WILES证明费马大定理的成功时间为何其说不一

WILES证明费马大定理的成功时间为何其说不一
WILES证明费马大定理的成功时间为何其说不一

WILES证明费马大定理的成功时间为何其说不一?

WILES证明费马大定理的成功时间为何其说不一?

他的证明是否又被发现“漏洞”?

在《征服费马定理的最后竞赛》中真正夺冠的应该是哪国人?

1993年,国内新闻媒体说:350多年的数学难题被美国普林斯顿大学数学教授wiles证明。《黑龙江日报》在《科技世界》版头条发表了哈工大青年数学家曹珍富的文章《英国数学家证明了费尔马大定理》(副题:困扰人类350多年的数学难题今朝有解)。但是。几年后(1997)这位青年数学家又在《生活报》发文说:wiles是1995年证明成功的。

1994年,《中国青年报》发文说:wiles迫于社会舆论压力不得不透漏真情,说他遇到了料想不到的困难,还需要做很多工作。

1995年,《参考消息》(4月5日)载文《征服费马定理的最后竞赛》中说:wiles的证明被发现“漏洞”,他自己“堵不上”,想找合作者……。

2000年,哈工大理学院院长说:wiles最后成功的时间是1996年1月。

2002年,中科院一位院士在《教育台》的《学术报告厅》中宣讲时说wiles是1994年证明成功。

Wiles证明费尔马大定理成功的时间为何其说不一?

还有更加令人不解的:

一、2003年,远方出版社出版的《数理化之谜》中说:千古之谜费马大定理,至今尚无人完全证明。

二、2007年,哈尔滨出版社出版的《数学的故事》中说:30年前,美国数学家大卫·曼福特证明了“如果不定方程有整数解,那么这种解是非常少的”。这是目前关于“费尔马问题”最好的研究成果。

为什么这两本书中,对wiles的证明成功却“只字皆无”?莫非wiles的证明又被发现了“漏洞”?

大千世界无奇不有。1993年8月1日,《松花江报》发表了一篇该报记者写的报道《谷立煌宣称证明了费尔马大定

理》(副题:“下金蛋的母鸡”已见踪迹),并同时发了他的对《费马大定理初证》的简化(之一)。《费马大定理初证》,1988年经黑龙江省数学会理事长吴从炘教授推荐,在省第三次数学年会上发表过。对《费马大定理初证》的简化(之一、之二),1995年发表在《黑龙江教育学院学报》(第二期)。

至此,公众不难看出:在这场《征服费马定理的最后竞赛》中真正夺冠的应该是中国人。

为了坚持实事求是的科学精神,为了国家和民族的荣誉,堪当这场竞赛“世界级裁判员”的中国数学家,应不应该为中国争回这个“世界第一”?

业余者

2008年1月18日

数学家的故事

下面是历史上最天才的几个数学家在这个时间轴上存在的长度:

Pascal 39岁;Ramanujan 31岁;Abel 27岁;Galois 21岁;Riemann 39岁。身体重要的说。

Fermat当初Fermat(费马)证明不了东西时候,就写下了这句话

Cuius rei demonstrationem mirabilem sabe detex marginis exiguitas non caparet.

翻译成中文就是:“我有一个对这个命题的十分美妙的证明,这里的空白太小,写不下。”

后来,Hilbert也会了类似的技巧,有人问Hilbert为什么不去证明Fermat大定理,他说为什么要杀死一只下金蛋的母鹅,因为这样的一个对整个数学发展有着如此深远推动的问题太少了。不过个人认为他没有能力杀死这只鹅。

还有另外一个和金蛋有关的事情,不过和数学家没有关系。当初欧洲的反法联军快攻到巴黎的时候,Ecole Polytechnique的学生要求上战场,保卫国家,拿破仑说:“这怎么可能呢,我不能为了打赢一场战争,杀死一只会下金蛋的母鸡吧。”

开始说一下mm数学家她们做出的成就的的确确比不上男数学家的成就,但是我们依然能够发现她们的事迹中有很多的伟大,很多的美丽。

从古希腊说起吧。那个时候,的确是一个很民主的时代,对于女性的歧视要远好于后来,譬如说很多伟大的数学家哲学家对女性参与数学的态度还是很好的,譬如说Pythagrass(毕达哥拉斯)学派当中就有女的信徒。Pythagoras本人就很鼓励女性学者,当年有个兄弟会之类的东西,里面就有28个女孩,其中有一个叫做西诺的,后来就被Pythagrass骗去做老婆了。这个女孩在当时是个比较有影响的数学家。Socrates(苏格拉底)和Plato(柏拉图)也曾经邀请过女性去他们的学院讲学。

从他们往后,女性在很多的行业中受到了歧视,在哲学数学自然科学这些领域更是如此了。

有一个令人心痛的故事,讲的是Hypatia (西帕蒂娅),她处的时代就是Plato他们往后那么一点的时候。Hypatia本身是个很优秀的数学家了(在那个时代),她的演讲很出名,而且解题也是高手,其父亲是亚历山大的一位数学教授。经常有一些数学家找他询问一些题目的做法,她也很少让大家失望。一个小故事说有人问她为什么不结婚,她回答说她已经和真理订了婚。不过Hypatia后来极为悲惨,有个叫做Cyril的什么教长之类的人,声称数学家哲学家这帮人为异端,对他们大加残害,手段令人发指。在一个封斋的日子里,Hypatia被从马车上拖到教堂,剥光衣服,身上的肉被一群狂暴的人用牡蛎的壳

刮了下来。

我不知道世人怎样看我;可我自己认为,我好像只是一个在海边玩耍的孩子,不时的为拾到更光滑些的石子或更美丽些的贝壳而欢欣,而展现在我面前的是完全未被探明的真理之海。

——Issac Newton

----------------

这段话不同于牛顿说的那段“站在巨人的肩上”,因为“肩上”那句话是他出来吹捧一下Hooke(胡克),或者说讽刺一下,那个时代总是为着各种东西的发明权而喋喋不休。

Newton的一生落落寡合,没有结婚,也没有知心的朋友,人们结交

他都是因为他很高的地位和渊博的学识。一个同事回忆说他只见过Newton笑过一次,当时,有一个人问Newton说Euclid的几何原本如此的老朽,不知道有什么价值。对此,Newton放声大笑。:-)) 对很多人来说,牛顿的贝壳尽管光滑尽管美丽,确实不如一块肥皂有用。数学家做的事情的确是这个样子,一种孩子般的游戏,追求一种纯粹的快感。Newton之后的几百年,Cambribge另一个大名鼎鼎的数学家Hardy(哈代)也说过这种话:“从实用的观点来判断,我的数学生涯的价值等于零。”

既然扯到Hardy就说说他的轶事吧。他这个人有着各种怪癖,譬如永远不会希望见到镜子之类的,每次到一个旅馆,总是用毛巾把各个地方的镜子都遮将起来。不说这些乱七八糟的,说一下子他用“数学”解决的恐船症。

Hardy每次做船的时候,总是怕沉了。克服这个东西的一个方法是,每次不得不坐船航行的时候,他会给同事发个电报或者明信片什么的,说已经搞定了Riemann猜想回来之后会给出细节的。他的逻辑是,上帝不会允许他被淹死,否则这又将是第二个类似于Fermat大定理的事情。

穿过Plato学院的拱形门楼,首先映入眼帘的是:

“不懂几何者请勿入内。”

-----------

法国的数学家大都对抽象的东西情有独钟。Lagrange(拉格朗日)写出了他著名的分析力学的书的时候,就骄傲的宣称书中“没有一个图”;A.Weil(魏依)在教师资格考试时,理论力学交了白卷,他认为那根本不算数学。A.Weil就这样子,曾经Pierre Carier问他Gottingen的事情,提到量子力学的时候,Weil根本不知所云,尽管当时Hilbert, Bohn, Heisenberg都在做量子论。后来,Chevally和Weil在悼念Weyl的时候,根本不提Weyl的物理学的成就,然而大家公认Weyl最有名的两本书一本关于相对论,一本关于量子力学。

