空调铜管管径管壁厚设计要求

空调铜管管径管壁厚设计要求
空调铜管管径管壁厚设计要求

空调铜管管径要求-海尔

1编制目的:

a. 介绍各种不同设计压力下冷媒系统配管壁厚选择计算方法和选择方法;

b. 防止开发人员在进行管组设计选型时出现错误,造成批量问题。

2参考资料:

引用文献:JIS B 8607 冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头

JIS H 3300 铜以及铜合金无接缝管

专家资料配管壁厚设计基准B-010

GB/T1804 制冷铜配管标准

3适用的范围

这个设计选择标准,是针对一般的冷媒配管用铜管的种类、尺寸以及允许偏差而做的规定。另外,也适用于工厂组装品内部的冷媒配管。

(注) JIS B 8607 冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头,“工厂组装品内部的冷媒配管也是依照这个”来规定的。

4配管的类别

配管的类别、根据最高使用压力(设计压力)来区分第1种、第2种以及第3种。

第1种:相当于R22(包括R407C, R404A, R507A)的设计压力(3.45MPa)

第2种:相当于R410A的设计压力(4.15MPa)

第3种:(4.7MPa)用

5壁厚的计算公式

以日本冷冻保安规则关系为基准来求得的铜管(TP2M)必须厚度的计算公式、如下。

t= [(P×OD)/(2σa + 0.8P)] +α (㎜)

t:必须的壁厚 (㎜)

P:最高使用的压力(设计压力) (MPa)

OD:标准外径 (㎜)

σa:在125℃的基本许可应力 (N/㎜2)

*σa = 33 (N/㎜2)

α:腐蚀厚度 (㎜) *但是,对铜管的话为0(㎜)。

设计选择示例(TP2M):以下以O型(TP2M)铜管设计为例

①R22制冷系统排气管组壁厚选择,假设排气管组外径φ19.05,其壁厚选择方法如下:

R22制冷系统排气侧最高压力取3.45MPa,计算如下:

壁厚t= [(P×OD)/(2σa + 0.8P)] +α (㎜)

=(3.45×19.05)/(2×33+0.8×3.45)+0

=0.9558mm

取整,t=1.0mm。

注:国标GB/T1804规定φ19.05的铜管壁厚V级偏差可以是±0.08mm,这样如果供货厂家为节省成本,采用壁厚偏差-0.08mm来生产管组,则其壁厚就会选取为0.92mm了,这样由计算结果可知,该管组在设计压力为3.45MPa时,就会有裂管的隐患了。这时必须通过适当增加铜管壁厚来保证该管组不会爆裂,或者在技术要求中明确规定管组壁厚在适当的偏差内,即偏差范围在(-0.4,+0.08)mm内,以免除管组爆裂隐患。

实际上,一般设计的R22制冷系统最高压力不会超过3.0MPa,以3.0MPa为设计压力,φ19.05作为高压侧铜管时的壁厚,计算如下:

壁厚t= [(P×OD)/(2σa + 0.8P)] +α (㎜)

=(3.0×19.05)/(2×33+0.8×3.0)+0

=0.8355mm

取整t=0.9mm,其壁厚偏差可以定在(-0.06,+0.08)mm内,如果t取1.0mm,就按照国标GB/T1804规定不必考虑壁厚偏差了。

②R410A

制冷系统排气管组壁厚选择,假设排气管组外径φ19.05,其壁厚选择方法如下:

R410A制冷系统高压侧最高压力设计为4.15MPa,则其壁厚计算为:

壁厚t= [(P×OD)/(2σa + 0.8P)] +α (㎜)

