I 2、I 3。 π4π4π25π4a)b)c)图1-43 图1-43 晶闸管导电波形 4. 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少? 5.试说明IGBT 、GTR 、GTO 和电力MOSFET 各自的优缺点。 6.快恢复二极管的动态参数有哪些?动态参数对电路工作有什么影响? 7.什么是晶闸管的关断时间?晶闸管的关断时间受哪些参数的影响? 8.晶闸管的非正常导通方式有哪些?晶闸管的非正常导通有什么危害?怎样才能阻止晶闸管的非正常导通? 9.试述晶体管基极驱动电流与晶体管导通压降和晶体管关断时间之间的关系。怎样的晶体管基极读动电流波形能使晶体管既有低的导通压降又有短的关断时间? 10.什么是晶体管安全工作区?与功率MOSFET 和IGBT 相比,功率晶体管的安全工作区多了什么限制? 11.功率MOSFET 和IGBT 是电压控制器件,为什么当频率很高时,它们的门极驱动电流仍然很大? 12.比较功率MOSFET ,IGBT 和功率晶体管的动态和静态特性。 13.为什么要提高器件的开关速度?如果器件工作频率很低,器件的开关速度是否也很重要?为什么? 14.对于IGBT 单开关电路,其电阻负载为100Ω,电源电压为1000V ,器件关断时间为0.5μS ,要求设计RCD 参数(电阻值与功率、电容值与耐压、二极管的规格),使得关断过程中电压上升率控制在500V/μS 以内,开通器件冲击电流不高于15A ,放电时间在100μS 以内。(提示:电阻负载带有一定感性,在器件关断过程中负载电流可以看作不变,设计参数有一定范围,只要符合要求就行)

电力电子技术第二章总结

2016 电力电子技术 作业:第二章总结 班级:XXXXXX学号:XXXXXXX姓名:XXXXXX

第二章电力电子器件总结 1.概述 不可控器件——电力二极管(Power Diode) GPD FRD SBD 半控型器件——晶闸管(Thyristor) FST TRIAC LTT 典型全控型器件GTO GTR MOSFET IGBT 其他新型电力电子器件MCT SIT SITH IGCT 功率集成电路与集成电力电子模块HVIC SPIC IPM 1.1相关概念 主电路(Main Power Circuit):在电气设备或电力系统中,直接承担电能的变换或控制任务的电路? 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件? 1.2特点 电功率大,一般都远大于处理信息的电子器件? 一般都工作在开关状态? 由信息电子电路来控制,而且需要驱动电路(主要对控制信号进行放大)? 功率损耗大,工作时一般都需要安装散热器? 通态损耗,断态损耗,开关损耗(开通损耗关断损耗) 开关频率较高时,可能成为器件功率损耗的主要因素? 电力电子器件在实际应用中的系统组成 一般是由控制电路?驱动电路和以电力电子器件为核心的主电路组成一个系统? 关键词电力电子系统电气隔离检测电路保护电路三个端子 1.3电力电子器件的分类 按能够被控制电路信号控制的程度不同可分为半控型器件(开通可控,关断不可控) 全控型器件(开通,关断都可控) 不可控器件(开通,关断都不可控) 按照驱动信号的性质不同可分为电流驱动型电压驱动型 按照驱动信号的波形(电力二极管除外)不同可分为脉冲触发型电平控制型 按照载流子参与导电的情况不同可分为单极型器件(由一种载流子参与导电) 双极型器件(由电子和空穴两种载流子参与导电)复合型器件(由单极型器件和双极型器件集成混合而成,也称混合型器件) 关键词控制的程度驱动信号的性质?波形载流子参与导电的情况工作原理基本特性主要参数2不可控器件——电力二极管(Power Diode) 2.1结构与工作原理 电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的? PN节(PN junction):采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结? N型半导体(N为Negative的字头,由于电子带负电荷而得此名):即自由电子浓度远大于空穴浓度的杂质半导体? P型半导体(P为Positive的字头,由于空穴带正电而得此名):即空穴浓度远大于自由电子浓度的杂质半导体? 正向电流IF :当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流? 反向截止状态:当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过的状态? 反向击穿:PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN 结反向偏置为截止的工作状态?雪崩击穿齐纳击穿(可以恢复) 热击穿(不可恢复) P-i-N结构