Lefschetz和Wiener-------------------

优秀的数学家在定理或理论之间看到了类似

卓越的数学家则从类似中间看到了类似

——Banach

--------------------

毋庸置疑,Lefschetz和Wiener都是这种可以从相似之间看到相似的数学家,不过他们的讲课技巧实在是不能让人恭维。

Rota曾讲了一个Lefschetz的故事,关于他的课是如何难懂,因为他经常语无伦次。这是几何课的开场白:“一个Riemann曲面是一定形式的Hausdroff空间。你们知道Hausdroff空间是什么吧?它也是紧的,好了。我猜想它也是一个流形。你们当然知道流形是什么。现在让我给你们讲一个不那么平凡的定理--Riemann-Roch定理。”要知道第一节Riemann曲面的课如果这样进行的话,恐怕Riemann复生也未必可以听懂。:-)

Wiener尽管是个天才,却是那种不善于讲课的那种,总是以为把真正深刻的数学讲出来一定要写一大堆积分符号。有一个关于他和中文的事情,Wiener天真的认为自己懂一种汉语,一次在中国餐馆,他终于有了施展的机会,但是服务员却根本不知道他讲的是汉语。最后,Wiener不得不评论:“他必须离开这里,他不会说北京话……。”

来说一个古老一点的人物Pascal(帕斯卡)据说14岁的时候,就已经出席了法国高级数学家的聚会,18岁发明了一台计算机,是现在计算机的始祖。尽管如此,Pascal成年之后最终致力于神学,他认为上帝对他的安排之中不包含数学,所以完全的放弃了数学。35岁的时候,Pascal牙疼,不得不思考一点数学问题来打发时间,不知不觉间,竟然疼痛全无。于是,Pascal认为这是上天的安排,所以继续开始做数学家。Pascal

这次复出的时间不到一周,但是已经发现旋轮线的最基本的一些性质。尔后,他继续研究神学。

神学也是Newton最终的选择。:-))

AbsoluteHunk 发表于2006-9-29 16:32:20阅读全文| 回复| 引用通告

关于冯.诺伊曼的故事von Nuemann的年纪比Ulam(乌拉姆)要大一些,不过两个人是最好的朋友,经常在一起谈论女人。包括他们坐船旅行,除了数学之外,就是旁边的美女,每次Nuemann就会评论道:“她们并非完美的。”他们一次在一个咖啡馆里吃东西,一个女士优雅地走过,Neumann认出她来,并和她交谈了几句,他告诉Ulam这是他的一位老朋友,刚离婚。Ulam就问:“你干吗不娶她?”后来,他们两个结了婚。

一次Princeton举行的物理演讲,演讲者拿出一个幻灯片,上面极为分散的排列着一些实验数据,并且他试图说明这些数据在一条曲线上。von Neumann大概很不感兴趣,低声抱怨道:“至少它们是在同一个平面上。

广义相对论说两个听来的故事,讲的是这个世界上最漂亮的一套理论------广义

相对论。

据说,Einstein 的场方程的第一个球对称的解,也就是Schwarzschild

(施瓦茨查尔德)解,是同名的这个人,在一战的战壕里给出的。

Schwarzschild 是Gottingen 的天文学的教授。

Edditngton(艾丁顿)是一个伟大的天文物理学家,下面这个故事是

讲他如何吹牛的。Albert Einstein 的广义相对论发表没有多久,有记

者去采访Eddington, 说听说世界上只有三个人懂得这套高深的理

论,不知这三个人都是谁?Eddington 低头沉思,很久没有回答。那

个记者忍不住又问了一遍,Eddington 说:“我正在想谁是第三个

人……。

相对论--------------

关于这个宇宙最让人难以理解的地方就是她竟然是可以被理解的。

——Albert Einstein

---------------

Einstein 构思广义相对论的时候,尽管他的数学家朋友教了他很多

Riemann 几何,他的数学还是不尽如人意。后来,他去过一次

Gottingen,给Hilbert 等很多数学家做过几次报告,他走不久,Hilbert

就算出来了那个著名的场方程,Hilbert 的数学当然比Einstein 好很

多。不久,Einstein 也得出来了,有人建议Hilbert 考虑这个东西的

署名权问题,Hilbert 很坦诚地说:“Gottingen 马路上的每一个孩子,

都比Einstein 更懂得四维几何,但是,尽管如此,发明相对论的仍

然是Einstein 而不是数学家。

有一个人叫做Paul Wolfskehl(沃尔夫凯勒),大学读过数学,痴狂的迷恋一个漂亮的女孩子,令他沮丧的是他被无数次被拒绝,感到无

所依靠,于是定下了自杀的日子,决定在午夜钟声响起的时候,告

别这个世界,再也不理会尘世间的事。Wolfskehl 在剩下的日子里依然努力的工作,当然不是数学,而是一些商业的东西,最后一天,

他写了遗嘱,并且给他所有的朋友亲戚写了信。由于他的效率比较

高的缘故,在午夜之前,他就搞定了所有的事情,剩下的几个小时,他就跑到了图书馆,随便翻起了数学书。很快,被Kummer 解释Cauchy 等前人做Fermat 大定理为什么不行的一篇论文吸引住了。那是一篇伟大的论文,适合要自杀的数学家最后的时刻阅读。Wolfskehl 竟然发现了Kummer 的一个bug,一直到黎明的时候,他做出了这

个证明。他自己狂骄傲不止,于是一切皆成烟云……这样他重新立

了遗嘱,把他财产的一大部分设为一个奖,讲给第一个证明Fermat 定理的人10 万马克……,这就是Wolfskehl 奖的来历。

由于Fermat 大定理的名声,在New York 的地铁车站出现了乱涂在墙上的话:xn + yn = zn 没有解,对此我已经发现了一种真正美妙的证明,可惜我现在没时间写出来,因为我的火车正在开来。

Hilbert(希尔伯特)曾有一个学生,给了他一篇论文来证明Riemann (黎曼)猜想,尽管其中有个无法挽回的错误,Hilbert 还是被深深的吸引了。第二年,这个学生不知道怎么回事就死了,Hilbert 要求在葬礼上做一个演说。那天,风雨瑟瑟,这个学生的家属们哀不胜收。Hilbert 开始致词,首先指出,这样的天才这么早离开我们实在是痛惜呀,众人同感,哭得越来越凶。接下来,Hilbert 说,尽管这个人的证明有错,但是如果按照这条路走,应该有可能证明Riemann 猜想,再接下来,Hilbert 继续热烈的冒雨讲道:“事实上,让我们考虑一个单变量的复函数.....”众人皆倒。

从实用的观点来判断,我的数学生涯的价值等于零。

——Hardy

----------

Lev Landau(朗道)这位俄国最伟大的物理学家惊叹道:“为什么素数要相加呢?素数是用来相乘而不是相加的。”据说这是Landau 看了Goldbach(哥德巴赫)猜想之后的感觉。术业有专攻呀...... Graham 说:“我知道一数论学家,他仅在素数的日子和妻子同房:在月初,这是挺不错的,2,3,5,7;但是到月终的日子就显的难

过了,先是素数变稀,19,23,然后是一个大的间隙,一下子就蹦

到了29,……”