=(4.15×19.05)/(2×33+0.8×4.15)+0

=1.14mm

进行取整t=1.2mm,此壁厚按照国标GB/T1804规定V级偏差也能满足设计要求。如果该管组不需要折弯,选择壁厚为1.2mm的O形管,相比选择壁厚为1.0mm的H/2型管,成本增加了20%,这样设计是不合算的。而根据附表2可以知道采用H/2(TP2Y)铜管,壁厚为1.0mm 时,其耐压可达到6.684MPa,完成符合设计压力的要求,因此这种情况下应该选择壁厚为1.0mm 的H/2(TP2Y)铜管。

也可以根据公式计算,H/2(TP2Y)铜管承受4.15Mpa的压力时,需要的壁厚是t=0.584mm。所以选择壁厚为1.0mm的H/2(TP2Y)铜管是完全符合4.15Mpa的设计压力要求的,只可惜H/2(TP2Y)型铜管都不能折弯。

通过此例,我们就可以知道为何一些空调厂家关于R410A多联机的技术资料里面,为何在配管选择表中会有“φ19.05的铜管若为盘管时壁厚应选择1.1mm(直管壁厚选择1.0mm

)”了。

实际应用中,在T1工况下,R410A变频系统全年运行时的高压压力绝大部分时间在3.65Mpa 以下。以3.65Mpa为计算依据,则其壁厚t=1.0mm,但只能允许正偏差,这时应该在技术要求中注明壁厚偏差要求。考虑到安全方面的因素,设计时最好还是以极限压力作为计算依据。

6一般冷媒配管用铜管的选择参数及允许值:

6-1 附表1:O以及OL材料(TP2M型,工程上也称盘管)

注:标准外径φ10.00㎜以下的铜管与第1种、第2种设计压力共用,φ12.70㎜以及φ15.88mm

的铜管与第1种设计压力共用。

6-2 附表2:1/2H或者H材(TP2Y型,工程上也称直管)

备注1.所谓的标准外径的许容差、是指在管的任意一横断面测得的最大管径和最小管径的平均值同标准外径之间的差的允许范围(界限)。

2.真圆度的许容差是指、在管的任意一断面测得的长径和短径的差。

3.表格以外的铜管、按照JIS H 3300的特殊级。

4.标准外径小于φ25.40㎜的铜管与第1种设计压力以及第2种设计压力共用,

φ28.58以及φ31.75㎜的铜管与1种设计压力共用。

6-3:设计雷区及问题警示

序号类别雷区解决措施问题警示

1 设计R410A空调系统设计时,管

组壁厚选择与R22空调系

统相同,不进行加厚,或

者不经过计算选型随便采

用某种壁厚。

1. 根据铜管壁厚计算方法,

计算出合适壁厚,按照计算的

壁厚和偏差进行壁厚选型;

2. 如果该管组不需要折弯,

可将该铜管材料选择为TP2Y

型的。

制冷系统管路设

计时,若选择铜

管壁厚偏小,容

易出现大批量管

裂的严重问题。

空调铜管规格尺寸

空调铜管规格尺寸

空调铜管管径要求 1编制目的: a. 介绍各种不同设计压力下冷媒系统配管壁厚选择计算方法和选择方法; b. 防止开发人员在进行管组设计选型时出现错误,造成批量问题。 2参考资料: 引用文献:JIS B 8607 冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头 JIS H 3300 铜以及铜合金无接缝管 专家资料配管壁厚设计基准B-010 GB/T1804 制冷铜配管标准 3适用的范围 这个设计选择标准,是针对一般的冷媒配管用铜管的种类、尺寸以及允许偏差而做的规定。另外,也适用于工厂组装品内部的冷媒配管。 (注) JIS B 8607 冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头,“工厂组装品内部的冷媒配管也是依照这个”来规定的。 4配管的类别 配管的类别、根据最高使用压力(设计压力)来区分第1种、第2种以及第3种。 第1种:相当于R22(包括R407C, R404A, R507A)的设计压力(3.45MPa) 第2种:相当于R410A的设计压力(4.15MPa) 第3种:(4.7MPa)用 5壁厚的计算公式 以日本冷冻保安规则关系为基准来求得的铜管(TP2M)必须厚度的计算公式、如下。 t= [(P×OD)/(2σa + 0.8P)] +α (㎜) t:必须的壁厚 (㎜) P:最高使用的压力(设计压力) (MPa) OD:标准外径 (㎜) σa:在125℃的基本许可应力 (N/㎜2) *σa = 33 (N/㎜2) α:腐蚀厚度 (㎜) *但是,对铜管的话为0(㎜)。