电力电子器件

第二讲电力电子器件的概述与电力二极管 2.1 电力电子器件概述 2.1.1 电力电子器件的概念 主电路(Main Power Circuit)—电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件(Power Electronic Device)—可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。 广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 电真空器件(Electron Device):自20世纪50年代以来,真空管(Vacuum Valve)仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。 电力半导体器件(Power Semiconductor Device)所采用的主要材料仍然是硅。 2.1.2 电力电子器件的特征 同处理信息的电子器件相比,电力电子器件的一般特征: 1)能处理电功率的大小,即承受电压和电流的能力是最重要的参数 其处理电功率的能力小至毫瓦级,大至兆瓦级, 大多都远大于处理信息的电子器件。 2)电力电子器件一般都工作在开关状态 导通时【通态(On-State)】阻抗(Impedance)很小,接近于短路,管压降(V oltage Across the Tube)接近于零,而电流由外电路决定 阻断时【断态(Off-State)】阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定 电力电子器件的动态特性(Dynamic Speciality)【也就是开关特性(Switching Speciality)】和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。 作电路分析时,为简单起见往往用理想开关来代替 3)电力电子器件往往需要由信息电子电路来控制 在主电路和控制电路之间,需要一定的中间电路对控制电路的信号进行放大,这就是电力电子器件的驱动电路(Driving Circuit)。 4)为保证不致于因损耗散发的热量导致器件温度过高而损坏,不仅在器件

电力电子技术第2章_习题_答案

班级姓名学号 第2/9章电力电子器件课后复习题 第1部分:填空题 1. 电力电子器件是直接用于主电路中,实现电能的变换或控制的电子器件。 2. 主电路是在电气设备或电力系统中,直接承担电能变换或控制任务的电路。 3. 电力电子器件一般工作在开关状态。 4. 电力电子器件组成的系统,一般由控制电路、驱动电路、主电路三部分组成, 由于电路中存在电压和电流的过冲,往往需添加保护电路。 5. 按照器件能够被控制的程度,电力电子器件可分为以下三类:不可控器件、半控型器件 和全控型器件。 6.按照驱动电路信号的性质,电力电子器件可分为以下分为两类:电流驱动型和电压驱动型。 7. 电力二极管的工作特性可概括为单向导电性。 8. 电力二极管的主要类型有普通二极管、快恢复二极管、肖特基二极管。 9. 普通二极管又称整流二极管多用于开关频率不高,一般为1K Hz以下的整流电路。其 反向恢复时间较长,一般在5μs以上。 10.快恢复二极管简称快速二极管,其反向恢复时间较短,一般在5μs以下。 11.肖特基二极管的反向恢复时间很短,其范围一般在10~40ns之间。 12.晶闸管的基本工作特性可概括为:承受反向电压时,不论是否触发,晶闸管都不会导 通;承受正向电压时,仅在门极正确触发情况下,晶闸管才能导通;晶闸管一旦导通, 门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降至维持电流以下。 13.通常取晶闸管的U DRM和U RRM中较小的标值作为该器件的额定电压。选用时,一般取 为正常工作时晶闸管所承受峰值电压2~3 倍。 14.使晶闸管维持导通所必需的最小电流称为维持电流。晶闸管刚从断态转入通态并移除 触发信号后,能维持导通所需的最小电流称为擎住电流。对同一晶闸管来说,通常I L约为I H的称为2~4 倍。 15.晶闸管的派生器件有:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管。 16. 普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10微秒左右。 高频晶闸管的不足在于其电压和电流定额不易做高。 17. 双向晶闸管可认为是一对反并联联接的普通晶闸管的集成。