四色定理---------

证明是一个偶像,数学家在这个偶像前折磨自己。

——A.Eddington

----------

一次拓扑课,Minkowski(闵可夫斯基)向学生们自负的宣称:“这

个定理没有证明的最要的原因是至今只有一些三流的数学家在这上

面花过时间。下面我就来证明它……”于是Minkowski 开始拿起粉

笔。这节课结束的时候,没有证完,到下一次课的时候,Minkowski

继续证明,一直几个星期过去了……一个阴霾的早上,Minkowski

跨入教室,那时候,恰好一道闪电划过长空,雷声震耳,Minkowski

很严肃的说:“上天被我的骄傲激怒了,我的证明是不完全的……”

1942 年的时候,Lefschetz(莱夫谢茨)去Harvard 做了个报告,Birkhoff (伯克霍夫)是他的好朋友,讲座结束之后,就问他最近在Princeton

有没有什么有意思的东西。Lefschetz 说有一个人刚刚证明了四色猜

想。Birkhoff 严重的不相信,说要是这是真的,就用手和膝盖,直

接爬到Princeton 的Fine Hall 去,Fine Hall 是Princeton 的数学楼。

John 和Jacobi 这两个Bernoulli 家族的人,都算不出来自然数倒数

的平方和这个级数,Euler 从他老师John 那里知道的,并且给出了

π2/6 这个正确的答案。Euler(欧拉)是他那个时代最伟大的数学家。

法国有一个很著名的哲学家,叫做Denis Diderot,中文的名字叫做

狄德罗,是个无神论者,这个让叶卡捷琳娜女皇不爽,于是他请Euler

来教育一下Diderot,其实Euler 本来是弄神学的,他老爸就是的,

后来是好几个叫Bernoulli 的去劝他父亲,才让Euler 做数学了。Euler

邀请Diderot 来了皇宫,他这次的工作是证明上帝的存在性,然后,

在众人面前说:“先生,( a + bn ) / n = x, 因此上帝存在;请回答!”Diderot 自然不懂代数,于是被羞辱,显然他面对的是欧洲最伟大的

数学家,他不得不离开圣彼得堡,回到了巴黎……

Euler 停止了生命,也就停止了计算。

——de Condorcet

------------------

这是一个生产数学家和物理学家的部落,有着十几位优秀的科学家

都拥有这个令人骄傲的姓氏。

John Bernoulli(约翰.贝努利)在1696 年把最速降线问题在一个叫

做《教师学报》的杂志上面提出,公开挑战主要是针对他的哥哥Jacobi.Bernoulli (加可比.贝努利), 这两个人在学术让一直相互不忿,据说当年John 求悬链线的方程,熬了一夜就搞定了,Jacobi 做了一

年还认为悬链线应该是抛物线,实在是很没面子。那个杂志好像是Leibniz 搞得,很牛,欧洲的牛人们都来做这个东西。到最后,John

收的了5 份答案,有他自己的,Leibniz 的,还有一个L.Hospital(洛

比塔)侯爵的(我们比较喜欢的那个L.Hospital 法则好像是他雇人

做的,是个有钱人)然后是他哥哥Jacobi 的,最后一份是盖着英国

邮戳的,必然是Newton(牛顿)的,John 自己说“我从它的利爪上

认出了这头狮子.”据说当年Newton 从造币厂回去,看到了Bernoulli

的题,感觉浑身不爽,熬夜到凌晨4 点,就搞定了。这么多解答当

中,John 的应该是最漂亮的,类比了Fermat(费马)原理,用光学

一下做了出来。但是从影响来说,Jacobi 的做法真正体现了变分思

想。

Bernoulli 一家在欧洲享有盛誉,有一个传说,讲的是Daniel Bernoulli

(他是John Bernoulli 的儿子)有一次正在做穿过欧洲的旅行,他与

一个陌生人聊天,他很谦虚的自我介绍:“我是Daniel Bernoullis。"

那个人当时就怒了,说:“我还是Issac Newton 呢。”Daniel 从此

之后在很多的场合深情的回忆起这一次经历,把此当作他曾经听过

的最衷心的赞扬。

---

数学怪才:Erdos

如果把普林斯顿高等研究所在三四十年代比做武林中的少林派的话,这里要讲的是一个逃徒的故事,这个人不是物理学家,完全是数学家。之所以插进他的八卦,是因为他的八卦实在是太神奇了。

还是从我们的泰勒同学说起,泰勒同学曾经是匈牙利的数学奥赛金牌。至于他为什么会到德国,先从1919年说起,1919年,匈牙利建立起了欧洲第一个法西斯政权,并且开始了血腥的排犹运动,在这种情况下,有几万犹太人离开了匈牙利。这拨人里有四个年轻人,E. Teller(就是泰勒同学),J. V on. Neumann(这头大犀牛我想大家已经很熟悉了),E. Wigner(20世纪最重要的理论物理学家之一,1963年诺贝尔奖获得者)L. Szilard(物理学家,生物学家,核链式反应的提出者和专利持有人,美国的曼哈顿工程之缘起,就是Szilard,Wigner,Teller三人建议爱因斯坦给美国总统写的信,那封信是Szilard起草的),大家可以看到这次排犹事件为后来的美国生产原子弹留下了多少人才储备。这几位后来都到德国哥庭根大学读书去了,泰勒的事迹前面已经提到过,冯.诺埃曼做了外尔的学生,他们后来很快就名动江湖。

当时匈牙利的形势对犹太人是非常危险的,光天化日之下就会有犹太人被杀或者被袭击。比如Wigner 就曾经在大街上被打过。虽然如此,还是有风雨不动安如山的,这人叫做Erdos,翻译过来是不是该叫鄂尔多斯?不过别把他当成羊毛衫了。这件羊毛衫一生居无定所,据说从来不在一个城市呆超过一个月以上,他有个名言:“Another roof, another proof”

羊毛衫同学1913年出生,虽然匈牙利的局势对犹太人很不利,他后来还是在布达佩斯大学读了本科。1934年拿到博士学位后,到英国曼彻斯特大学做博士后。对他来说到这里以后发生了一件大事情:他生平第一次在自己的面包上抹黄油(以前都是他老妈或者佣人抹的)。他还有个纪录是11岁的时候第一次自己系鞋带。

羊毛衫到英国以后,就开始了流浪生活,他在各个大学之间不停流浪,做他感兴趣的数学。每年他会回布达佩斯几次,1938年爆发了捷克事件,他那时候正在布达佩斯,匆匆赶回英国。几周后就被聘到普林斯顿高等研究所。

奥本海默曾经把普林斯顿高等研究所称为疯人院(他后来不幸成了疯人院的院长)。羊毛衫在这里算不

上最天才的(个人以为冯.诺埃曼的天才是空前绝后的),不过他还是比较疯的。普林斯顿打破了羊毛衫不在一个地方呆一个月以上的定律,好像因为他很喜欢这里。可惜普林斯顿不喜欢他,一年半后,他因为过于“uncouth and unconventional”被解聘了。虽然这样,羊毛衫一直认为这段时间是他在数学上最有成果的时期,这个特立独行的人在被普林斯顿解聘后仍然在这里流浪了很长时间。

有几个关于羊毛衫的小故事说明他的天分:

在普林斯顿,羊毛衫有一次听M. Kac(一个波兰裔美籍数学家,在数学物理方面有著名的费曼-Kac公式)做报告。Kac后来对这次报告的回忆是这样的:“Erdos在我报告的前大半部分时间都在睡觉,因为我讲的东西和他的兴趣不沾边。后来我讲到我在素因子方面遇到的困难,因为牵涉到数论,Erdos马上来了兴致,他让我解释一下到底困难在什么地方。之后不到几分钟,我的报告还没有讲完,他就打断我并且宣布问题解决了。”

数学家Halmos(赫尔莫斯以前我也提过,我借过一本他写的书)提到过羊毛衫在普林斯顿的另一个故事。有个叫做Hurewicz的数学家提过这个问题:Hilbert空间中有理点集合的维数是多少。羊毛衫同学听说了,觉得很好奇,就问什么是Hilbert空间,维数是什么意思。有人告诉了他,于是他很快就得到了答案。这是羊毛衫同学对一个他几乎一无所知的领域的贡献。