设计选择示例(TP2M):以下以O型(TP2M)铜管设计为例 ①R22制冷系统排气管组壁厚选择,假设排气管组外径φ19.05,其壁厚选择方法如下: R22制冷系统排气侧最高压力取3.45MPa,计算如下: 壁厚t= [(P×OD)/(2σa + 0.8P)] +α (㎜) =(3.45×19.05)/(2×33+0.8×3.45)+0 =0.9558mm 取整,t=1.0mm。 注:国标GB/T1804规定φ19.05的铜管壁厚V级偏差可以是±0.08mm,这样如果供货厂家为节省成本,采用壁厚偏差-0.08mm来生产管组,则其壁厚就会选取为0.92mm了,这样由计算结果可知,该管组在设计压力为3.45MPa时,就会有裂管的隐患了。这时必须通过适当增加铜管壁厚来保证该管组不会爆裂,或者在技术要求中明确规定管组壁厚在适当的偏差内,即偏差范围在(-0.4,+0.08)mm内,以免除管组爆裂隐患。 实际上,一般设计的R22制冷系统最高压力不会超过3.0MPa,以3.0MPa为设计压力,φ19.05作为高压侧铜管时的壁厚,计算如下: 壁厚t= [(P×OD)/(2σa + 0.8P)] +α (㎜) =(3.0×19.05)/(2×33+0.8×3.0)+0 =0.8355mm 取整t=0.9mm,其壁厚偏差可以定在(-0.06,+0.08)mm内,如果t取1.0mm,就按照国标GB/T1804规定不必考虑壁厚偏差了。 ②R410A 制冷系统排气管组壁厚选择,假设排气管组外径φ19.05,其壁厚选择方法如下: R410A制冷系统高压侧最高压力设计为4.15MPa,则其壁厚计算为: 壁厚t= [(P×OD)/(2σa + 0.8P)] +α (㎜) =(4.15×19.05)/(2×33+0.8×4.15)+0 =1.14mm 进行取整t=1.2mm,此壁厚按照国标GB/T1804规定V级偏差也能满足设计要求。如果该管组不需要折弯,选择壁厚为1.2mm的O形管,相比选择壁厚为1.0mm的H/2型管,成本增加了20%,这样设计是不合算的。而根据附表2可以知道采用H/2(TP2Y)铜管,壁厚为1.0mm时,其耐压可达到6.684MPa,完成符合设计压力的要求,因此这种情况下应该选择壁厚为1.0mm 的H/2(TP2Y)铜管。

工程管道管径对照表

工程管道管径对照表 1 英寸=25.4毫米=8英分 1/2 是四分(4英分) DN15 3/4 是六分(6英分) DN20 2分管 DN8 4分管 DN15 6分管 DN20 1′ DN25 1.2′ DN32 1.5′ DN40 2′ DN50 2.5′ DN65 3′ DN80 4′ DN100 5′ DN125 6′ DN150 8′ DN200 10′ DN250 12′ DN300 GB/T50106-2001 2.4管径 2.4.1管径应以mm为单位。 2.4.2管径的表达方式应符合下列规定: 1 水煤气输送钢管(镀锌或非镀锌)、铸铁管等管材,管径宜以公称直径DN表示; 2 无缝钢管、焊接钢管(直缝或螺旋缝)、铜管、不锈钢管等管材,管径宜以外径×壁厚表示; 3 钢筋混凝土(或混凝土)管、陶土管、耐酸陶瓷管、缸瓦管等管材,管径宜以内径d表示; 4 塑料管材,管径宜按产品标准的方法表示;