电力电子器件

电力电子器件 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。 电力电子器件的功率损耗 断态损耗 通态损耗:是电力电子器件功率损耗的主要成因。 开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。分为开通损耗和关断损耗。 电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。 电力电子器件的分类 按照能够被控制电路信号所控制的程度 ◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。 ◆全控型器件:IGBT、GTO、GTR、MOSFET。 ◆不可控器件:电力二极管(Power Diode)、整流二极管。 按照驱动信号的性质 ◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。Thyrister,GTR,GTO。 ◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。电力MOSFET,IGBT,SIT。 按照驱动信号的波形(电力二极管除外) ◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。晶闸管,SCR,GTO。 ◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。GTR,MOSFET,IGBT。 按照载流子参与导电的情况 ◆单极型器件:由一种载流子参与导电。MOSFET、SBD(肖特基势垒二极管)、SIT。 ◆双极型器件:由电子和空穴两种载流子参与导电。电力二极管,PN结整流管,SCR,GTR,GTO。 ◆复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。IGBT,MCT。 GTO:门极可关断晶闸管。SITH(SIT):静电感应晶体管。 GTR:电力晶体管。MCT:MOS控制晶体管。 ITBT:绝缘栅双极晶体管。MOSFET:电力场效应晶体管。 电力二极管 二极管的基本原理——PN结的单向导电性 ◆当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流,称为正向电流IF,这就是PN结的正向导通状态。 ◆当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过,被称为反向截止状态。 ◆PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就叫反向击穿。

电力电子技术第五版第二章答案

电力电子技术第五版课后习题答案 第二章 电力电子器件 2. 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:u AK >0且u GK >0。 3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 4. 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 1、I 2、I 3。 π4 π 4 π2 5π4a) b) c) 图1-43 图2-27 晶闸管导电波形 解:a) I d1= π21?π πωω4 )(sin t td I m =π2m I (122+)≈0.2717 I m I 1= ? π π ωωπ 4 2)()sin (21 t d t I m = 2m I π 2143+≈0.4767 I m b) I d2 = π1?π πωω4)(sin t td I m =π m I (122+)≈0.5434 I m I 2 = ? π π ωωπ 4 2)()sin (1 t d t I m = 2 2m I π 2143+≈0.6741I m c) I d3=π21?20 )(π ωt d I m =41 I m I 3 = ? 20 2 )(21 π ωπ t d I m = 2 1 I m 5. 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少? 解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知 a) I m1≈ 4767 .0I ≈329.35, I d1≈0.2717 I m1≈89.48

电力电子器件

新型电力电子器件 电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。又称功率电子器件。20世纪50年代,电力电子器件主要是汞弧闸流管和大功率电子管。60年代发展起来的晶闸管,因其工作可靠、寿命长、体积小、开关速度快,而在电力电子电路中得到广泛应用。70年代初期,已逐步取代了汞弧闸流管。80年代,普通晶闸管的开关电流已达数千安,能承受的正、反向工作电压达数千伏。在此基础上,为适应电力电子技术发展的需要,又开发出门极可关断晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管等一系列派生器件,以及单极型MOS功率场效应晶体管、双极型功率晶体管、静电感应晶闸管、功能组合模块和功率集成电路等新型电力电子器件。 各种电力电子器件均具有导通和阻断两种工作特性。功率二极管是二端(阴极和阳极)器件,其器件电流由伏安特性决定,除了改变加在二端间的电压外,无法控制其阳极电流,故称不可控器件。普通晶闸管是三端器件,其门极信号能控制元件的导通,但不能控制其关断,称半控型器件。可关断晶闸管、功率晶体管等器件,其门极信号既能控制器件的导通,又能控制其关断,称全控型器件。后两类器件控制灵活,电路简单,开关速度快,广泛应用于整流、逆变、斩波电路中,是电动机调速、发电机励磁、感应加热、电镀、电解电源、直接输电等电力电子装置中的核心部件。这些器件构成装置不仅体积小、工作可靠,而且节能效果十分明显(一般可节电10%~40%)。 单个电力电子器件能承受的正、反向电压是一定的,能通过的电流大小也是一定的。因此,由单个电力电子器件组成的电力电子装置容量受到限制。所以,在实用中多用几个电力电子器件串联或并联形成组件,其耐压和通流的能力可以成倍地提高,从而可极大地增加电力电子装置的容量。器件串联时,希望各元件能承受同样的正、反向电压;并联时则希望各元件能分担同样的电流。但由于器件的个异性,串、并联时,各器件并不能完全均匀地分担电压和电流。所以,在电力电子器件串联时,要采取均压措施;在并联时,要采取均流措施。 电力电子器件工作时,会因功率损耗引起器件发热、升温。器件温度过高将缩短寿命,甚至烧毁,这是限制电力电子器件电流、电压容量的主要原因。为此,必须考虑器件的冷却问题。常用冷却方式有自冷式、风冷式、液冷式(包括油冷式、水冷式)和蒸发冷却式等。 1. 超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,(由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA (6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的"挤流效应"使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR>3.3kV)、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功率电压源的需