和这样的疯子呆在一起会伤自尊的。

Erdos一生都特立独行,不愿意为了某些利益就改变自己的立场,二战后,苏联占领了匈牙利,他回不去了。后来他打算去美国,美国开始了麦卡锡主义,申请签证的时候,签证官问他还会回匈牙利么?他说当然,那里有他母亲,还有一大堆朋友。FBI调查他的档案,发现了一封他写给红色中国的信,信的开头是:“华先生,考虑一个不大于p的素数。……”由于当时美国对共产已经到了风声鹤唳的地步,美国人害怕他的信中夹杂了什么密码。Erdos这个亲中的犹太人没有拿到美国的入境签证。

后来Erdos只好跑到了以色列(毕竟是犹太人),但是Erdos不肯加入以色列国籍,一直保留着他的匈牙利护照。由于Erdos在数学界和科学界的影响,匈牙利政府后来给他颁发了一个特殊护照,承认他是匈牙利公民,并且允许他自由进入以色列。

Erdos60 年代初和80年代中两次到过中国。这个疯子一生与384人合作发表了1450多篇文章。虽然如此,其中系统性的工作不多。他最大的贡献是与Selberg 分别用初等方法证明了素数定理。非常可惜的是因为一些阴差阳错的误会两人决裂了。事情是这样的,Selberg发现了一个恒等式,告诉了Erdos,两人从这个恒等式出发分别独立的用初等方法证明了素数定理。当时人们普遍认为素数定理不可能用初等的方法证明,所以这个结果的影响非常大。Erdos喜欢与人交流,他把这件事情告诉了别人。Selberg在一次聚会上,听到一个数学家告诉他说“听说Erdos和一个叫什么名字的人证明了素数定理,用的是初等方法。”这件事情让Selberg非常伤心,他回来就抢先发表了论文。所以后来大部分的功绩都被归于Selberg。不过Erdos本人对这个却不是那么在意。

他发paper效率特别高,而且他一直保持每天工作19个小时以上。所有财产就一个箱子,四处流浪,每到一处就与人合作发一堆paper,有一个笑话,说:“Erdos在坐火车的时候和检票员合作发了两篇paper。”

羊毛衫同学特别open,遇到个人就要逮住讨论数学问题,他本人也特别欢迎别人和他讨论。他有一次到UCLA(加州大学洛杉矶分校)访问的时候,去和他讨论的人挤了一屋子,他和每个人同时讨论不同的问题,就象国际象棋高手同时和多人对弈一样。

有一个数学家曾经看到过他和一个国际象棋的高手Nat Fine下棋,说:“他赢的次数很少,而且总是用心理战术……我看见Nat总是托着腮帮子,冥思苦想下一步,而Erdos则捧着一本厚厚的医学大百科全书……我问他:‘Paul,你在干什么,你不是正在和Nat下棋么?’他说:‘别打扰我,我在证明一个定理’”

不知道大家中学听说过单樽没有?我想如果对数学竞赛有兴趣的同学都会知道单樽,单樽是我国著名的奥赛数学培训老师,王元的学生(王元是华罗庚的学生,以证明了“2+3问题”而闻名于世)。单樽曾经和Erdos打过交道,Erdos在一次开会的时候看到单樽和另外一位中国数学家下围棋,觉得很赶兴趣,想和单樽下,但他又知道中国人下围棋非常好,提出让单让他四子。由于眼睛太近视,下棋的时候他差不多是“覆盖”在棋盘上,第一局他下输了,第二局单樽故意让他赢了,他没有察觉,还是很高兴,说:“At least we are equal”

最后交代一句:

为怀念逝世不久的伟大数学家:

Erdos1984年获得沃尔夫奖,和他一同分享数学沃尔夫奖的是华人数学家陈省身。

Erdos 的得奖原因里写的是:因为他激发了全世界的数学家的创造力。这是指他一贯与人合作的习惯,而且和射雕里的周伯通一样,属于数学成痴的人。全世界各地的数学家与他有过交流合作的人不计其数,据说因为他的启发而发的paper不下上万篇。数学界有一个说法叫做Erdos数,就是说Erdos本人计做零,与Erdos合作过的人,Erdos数计做1。与Erdos数为1的人合作过的人,Erdos数计做2,以此类推。一个惊人的结果就是全世界的科学家,不管他们所从事的行业或者方向与Erdos有多远,他们的Erdos数都小得惊人。谨举几例:物理学家费米的Erdos数是3,泡立是4,海森堡是4,爱因斯坦是2。比尔.盖茨的Erdos 数是4(比尔一辈子只发过一篇关于信息论方面的文章)

数学悖论奇景

“悖论”这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论。那些结论会使我们惊讶无比。悖论主要有三种形式:1.一种论断看起来好象肯定错了,实际上却是对的(佯谬);2.一种论断看起来好象肯定对了,实际上却错了(似是而非);3.一系列理论看起来好象无懈可击,却导致了逻辑上自相矛盾。

悖论有点象变戏法,人们看完以后,几乎没有一个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他后,他便不知不觉地被引进深奥而有趣的数学世界中。

著名的《科学美国人》杂志社编的《数学悖论奇景》中,有不少生动而奇妙的题目,下面几则便选自其中。有的题目作了简略的分析,有的只提出问题,留侍读者去思索。

1.唐·吉诃德悖论

小说《唐·吉诃德》里描写过一个国家,它有一条奇怪的法律,每个旅游者都要回答一个问题:“你来这里做什么?”回答对了,一切都好办;回答错了,就要被绞死。

一天,有个旅游者回答:“我来这里是要被绞死。”

旅游者被送到国王那里。国王苦苦想了好久:他回答得是对还是错?究竟要不要把他绞死。如果说他回答得对,那就不要绞死他——可这样一来,他的回答又成了错的了!如果说他回答错了,那就要绞死他——但这恰恰又证明他回答对了。实在是左右为难!

2.梵学者的预言

一天,梵学者与他的女儿苏耶发生了争论。

苏椰:你是一个大骗子,爸爸。你根本不能预言未来。

学者:我肯定能。

苏椰:不,你不能。我现在就可以证明它!

苏椰在一张纸上写了一些字,折起来,压在水晶球下。她说:

“我写了一件事,它在3点钟前可能发生,也可能不发生。请你预言它究竟是不是会发生,在这张白卡片上写下‘是’字或‘不’字。要是你写错了,你答应现在就买辆汽车给我,不要拖到以后好吗?”

“好,一言为定。”学者在卡片上写了一个字。

3点钟时,苏椰把水晶球下面的纸拿出来,高声读道:“在下午3点以前,你将写一个‘不’字在卡片上。”

学者在卡片上写的是“是”字,他预言错了:“在下午3点以前,写一个‘不’字在卡片上”这一件事并未发生。但如果他在卡片上写的是“不”呢?也还错!因为写“不”就表示他预言卡片上的事不会发生,但它恰恰发生了——他在卡片上写的就是一个‘不’字。

苏椰笑了:“我想要一辆红色的赛车,爸爸,要带斗形座的。”

3.意想不到的老虎

公主要和迈克结婚,国王提出一个条件:

“我亲爱的,如果迈克打死这五个门后藏着的一只老虎,你就可以和他结婚。迈克必须顺次序开门,从1号门开始。他事先不知道哪个房间里有老虎,只有开了那扇门才知道。这只老虎的出现将是料想不到的。”

迈克看着这些门,对自己说道:

“如果我打开了四个空房间的门,我就会知道老虎在第五个房间。可是,国王说我不能事先知道它在哪里,所以老虎不可能在第五个房间。”

“五被排除了,所以老虎必然在前四个房间内。同样的推理,老虎也不会在最后一个房间——第四间内。”

按同样的理由推下去,迈克证明老虎不能在第三、第二和第一个房间。迈克十分快乐,他满怀信心地

去看门。使他惊骇的是,老虎从第二个房间跳了出来。

迈克的推理并没有错,但他失败了。老虎的出现完全出乎意料,表明国王遵守了他的诺言。也许,迈克进行推理的本身就与国王关于老虎“料想不到”的条件发生了矛盾。迄今为止,逻辑学家对于迈克究竟错在哪里还末得到一致意见。

4.钱包游戏

史密斯教授和两个学生一道吃午饭。教授说:“我来告诉你们一个新游戏。把你们的钱包放在桌子上,我来数里面的钱。钱少的人可以赢掉另一个钱包中的所有钱。”

学生甲想:“如果我的钱多,就会输掉我这些钱;如果他的多,我就会赢多于我的钱。所以赢的要比输的多,这个游戏对我有利。”

同样的道理,学生乙也认为这个游戏对他有利。

请问,一个游戏怎么会对双方都有利呢?