5 当设计均用公称直径DN表示管径时,应有公称直径DN与相应产品规格对照表。 建筑排水用硬聚氯乙烯管材规格用de(公称外径)×e(公称壁厚)表示(GB 5836.1-92) 给水用聚丙烯(PP)管材规格用de×e表示(公称外径×壁厚). 关于DN与De的区别: 1、DN是指管道的公称直径,注意:这既不是外径也不是内径;应该与管道工程发展初期与英制单位有关;通常用来描述镀锌钢管,它与英制单位的对应关系如下: 4分管:4/8英寸:DN15; 6分管:6/8英寸:DN20; 1寸管:1英寸:DN25; 寸二管:1又1/4英寸:DN32; 寸半管:1又1/2英寸:DN40; 两寸管:2英寸:DN50; 三寸管:3英寸:DN80(很多地方也标为DN75); 四寸管:4英寸:DN100; De主要是指管道外径,一般采用De标注的,均需要标注成外径X壁厚的形式; 主要用于描述:无缝钢管、PVC等塑料管道、和其他需要明确壁厚的管材。 拿镀锌焊接钢管为例,用DN、De两种标注方法如下: DN20 De25X2.5mm DN25 De32X3mm DN32 De40X4mm DN40 De50X4mm 等等。。。。。。我们习惯于使用DN来标注焊接钢管,在不涉及到壁厚的情况下很少使用De来标注管道; 但是标注塑料管就又是另外一回事了;还是跟行业习惯有关,实际施工过程中我们简略称呼的20、25、32等管道均是指De,而不是指DN,这里相差一个规格呢。不搞清楚很容易在采购、施工过程中造成损失。 两种管道材料的连接方式不外乎:丝扣连接及法兰连接。其他连接方式就用得很少了。 镀锌钢管、PPR管均能采用以上两种连接,只是小于50的管道用丝扣较方便,大于50的用法兰比较可靠。注意:如果是两种不同材质的金属管道相连,要考虑是否会产生原电池反应,否则会加速活跃金属材料管道的腐

中央空调铜管安装要求

中央空调铜管安装,管道安装方法,铜管安装注意事项 制冷剂配管的加工 切割、去毛刺 铜管切割应使用专用切割一切管器,缓慢的转动、在铜管不发生变形的情况下切断铜管,铜管的切割面会产生毛边,必须将其除掉并吹清管内杂物和整修管端。防止异物进入管内。 铜管切割完成后,应用封帽或胶带封堵 倒角:刮刀去掉内侧的毛刺,作业时管口朝下;如果管端明显变形,将其切下,中心加工; 将铜屑彻底去掉,用棉纱将管内擦净弯管加工 加工方法: a、手动弯管一一适用于细铜管($ 6.35Q 12.7)。 b、机械弯管--- 适用范围较广($ 6.35- $ 44.45),采用弹簧弯管器、手动弯管器或电动 弯管器。 加工要求: 管道弯管的弯曲半径应大于 3.5D(D为管道直径),配管弯曲变形后的短径与原直径之比 应大于2/3。 注意事项: 1、弯曲加工时,铜管内侧不能起皱或变形; 2、管道的焊接接口不应放在弯曲部位,接口焊缝距管道或管件弯曲部位的距离应不小于 100mm 。 胀管加工 胀管:就是扩成杯形口(承插口),满足管道的插入深度,保证焊接处的强度 注意事项: 1、切断后清除管口内部毛边; 2、胀管长度应与管径插入长度相符; 3、为避免胀管处留下直线痕迹导致泄露,操作时将铜管转一个角度进行矫正; 4、不得出现纵向裂纹。 扩口加工 在扩口表面涂上空调机油,以便扩口螺母光滑通过,防止管道扭曲。铜管管口扩口后应保持