第二讲_开关电源的主要元器件

第二讲 开关电源中的主要元器件 元器件是构成开关电源的基础,深入了解关键元器件的性能,对于使用维护乃至设计开 关电源尤为重要。本节将对应用广泛的新型元器件作介绍。 一、 功率开关 晶闸管(SCR)于1956年问世,接着以它为核心的派生器件投入市场,而这些派生器件比SCR具有更高的额定电压和电流,以及更好的开关特性。但是它们均属半控型器件, 所以辅助电路多、效率低、工作频率低。 进入20世纪80年代,由于电力电子技术和微电子技术的应用相结合,而向市场推出了高频化全控功率集成器件。如功率MOS管、绝缘门极晶体管IGBT(或IGT)、静电感应晶体管(SIT)、场控晶闸管(MCT)等。由于这些器件不需另设辅助开关去强迫关断,故称为全控型电子器件。它们具有较高的效率和较高的工作频率,从而使开关电源整机体积变小而重量变轻,达到提高功率密度的目的。 在新一代全控型电力电子器件中,功率MOS管和静电感应晶体管(SIT)属单极型器件,它们只有一种载流子。而IGBT(或IGT)、MCT及功率集成电路(PIC)或智能功率模块(1PM)、智能开关等,为混合型器件。它们是双极型晶体管与MOS管混合,或是晶闸管与MOS器件混合。上述器件除有自关断性能外,还有如下特点: (1)在结构上由无数单元小管并联集成; (2)均为高频器件,工作频率从几千赫兹至几兆赫兹。有的频率已达10MHz以上; (3)应用性能更完善,除了有开关功能之外,有些器件还有放大、PWM调制、逻辑运算等功能。目前,高频开关电源采用的功率器件通常有:功率MOSFET、IGBT、功率MOSFET与 IGBT混合管及功率集成器件。 1、功率MOSFET 场效应管分为结型场效应管和绝缘栅型场效应管,功率场效应晶体管都是绝缘栅型场效应管。绝缘栅型场效应管是由金属氧化物、半导体组成的场效应晶体管,简称MOSFET (Metal Oxide Semiconductor Field Effect Transistor),这是一种电压控制的单极型器件。功率MOSFET(VMOSFET,有时也简称VMOS)作为开关器件,其常态都是阻断状态,也就是说都是增强型的MOSFET。VMOSFET分为N沟道和P沟道两种,其中,N沟道VMOSFET的导通电流从漏极D流向源极S,而P沟道VMOSFET的导通电流从源极S流向漏极D,它们的电气图形符号如图3-2-1所示。 图3-2-1 VMOSEFT的图形符号

第1章 电力电子器件习题(作业1)