5.一块钱哪儿去了?

一个唱片商店里,卖30张老式硬唱片,一块钱两张;另外30张软唱片是一块钱三张。那天,这60张唱片卖光了。30张硬唱片收入15元,30张软唱片收入10元,总共是25元。

第二天,老板又拿出60张唱片。他想:“如果30张唱片是一块钱卖两张,30张是一块钱卖三张,何不放在一起,两块钱卖5张呢?”这一天,60张唱片全按两块钱5张卖出去了。老板点钱时才发现,只卖得24元,而不是25元。

这一块钱到哪儿去了呢?

6.惊人的编码

外星的一位科学家基塔先生,来到地球收集人类的资料,遇到了赫尔曼博士。

赫尔曼:“你何不带一套大英百科全书回去?这套书最全面地汇总了我们的所有知识。”

基塔:“可惜,我带不走那么重的东西。不过,我可以把整套百科全书编码,然后只要在这根金属棒上作个标记,就代表了百科全书中的全部信息。”真是再简单不过了!

基塔先生是怎样做到的呢?

基塔:“我先把每个字母、数字、符号,都用一个数来代表,零用来隔开它们。例如cat一词就编为3-0-1-0-22。我用高级袖珍计算机快速扫描,就能把百科全书的全部内容转变为一个庞大的数字。前面加一个小数点,就使它变成了一个十进制的分数,例如0.2015015011……

基塔先生在金属棒上找到了一个点,这个点将棒分为a和b两段,而a/b刚好等于上面那个十进制分数值。

基塔:“回去后,测出a和b的值,就求出了它们的比值;根据编码的规定,你们的百科全书就被破译出来了。”

这样,基塔离开地球时只带了一根金属棒,而他却已“满载而归”了!

7.不可逃遁的点

帕特先生沿着一条小路上山。他早晨七点动身,当晚七点到达山顶。第二天早晨沿同一小路下,晚上七点又回到山脚,遇见了拓扑学老师克莱因。

克莱因:“帕特,你可曾知道你今天下山时走过这样一个地点,你通过这点的时刻恰好与你昨天上山时通过这点的时刻完全相同?”

帕特:“这绝不可能!我走路时快时慢,有时还停下来休息。”

克莱因:“当你开始下山时,设想你有一个替身同时开始登山,这个替身登山的过程同你昨天登山时完全相同。你和这个替身必定要相遇。我不能断定你们在哪一点相遇,但一定会有这样一点。……”

帕特明白了。你明白了吗?

8.橡皮绳上的蠕虫

橡皮绳长1公里,一条蠕虫在它的一端。蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行;而橡皮绳每过1秒钟就拉长1公里。如此下去,蠕虫最后究竟会不会到达终点呢?

乍一想,随着橡皮绳的拉伸,蠕虫离终点越来越远了。但细心的读者会想到:随着橡皮绳的每次拉伸,蠕虫也向前挪了。

如果用数学公式表示,蠕虫在第n秒未在橡皮绳上的位置,表示为整条绳的分数就是(推导过程从略):

当n足够大(约为e100000)时,上式的值就超过了1,也就是说蠕虫爬到了终点。

9.棘手的电灯

一盏电灯,用按钮来开关。假定把灯拧开一分钟,然后关掉半分钟,再拧开1/4分钟,再关掉1/8分钟,如此往复,这一过程的末了恰好是两分钟。

那么,在这一过程结束时,电灯是开着,还是关着?这个问题实在是难!

费马猜想之证明.

费马猜想之证明 景光庭 引言:20世纪60年代初,笔者首次接触“费马猜想”。在以后的岁月中,笔者断断续续地研究它。直至1992年,才有机会在《潜科学》上相继发表过三篇论文,这次是最终的证明。 虽然美国数学家怀尔斯因发表论证“费马猜想”的文章,并于1997年荣膺国际上的沃尔夫斯克尔数学大奖,但并没有推开蒙在世界数学家心头上的阴云。笔者曾通过《美国教育交流中心》向怀尔斯寄去了总长仅一页的论文复印件,并明确指出,他在证明中将“费马方程”转化为椭圆曲线,而笔者转化为抛物线,这是不能共存的。何况笔者的转化过程,浅显得连中学生都能读懂,无懈可击,百分之百的正确。怀尔斯巨著难道不是沙滩上的一座摩天大厦?我也向德国马克斯普朗克研究所的学者法尔廷斯寄去了论文复印件,亦表述了上述观点,因为他是少数几个通读怀尔斯论文,并唯一肯定和帮助怀尔斯将论文从二百多页化减到一百三十页的学者 。遗憾的是至今未复。 如果怀尔斯不屑回答一个业余数学爱好者提出的疑问,对他就是一个绝妙的讽刺,因为他以毕生精力研究攻克和使他一举成名的“费马猜想”提出者费马是律师,而不是法兰西学院的院士。恰恰相反,数学只是他的业余爱好。他与人交流数学心得,往往是在通信中进行的,并不象今天这样只有在学术界认可的刊物上发表的文章才能被专家认可。如果当年的学术界也对费马这样苛求,那么今天根本不存在什么“费马猜想”这个问题了。 定理:2>p P P P Z Y X =+ (1) 中,p 为奇素数,X ,Y ,Z 无正整数解。 证:假设X ,Y ,Z 均有正整数解。 令 X=x ,Z = x +a (a 为正整数), Y = y 0+a (y 0为正整数),约定(x ,y 0,a )=1 ,则有: p p p a x a y x )()0+=++( (2) 即: 0 (1) 12221101120221010=----++++--------x a c x a c ax c y a c y a c ay c y p p p p p p p p p p p p p p p (3) 不失一般性,可设1),(0≥=d y x 1),(,,11101===y x dy y dx x ,以d 除 (3)式, 并令:10-=p d b ,,2 1 1-=p p ad c b ……,1 11---=p p p p a c b , 于是:0 (11212111111) 1 110=----+++-----x b x b x b y b y b y b p p p p p p 11 1 123122111 1 211110............s y b x b x b x b x b y b y b p p p p p p p =++++= +++------- 11221111011.......----=----p p p p b y b y b y b x s 11231221111.......----=----p p p p b x b x b x b y s

世界数学难题——费马大定理

世界数学难题——费马大定理 费马大定理简介: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 [编辑本段] 理论发展 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