同心,并应有良好的密封面,不得出现毛刺、裂纹、褶皱等缺陷。 操作要点: 1、保证铜管端面平整; 2、清除管口内部毛刺、翻边; 3、扩口前先将扩口螺母装在管道上; 4、扩口应与母管同径,不得偏心; 5、将铜管放入扩管器根部; 6、不应产生纵向裂纹。 管道连接-扩口连接 制冷剂配管与室内机连接采用扩口(喇叭口)连接,因此要注意喇叭口的扩充质量。 承口的扩口深度不应小于管径,扩口方向应迎介质流向。扩口和锁紧螺母连接时可在扩口的 内外表面上涂些冷冻机油,有利于操作。 拧紧时要用两个力矩扳手同时进行。并用适合的扭矩来上紧扩口螺母。 管道连接-扩口连接 注:1、在连接喇叭口时,使用力矩过大、过小都不好,都会产生泄漏 2、应在纳子帽与管端处涂少量矿物油/合成油,并应在固定纳子帽时,采用两只扳手操作 管道连接-承插钎焊连接 适用于管道与管道、管道与管件之间的连接。 承插件之间的缝隙不要过大或过小,保证靠摩擦力而不掉下为准。 承插的扩口方向应迎介质流向。 在连接管道时,要按照下表所示长度保护钎焊部位 管道连接-法兰连接 法兰连接:较大管径的铜管和设备连接时通常采用法兰连接。法兰表面应清洁无损伤。用空 调机油涂抹法兰表面后再安装。两个法兰盘要对正,对角方向紧固螺栓,防止偏斜。 封口作业 封口:是一项重要的操作,可以防止水分、污物或者灰尘进入,也可以防止别人的破坏。一是缠绕胶带:用PVC胶带将铜管末端封上。 二是箍缩:就是将铜管的末端挤压在一起,然后把缝隙焊接封上

管径计算公式

流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q = (∏ D^2)/ 4 · v · 3600 `(`m^3` / h ) 式中 Q —流量(`m ^3` / h 或 t / h ); D —管道内径(m); V —流体平均速度(m / s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方 可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管 道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。 给水管道经济流速 影响给水管道经济流速的因素很多,精确计算非常复杂。 对于单独的压力输水管道,经济管径公式: D=(fQ^3)^[1/(a+m)] 式中:f——经济因素,与电费、管道造价、投资偿还期、管道水头损失计算公式等多项因素有关的系数;Q——管道输水流量;a——管道造价公式中的指数;m——管道水头损失计算公式中的指数。 为简化计算,取f=1,a=1.8,m=5.3,则经济管径公式可简化为: D=Q^0.42 例:管道流量22 L/S,求经济管径为多少? 解:Q=22 L/S=0.022m^3/s 经济管径 D=Q^0.42=0.022^0.42=0.201m,所以经济管径可取200mm。 水头损失 没有“压力与流速的计算公式 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以 理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n,

空调铜管管径要求

空调铜管管径要求 1编制目的: a. 介绍各种不同设计压力下冷媒系统配管壁厚选择计算方法和选择方法; b. 防止开发人员在进行管组设计选型时出现错误,造成批量问题。 2参考资料: 引用文献:JIS B 8607 冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头 JIS H 3300 铜以及铜合金无接缝管 专家资料配管壁厚设计基准B-010 GB/T1804 制冷铜配管标准 3适用的范围 这个设计选择标准,是针对一般的冷媒配管用铜管的种类、尺寸以及允许偏差而做的规定。另外,也适用于工厂组装品内部的冷媒配管。 (注) JIS B 8607 冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头,“工厂组装品内部的冷媒配管也是依照这个”来规定的。 4配管的类别 配管的类别、根据最高使用压力(设计压力)来区分第1种、第2种以及第3种。 第1种:相当于R22(包括R407C, R404A, R507A)的设计压力 第2种:相当于R410A的设计压力 第3种:用 5壁厚的计算公式 以日本冷冻保安规则关系为基准来求得的铜管(TP2M)必须厚度的计算公式、如下。 t= [(P×OD)/(2σa + ] +α (㎜) t:必须的壁厚 (㎜) P:最高使用的压力(设计压力) (MPa)