一、问答题 1、晶闸管的导通条件是什么? 导通后流过晶闸管的电流和负载上的电压由什么决定? 答:条件:晶闸管阳极和阴极间施加正向电压,并在门极和阴极间施加正向触发电压和电流(或脉冲)。 电流由电源和负载阻抗决定,负载上电压由电源电压决定。 2、晶闸管的关断条件是什么?如何实现?晶闸管处于阻断状态时其两端的电压大小由什么决定? 答:(1)条件:使晶闸管的阳极电流I A减小到维持电流I H以下,内部正反馈无法进行,实现晶闸管的关断。(2)增大负载阻抗、减小阳极电压或反向。(3)两端电压大小由电源电压决定。 3、试说明晶闸管有哪些派生器件? 答:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管等。 4、请简述光控晶闸管的有关特征。 答:光控晶闸管是在普通晶闸管的门极区集成了一个光电二极管,光照下,光电二极管电流增加,此电流便可作为门极电触发电流使晶闸管开通。主要用于高压大功率场合。 5、晶闸管触发的触发脉冲要满足哪几项基本要求? 答:A触发信号有足够的功率。B触发脉冲有一定的宽度,脉冲前沿尽可能陡,使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。C触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。 6、如何防止P-MOSFET因静电感应应起的损坏? 答:它的输入电容是低泄漏电容,当栅极开路时极易受静电干扰而充上超过±20的击穿电压,所以为防止MOSFET因静电感应而引起的损坏 7、GTR对基极驱动电路的要求是什么? 答:要求: (1)提供合适的正反向基流以保证GTR可靠导通与关断;(2)实现主电路与控制电路隔离;(3)自动保护功能,以便在故障发生时快速自动切除驱动信号避免损坏GTR;(4)电路简单,工作稳定可靠,抗干扰能力强。 8、与GTR相比P-MOSFET管有何优缺点? 答:GTR是电流型器件,P-MOSFET是电压型器件,与GTR相比,P-MOSFET管的工作速度快,开关频率高,驱动功率小且驱动电路简单,无二次击穿问题,安全工作区宽,并且输入阻抗可达几十兆欧。 P-MOSFET缺点:电流容量低,承受反向电压小。 9、分别说明什么是不可控型、半控型和全控型电力电子器件。

第二讲 现代电力电子器件

交 流 调 速 系 统 第二讲 现代电力电子器件 主讲人: 2***级自动化本 讲课时间:2007年9月12日 主要内容 ? 第二章 现代电力电子技术 ? 2.4 电力电子器件的分类 ? 2.5 电力二极管 ? 2.6半控型器件--晶闸管 ? 2.7 典型全控型器件 ? 2.8 其他新型电力电子器件 2.4 电力电子器件的分类 按照器件能够被控制电路信号所控制的程度,分为以下三类: 2.4.1 半控型器件 通过控制信号可以控制其导通而不能控制其关断.晶闸管(Thyristor )及其大部分派生器件 器件的关断由其在主电路中承受的电压和电流决定 2.4.2 全控型器件 通过控制信号既可控制其导通又可控制其关断,又称自关断器件 绝缘栅双极晶体管(Insulated-Gate Bipolar Transistor--IGBT ) 电力场效应晶体管(Power MOSFET ,简称为电力MOSFET ) 门极可关断晶闸管(Gate-Turn-Off Thyristor--GTO ) 2.4.3 不可控器件 不能用控制信号来控制其通断,因此也就不需要驱动电路 电力二极管(Power Diode ) 只有两个端子,器件的通和断是由其在主电路中承受的电压和电流决定的 2.4 电力电子器件的分类 按照驱动电路加在器件控制端和公共端之间信号的性质,分为两类: 2.4.4 电流驱动型和电压驱动型 ? 电流驱动型--通过从控制端注入或者抽出电流来实现导通或者关断的控制