费马大定理证明

【法1】 等轴双曲线方程的通解与费尔玛大定理的证明 滕锡和 (河南鲁山 江河中学 邮编:467337) 摘 要: 由等轴双曲线方程与费尔玛方程的内在联系,寻找到一种费尔玛方程是否有正整数解 的充要条件,再由对此条件的否定,证明了费尔玛大定理,并且把费尔玛大定理与勾股定理有机地统一起来。 关键词: 完全+ Q 解;可导出+ Q 解;连环解 中图法分类号: 文献标识码:A 文章编号: 1 R +通解 本文所用数集:N ---自然数集,Q ---有理数集,R ---实数集。本文讨论不超出+R 的范围。 本文中方程n n n z y x =+及同类方程中的指数n ∈N ,以后不再说明。 引理1 方程 n n n z y x =+ (n ≥2) (1) 有N 解的充要条件是它有+ Q 解。 引理2 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是它有既约N 解。 这样,在以后的讨论中只需讨论+ Q 解及既约N 解的情形,可使过程简化。 引理3 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是方程 -1n n X Y = (n ≥2) (2) 有+ Q 解。 证明 充分性 如果方程(2)-1n n X Y =(n ≥2)有+ Q 解,设(v u v w ,)()u v w N ∈两两互素,,为其+ Q 解,则( v w )n -(v u )n =1,n n n w v u =+ 。于是方程(1)n n n z y x =+(n ≥2)有N 解()w v u ,,。 必要性 如果方程(1)n n n z y x =+(n ≥2)有N 解,设()w v u ,,() u v w N ∈两两互素,,

数 学 家 的 故 事 简 直 惊 呆 了 ( 2 0 2 0 )

《费马大定理》阅读手记(修订版) 《费马大定理》阅读手记(修订版) ? 寻求费马大定理证明的过程,牵动了这个星球上最有才智的人,充满绝望的反抗、意外的转机、隐忍的耐心、灿烂的灵性。 ? 在靠近问题8的页边处,费马写着这么几句话:? “不可能将一个立方数写成两个立方数之和;或者将一个4次幂写成两个4次幂之和;或者,总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。” ? 这个喜欢恶作剧的天才,又在后面写下一个附加的评注:? “我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。” ? 费马写下这几行字大约是在1637年,这些被侥幸发现的蛛丝马迹成了其后所有数学家的不幸。一个高中生就可以理解的定理,成了数学界最大的悬案,从此将那些世界上最聪明的头脑整整折磨了358年。一代又一代的数学天才前赴后继,向这一猜想发起挑战。 ? 欧拉,18世纪最伟大的数学家之一,在那本特殊版本的《算术》中别的地方,发现费马隐蔽地描述了对4次幂的一个证明。欧拉将这个含糊不清的证明从细节上加以完善,并证明了3次幂的无解。但在他的突破之后,仍然有无数多次幂需要证明。 ? 等到索非·热尔曼、勒让德、狄利克雷、加布里尔·拉梅等几个法国人再次取得突破时,距离费马写下那个定理已经过去了将近200年,而他们才仅仅又证明了5次幂和7次幂。 ? 事实上拉梅已经宣布他差不多就要证明费马大定理了,另一位

数学家柯西也紧随其后说,要发表一个完整的证明。然而,一封来信粉碎了他们的信心:德国数学家库默尔看出这两个法国人正在走向同一条逻辑的死胡同。 ? 在让两位数学家感到羞耻的同时,库默尔也证明了费马大定理的完整证明是当时的数学方法不可能实现的。这是数学逻辑的光辉一页,也是对整整一代数学家的巨大打击。 ? 20 ? 世纪,数学开始转向各种不同的研究领域并取得非凡进步。1908年,德国实业家沃尔夫斯凯尔为未来可能攻克费马大定理的人设立了奖金,但是,一位不出名的数学家却似乎毁灭了大家的希望:库特·哥德尔提出不可判定性定理,对费马大定理进行了残酷的表达——这个命题没有任何证明。 ? 尽管有哥德尔致命的警告,尽管经受了三个世纪壮烈的失败,但一些数学家仍然冒着白白浪费生命的风险,继续投身于这个问题。二战后随着计算机的出现,大量的计算已不再成为问题。借助计算机的帮助,数学家们对500以内,然后在1000以内,再是10000以内的值证明了费马大定理,到80年代,这个范围提高到25000,然后是400万以内。 ? 但是,这种成功仅仅是表面的,即使那个范围再提高,也永远不能证明到无穷,不能宣称证明了整个定理。破案似乎遥遥无期。 ? 最后的英雄已经出现。1963年,年仅十岁的安德鲁·怀尔斯在一本名叫《大问题》的书中邂逅费马大定理,便知道自己永远不会放弃它,必须解决它。70年代,他正在剑桥大学研究椭圆方程,看来

费马最后定理的故事

●今年6月间,德国哥庭根大学的大会堂里,500名数学家齐聚,观看普林斯顿大学数学家魏尔斯(Andrew Wiles)领取沃夫斯柯奖。沃夫斯柯是一位德国工业家的名字,他在20世纪初遗赠10万马克设立此一奖项,给予世界上头一个能解决费马最后定理之人。当时10万马克是不小的一笔数目,约等于200万美金,而几个月前由魏尔斯领到时,不过相当5万美金左右,但是这确是近世数学界的盛事,魏尔斯不只是证明了费马最后定理,也替未来的数学带来革命性新发展。费马最后定理的发明者自然是一个叫费马的人。费马(Pierre deFermat)1601年出生在法国西南方小镇。费马并不是一个数学家,他的职业是一名法官。当时为了保持法官立场的公正,通常不鼓励他们出外社交,因此每天晚上费马便钻研在他嗜好的数学之中,悠然自得。在1637年的某一天,费马正在阅读古希腊大数学家戴奥芬多斯的数学译本,忽然灵光乍现,就在书页空白处,写下有名的费马定理。费马定理的内容其实很简单,它只是基于一个方程式(X+Y=Z)。这个方程式当n等于2时,就是人们熟知的毕氏定理,中国数学上所称的勾股弦定理,其内容即直角三角形两边平方和等于其斜边的平方。如32.+42.=52.(9+16=25)。费马当时提出的难题是,当这个方程式(X+Y=Z)的n大于2时,就找不到任何整数来符合这个方程式。例如33.+43.(27+64)=91,但是91却不是任何整体的3次方。费马不仅写下了这个问题,他同时也写道,自己已经发现了证明这个问题的妙法,只是书页的空白处不够大,无法写下证明。结果他至死都没有提出他的证明,却弄得300多年来数学界群贤束手,也使他的难题得到一个费马最后定理的称号。19世纪时,法国的法兰西科学院,曾经分别两度提供金质奖章和300法郎之赏,给予任何可以解决此一难题之人,不过并没有多大进展。20世纪初捐出10万马克奖金的沃夫斯柯,事实上也是一个对费马最后定理着迷的“数痴”,据一些历史学家研究,沃夫斯柯原本一度已打算自杀,但由于对解决费马定理着迷,而放弃求死之心,因此他后来便在遗嘱中捐出巨款,原因是他认为正是费马定理救了他一命。重赏之下必有勇夫,但是解决数学难题却非人人可为。20世纪公认的德国天才数学家希伯特(D. Hilbert)就不愿去碰费马定理,他的理由是自己没那么多时间,而且到头来还可能落得失败的下场。虽然费马定理还是让许多数学家萦怀于心,但是他们看这个难题就有如化学家看炼金术一样,只是一个古老的浪漫梦。秘密钻研7年突破难题最后解决这个世纪难题的魏尔斯,早在1936年他10岁之时,便有着挑战费马定理的浪漫梦想,他在英国桥剑地方的图书馆中读到这个问题,便决心一定要找出证明方法。他学校的老师并不鼓励他浪费时间于这个不可能之事,大学老师也试图劝阻他,最后他进了英国剑桥大学数学研究所,他的指导教授指引他转入数学中比较主流的领域做椭圆曲线。魏尔斯自己也没有料到,这个由古希腊起始的数学研究训练,最后会导致他再回到费马定理之上。1927年,日本数学家谷山丰提出一个讨论椭圆曲线的数学结构,后来在美国普林斯顿大学的日本数学家志村五郎,再将这个结构发展得更为完备。这个被称为“志村—谷山猜想”的数学结构,居然成为化繁为简,通向解决费马定理的绝妙佳径。1984年德国萨兰大学的数学家佛列发展出一种很奇特也很简单的关联,将“志村—谷山猜想”和费马定理扯在一块,佛列提出的关联经过好几位数学家的努力,最后终于证明了如果要证明费马最后定理,可以经由证明“志村—谷山猜想”来完成。魏尔斯是1993年在英国剑桥大学,正式宣布他已解决费马最后定理,在此之前他已秘密的工作达7年之久,原因不只是怕受到公众压力,也害怕其他数学家抄袭他的想法,在这段期间,魏尔斯连和太太去度蜜月中都未能从“附魔”脱身。最后的结果是魏尔斯并不需要证明整个的“志村—谷山猜想”,他只要证明一些特定的椭圆形曲线是具备某种特性。但是这些特定的椭圆曲线还是有无穷多个,因此证明技巧上依然十分困难。魏尔斯基本上利用了数学上常用的归纳法,他的办法有点像推倒骨牌的游戏,如果要推倒无限多张的骨牌,你必须确知的乃是一张骨牌倒下时,一定会碰到的下张骨牌。魏尔斯在1993年6月23日觉得他的证明已十分完整,于是便在剑桥大学牛顿数学研究所的研讨会上正式宣布。300年悬案终有解300多年数学悬案终于解决,不只数学界哗然震惊,数学门墙之外的社会大众亦感