?电压驱动型--仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制 电压驱动型器件实际上是通过加在控制端上的电压在器件的两个主电路端子之间产生可控的电场来改变流过器件的电流大小和通断状态,所以又称为场控器件,或场效应器件 2.4 电力电子器件的分类 按照器件内部电子和空穴两种载流子参与导电的情况分为三类: 2.4.5 单极型器件、双极型器件和复合型器件 单极型器件--由一种载流子参与导电的器件 双极型器件--由电子和空穴两种载流子参与导电的器件 复合型器件--由单极型器件和双极型器件集成混合而成的器件 2.5 电力二极管 不可控器件。 Power Diode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用. 快恢复二极管和肖特基二极管,分别在中、高频整流和逆变,以及低压高频整流的场合,具有不可替代的地位 (1)PN结与电力二极管的工作原理 基本结构和工作原理和普通二极管一样,以半导体PN结为基础,由一个面积较大的PN结和两端引线以及封装组成。从外形上看,主要有螺栓型和平板型两种封装 (2)电力二极管的基本特性 ●PN结的单向导电性:PN结的反向截止状态 PN结的反向击穿:有雪崩击穿和齐纳击穿两种形式,可能导致热击穿。 ●PN结的电容效应:PN结的电荷量随外加电压变化而变化,呈现电容效应,称为结电容CJ,又称为 微分电容。 (3) 电力二极管的主要类型 按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同介绍 在应用时,应根据不同场合的不同要求,选择不同类型的电力二极管 性能上的不同是由半导体物理结构和工艺上的差别造成的 ●整流二极管:多用于开关频率不高(1kHz以下)的整流电路中 其反向恢复时间较长,一般在5s以上,这在开关频率不高时并不重要 正向电流定额和反向电压定额可以达到很高,分别可达数千安和数千伏以上 ●快恢复二极管:恢复过程很短特别是反向恢复过程很短(5s以下)的二极管,也简称快速二极管。工 艺上多采用了掺金措施 ●肖特基二极管:以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(Schottky Barrier Diode--SBD),简称为肖特基二极管

第一章电力电子器件

第1章电力电子器件 概述电力电子器件的概念、特点和分类等问题。 介绍常用电力电子器件的工作原理、基本特性、主要参数以及选择和使用中应注意问题。1.1 电力电子器件概述 1.1.1 电力电子器件的概念和特征 1)概念: 电力电子器件(Power Electronic Device) ——可直接用于主电路中,实现电能的变换或控制的电子器件。 主电路(Main Power Circuit) ——电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 2)分类: 电真空器件(汞弧整流器、闸流管) 半导体器件(采用的主要材料硅) 3)同处理信息的电子器件相比的一般特征: 能处理电功率的能力,一般远大于处理信息的电子器件。 电力电子器件一般都工作在开关状态。 电力电子器件往往需要由信息电子电路来控制。 电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。 电力电子器件的损耗 主要损耗:通态损耗、断态损耗、开关损耗、关断损耗、开通损耗 通态损耗是器件功率损耗的主要成因。 器件开关频率较高时,开关损耗可能成为器件功率损耗的主要因素。 1.1.2 应用电力电子器件系统组成 电力电子系统:由控制电路、驱动电路、保护电路和以电力电子器件为核心的主电路组成。 图1-1 电力电子器件在实际应用中的系统组成 在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行 1.1.3 电力电子器件的分类 按照器件能够被控制的程度,分为以下三类:

半控型器件(Thyristor) ——通过控制信号可以控制其导通而不能控制其关断。 全控型器件(IGBT,MOSFET) ——通过控制信号既可控制其导通又可控制其关断,又称自关断器件。 不可控器件(Power Diode) ——不能用控制信号来控制其通断, 因此也就不需要驱动电路。 按照驱动电路信号的性质,分为两类: 电流驱动型 ——通过从控制端注入或者抽出电流来实现导通或者关断的控制。 电压驱动型 ——仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 1.1.4 本章学习内容与学习要点 本章内容: 介绍各种器件的工作原理、基本特性、主要参数以及选择和使用中应注意的一些问题。 集中讲述电力电子器件的驱动、保护和串、并联使用这三个问题。 学习要点: 最重要的是掌握其基本特性。 掌握电力电子器件的型号命名法,以及其参数和特性曲线的使用方法。 可能会主电路的其它电路元件有特殊的要求。 1.2 不可控器件—电力二极管 Power Diode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用。 快恢复二极管和肖特基二极管,分别在中、高频整流和逆变,以及低压高频整流的场合,具有不可替代的地位。 1.2.1 PN结与电力二极管的工作原理 基本结构和工作原理与信息电子电路中的二极管一样。 由一个面积较大的PN结和两端引线以及封装组成的。 从外形上看,主要有螺栓型和平板型两种封装。

相关文档
最新文档