安德鲁怀尔斯的证明比我复杂一百倍

安德鲁怀尔斯的证明比我复杂一百倍 安德鲁怀尔斯的证明用了130页,并利用了连费马都没接触的理论来证明,充分说明他的证明并没有揭开费马所说的美妙证明的历史真相。真正理解费马原始思想的人是我。我只用了一页的版面通俗地透彻地严格地证明了这一结论。是真金还是铜大家可以验证。 揭开费马大定理真相 当整数n大于2时X n +Y n=Z n 没有正整数解。显然X、Y、Z都不会是零。 证明方法: 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。又由于当n=ab时X1 +X2n+X3n =0可写成(X1a)b+(X2a)b+(X3a)b=0; 因此只要证明当整数n为大于2的质数X1n+X2n+X3n =0没有非零的整数解,可类推X n +Y n=Z n 没有正整数解,而n=4没有整数解早已被人证明。现在我们需要证明当当n为大于2质数时X1n+X2n+X3n =0没有非零的整数解。 假设存在有整数解,会不会出现冲突呢,会的。 如果X1n+X2n+X3n =0存在有整数解,而n为大于2质数,因此必存: X1X2+X2X3+X3X1=d (d为整数更是有理数);X1X2X3=c(c为整数更是有理数)也就是说必存在这样的方程组; X1n+X2n+X3n =0 (1) X1X2+X2X3+X3X1=d (d为整数更是有理数) (2) X1X2X3=c(c为整数更是有理数) (3) 由方程组必可合成关于X的一元n次方程,又由于若X1=X2或X1=X3或X2=X3均不存在整数解,原因是2X1n+X3n=0没有非零整数解,因此倘若有非零整数解也只能是X1、X2、X3 互不相等。由于作为底的仅有X1、X2、X3且均要同时有理地合成为【f(X)】n 的形式现在的问其题在于,关于X的一元n次方程(n为质数)既要把未知数都配方成n次方内,又要表示出三个解的不相等。而d、b均为有理数,能做得到吗?做不到的,我们知道,当n 为质数时若将方程有理化成【f(X)】n =P;只能反映有一个实数解,其他是虚数解。说明X1、X2、X3取有理数解是不相容的。更谈不上整数解。也就是说要符合费马所规定条件的方程是不存在,因此我的假设是不成立的。 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。 当n为合数时,n可分解成质因素,可将一个质因数写成括号外的方次来证明,如果n 只含质因素2,n必可写成4m的形式,可当成4次方程来证明。而n=4时,费马本人已证明。至此费马定理证明完毕。

WILES证明费马大定理的成功时间为何其说不一

WILES证明费马大定理的成功时间为何其说不一? WILES证明费马大定理的成功时间为何其说不一? 他的证明是否又被发现“漏洞”? 在《征服费马定理的最后竞赛》中真正夺冠的应该是哪国人? 1993年,国内新闻媒体说:350多年的数学难题被美国普林斯顿大学数学教授wiles证明。《黑龙江日报》在《科技世界》版头条发表了哈工大青年数学家曹珍富的文章《英国数学家证明了费尔马大定理》(副题:困扰人类350多年的数学难题今朝有解)。但是。几年后(1997)这位青年数学家又在《生活报》发文说:wiles是1995年证明成功的。 1994年,《中国青年报》发文说:wiles迫于社会舆论压力不得不透漏真情,说他遇到了料想不到的困难,还需要做很多工作。 1995年,《参考消息》(4月5日)载文《征服费马定理的最后竞赛》中说:wiles的证明被发现“漏洞”,他自己“堵不上”,想找合作者……。 2000年,哈工大理学院院长说:wiles最后成功的时间是1996年1月。 2002年,中科院一位院士在《教育台》的《学术报告厅》中宣讲时说wiles是1994年证明成功。 Wiles证明费尔马大定理成功的时间为何其说不一? 还有更加令人不解的: 一、2003年,远方出版社出版的《数理化之谜》中说:千古之谜费马大定理,至今尚无人完全证明。 二、2007年,哈尔滨出版社出版的《数学的故事》中说:30年前,美国数学家大卫·曼福特证明了“如果不定方程有整数解,那么这种解是非常少的”。这是目前关于“费尔马问题”最好的研究成果。 为什么这两本书中,对wiles的证明成功却“只字皆无”?莫非wiles的证明又被发现了“漏洞”? 大千世界无奇不有。1993年8月1日,《松花江报》发表了一篇该报记者写的报道《谷立煌宣称证明了费尔马大定

费马大定理公式

储备公式 1.费马大定理(Fermat Last Theore m ): 当2n >时,n n n x y z +=无0xyz ≠的整数解; 当3n =时,3 3 3 x y z +=无0xyz ≠的整数解; 当4n =时,4 4 4 x y z +=无0xyz ≠的整数解; 当5n =时,5 5 5 x y z +=无0xyz ≠的整数解; 当7n =时,7 7 7 x y z +=无0xyz ≠的整数解; (2)n n n x y z n +=> 2.商高方程2 2 2 x y z +=满足(,)(,)(,)1x y y z z x ===,,x y 奇偶性不同的全体本原解为: 22222;;x pq y p q z p q ==-=+其中,p q 满足下面的条件: 0;(,)1;,p q p q p q >>=奇偶性不同 3.Fermat 无穷递降法 4.4n =时,Fermat 大定理证明过程 当4n =时,444 x y z +=无0xyz ≠的整数解; 原理:无穷递降法和毕达哥拉斯三元数组 证明:用反证法。若有正整数解,那么在所有正整数解中,必有一组解 假如存在,,x y z 满足444 x y z +=,且满足(,)(,)(,)1x y y z z x === 初等数论(P99) 定理4:不定方程:442 x y z +=无0xyz ≠的解。 证:用反证法。假若方程有正整数解,那么在全体正整数解中,必有一组解000,,x y z ,使得0z 取得最小值。我们要找出一组正整数解111,,x y z ,满足10z z <,得出矛盾。 (1)必有00(,)1x y =。若不然,就有素数00|,|p x p y 。由此及式442 x y z +=推出 42200|,|p z p z 。因此,2 000000,,x p y p z p 也是方程的正整数解,这和0z 的最小性矛盾。因此,22 000,,x y z 是方程的本原解,00,x y 必为一奇一偶,不妨设02|y ,以及00(,)1z y =

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

《费马大定理》读后感800字

《费马大定理》读后感800字 费马大定理是17世纪法国数学家费马留给后世的一个不解之谜。即:当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n.无正整数解。 为证明这个命题,无数的大数学家们都在不懈努力,孜孜不倦的力求攻克。该问题的提出还在于毕达哥拉斯定理(在一个直角三角形中,斜边的平方等于两直角边的平方之和)的存在。而后欧拉用他的方式证明了x^3+y^3=z^3无正整数解。同理3的倍数也无解。费马也证明了n为4时成立。这样使得待证明的个数大大减少。终于在“谷山——志村猜想” 之后,被安德鲁·怀尔斯完全证明。 看过该书以后,一方面是对于费马大定理的证明过程的惊叹。这是一个如此艰辛的过程。阿瑟·爱丁顿爵士曾说,证明是一个偶像,数学家在这个偶像面前折磨自己。值得解决的问题会以反击来证明他的价

值。费马大定理的成功证明的实现在是它被提出后的300多年。经典数学的证明办法是从一系列公理、陈述出发,然后通过逻辑论证,一步接着一步,最后就可能得到某个结论。数学证明依靠这个逻辑过程,一经证明就永远是对的。数学证明是绝对的。也是一环扣一环的,没有索菲·热尔曼,柯西,欧拉等人在之前的研究,该定理并非能在个人的一次研究中就能得到证明。对于数学的研究是永无止境的。另一方面,我也认识到寻找一个数学证明就是寻找一种认识,这种认识比别的训练所积累的认识都更不容置疑。最近两千五百年以来,驱使着数学家们的正是这种以证明的方法发现最终真理的欲望。数学家有着不安分的想象与极具耐心的执拗。虽说当今计算机已经发展到一定地步了,它的计算速度再快,但是无法改变数学证明的需要。数学证明不仅回答了问题,还使得人们对为什么答案应该如此有所了解。 学数学能干什么?曾经也有学生这样问过欧拉,欧拉给他一些钱以后就让学生走了。培根也说过,数学使人周密。数学的证明最能培养严谨的态度。

一只会下金蛋的鸡——费马大定理

一只会下金蛋的鸡 ——费马大定理 学了勾股定理,我们都知道直角三角形的三边满足关系式 a2+b2=c2, 同时还知道,有无数组正整数满足这个关系式。如果a、b、c的次数不是2,而是大于2的正整数,能不能找到正整数满足这个关系式呢? 十七世纪,法国的一位法官、著名的业余数学大师费马,在阅读古希腊数学家丢番图的《算术》第2卷第8个命题:“将一个平方数分解为两个平方数之和”时,在书的空白处写下了一段引人注目的文字:“要想把一个立方数分成两个立方数,把一个四次幂分成两个四次幂,一般地说,把任何高于二次的幂分成两个同次幂,都是不可能的。关于此,我确信已发现一种美妙的证法。可惜这里空白的地方太小,无法写下。”费马去世后,人们在整理他的遗物时发现了这段话,却没有找到证明,这更引起了数学界的兴趣。这就是说,费马自称证明了定理: x n+y n=z n,(n≥3) 无正整数解。人称费马大定理,也称费马最后定理。为什么叫这个名称呢?因为费马提出了数论方面许多引人注目的、富有洞察力的结论,这些结论一直到他去世后很久才被人证明大多是正确的,只有一个是错的。到1840年左右,其中只剩下上述这一个结论还没有被证明,因此称为费马的最后定理。把该定理称为费马大定理,是用以区别费马小定理。费马小定理是费马在1640年10月18日给他朋友的一封信中传出去的,这定理说,若p是一个素数而a与p互素,则a p-a能被p整除。 费马真的证明了自己的定理吗?人们普遍持怀疑的态度。费马逝世后,他的后人翻箱倒柜,也只找到了n=4的证明。他是用直角三角形三边长为整数,面积决不是平方数这一事实来证明的。后来,有人经过详实的考证,认为费马不可能完全证明了自己的定理。 三百多年来,上百名最优秀的数学家为了证明它付出了巨大的精力,其中有欧拉、勒让德、高斯、阿贝尔、狄利赫勒、拉梅、柯西、库默等。问题表述的简单和证明的困难,吸引了更多的人投入证明工作,有些数学家,如库默和近代的范迪维尔,为此献出了毕生的精力。林德曼在1882年证明了π是超越数后,也终身研究费马定理,而未获结果。 布鲁塞尔和巴黎科学院曾设奖金悬赏数次,但也未得到解决。1908年,数学家佛尔夫斯克尔在哥廷根皇家科学会又悬赏十万马克,征求正确的证明。一大批业余爱好者也进行了尝试,并寄去了自己的解答。据说,著名的数论专家朗道请人印了许多明信片,上面写道:“亲爱的先生或女士:你对费马大定理的证明已经收到,现予退回。第一个错误出现在第 页,第 行”。朗道将这些明信片分发给他的学生们,吩咐他们将相应的数字填上去。 最初的证明是从n=3开始一个数一个数的进行的。后来,库默经过终生的努力,“成

费马大定理的3次、4次不可能的证明

A 试证:试证:x x 4+y 4=z 4在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 4-x 4=(z -x)(z 3+z 2x+z x 2+x 3)=(z -x)(z +x)(z 2+x 2)=y 4由x 、y 、z 都是大于0的正整数,所以有z >x 得:得:z z -x -x<<z +x +x< <z 2+x 2(其中若z +x +x≥≥z 2+x 2,则x(1-x)x(1-x)≥ ≥z (z -1)负数大于正数,不成立。)分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y=z +x y 2=z 2+x 2由前两式得x =0(不成立)②y 是合数,得:是合数,得:(z (z -x)a=y (z -x)b=y z 2+x 2=aby 2稍微变换一下就可以得到:((a a 2b 2-1-1) )z 2=(a 2b 2+1)x 2即:即:a a 2 b 2-1=k 12a 2b 2+1=k 22但是在整数里,但是在整数里,m m 2-n 2≠1。故这种情形不成立。∴x 4+y 4=z 4在xy xy≠ ≠0时无整数解。B 试证:试证:x x 3+y 3=z 3在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 3-x 3=(z -x)-x)( (z 2+xz +x 2)=y 3>0则有:则有:z z >x z 2+xz +x 2>z -x 分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y 2=z 2+xz +x 2即:即:z z 2+xz +x 2=y 2=(z -x)2整理得到:整理得到:xz xz =-2xz (不成立不成立) )②y 是合数,则有:是合数,则有:(z (z -x)a=y z 2+xz +x 2=ay 2整理得到:((a a 3-1-1) )z 2-(a 3+1)xz +(a 3-1)x 2=0若z 有解,需有解,需△≥△≥△≥00即:即:a a 3≤3由于a 是大于0的正整数,故a =1即:即:z z -x=y 回到第回到第① ①种情形,结果仍是不成立。 ∴x 3+y 3=z 3在xy xy≠ ≠0时无整数解。另外根据我的推到出勾股方程的满足条件或生成方法是: ((e 2-f 2)/2)2+(ef)2=((e 2+f 2)/2)2 其中e 、f 取大于0的同时为奇或偶的正整数(的同时为奇或偶的正整数(e e ≠ f )但是我在一本介绍数论的书上看到已经被人家找出来,只是形式和我的有点差异。故我通过上述方法找到了勾股方程成立的充足理由,及同样找到了其满足条件。乐哉!

费马大定理的启示

“费马大定理”的启示 “设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。 当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。 这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。 首先,我们来看一个公式: 2 2 2z y x= +。 有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?” 没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。 但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍[]1注,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。 我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》[]2注序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。 言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说

相关文档
最新文档