OD:标准外径 (㎜) σa:在125℃的基本许可应力 (N/㎜2) *σa = 33 (N/㎜2) α:腐蚀厚度 (㎜) *但是,对铜管的话为0(㎜)。 设计选择示例(TP2M):以下以O型(TP2M)铜管设计为例 ①R22制冷系统排气管组壁厚选择,假设排气管组外径φ,其壁厚选择方法如下: R22制冷系统排气侧最高压力取,计算如下: 壁厚t= [(P×OD)/(2σa + ] +α (㎜) =(×)/(2×33+×)+0 =0.9558mm 取整,t=。 注:国标GB/T1804规定φ的铜管壁厚V级偏差可以是±,这样如果供货厂家为节省成本,采用壁厚偏差来生产管组,则其壁厚就会选取为了,这样由计算结果可知,该管组在设计压力为时,就会有裂管的隐患了。这时必须通过适当增加铜管壁厚来保证该管组不会爆裂,或者在技术要求中明确规定管组壁厚在适当的偏差内,即偏差范围在(,+)mm内,以免除管组爆裂隐患。 实际上,一般设计的R22制冷系统最高压力不会超过,以为设计压力,φ作为高压侧铜管时的壁厚,计算如下: 壁厚t= [(P×OD)/(2σa + ] +α (㎜) =(×)/(2×33+×)+0 =0.8355mm 取整t=,其壁厚偏差可以定在(,+)mm内,如果t取,就按照国标GB/T1804规定不必考虑壁厚偏差了。 ②R410A 制冷系统排气管组壁厚选择,假设排气管组外径φ,其壁厚选择方法如下: R410A制冷系统高压侧最高压力设计为,则其壁厚计算为: 壁厚t= [(P×OD)/(2σa + ] +α (㎜)

管径选择与管道压力降计算单相流可压缩流体

2 单相流(可压缩流体) 简述 2.1.1本规定适用于工程设计中单相可压缩流体在管道中流动压力降的一般计算,对某些流体在高压下流动压力降的经验计算式也作了简单介绍。 2.1.2可压缩流体是指气体、蒸汽和蒸气等(以下简称气体),因其密度随压力和温度的变化而差别很大,具有压缩性和膨胀性。 可压缩流体沿管道流动的显着特点是沿程摩擦损失使压力下降,从而使气体密度减小,管内气体流速增加。压力降越大,这些参数的变化也越大。 计算方法 2.2.1注意事项 2.2.1.1压力较低,压力降较小的气体管道,按等温流动一般计算式或不可压缩流体流动公式计算,计算时密度用平均密度;对高压气体首先要分析气体是否处于临界流动。 2.2.1.2一般气体管道,当管道长度L>60m时,按等温流动公式计算;L<60m时,按绝热流动公式计算,必要时用两种方法分别计算,取压力降较大的结果。 2.2.1.3流体所有的流动参数(压力、体积、温度、密度等)只沿流动方向变化。 2.2.1.4安全阀、放空阀后的管道、蒸发器至冷凝器管道及其它高流速及压力降大的管道系统,都不适宜用等温流动计算。 2.2.2管道压力降计算 2.2.2.1概述 (1) 可压缩流体当压力降小于进口压力的10%时,不可压缩流体计算公式、图表以及一般规定等均适用,误差在5%范围以内。 (2) 流体压力降大于进口压力40%时,如蒸汽管可用式(2.2.2—16)进行计算;天然气管可用式—17)或式—18)进行计算。 (3) 为简化计算,在一般情况下,采用等温流动公式计算压力降,误差在5%范围以内。必要时对天然气、空气、蒸汽等可用经验公式计算。 2.2.2.2一般计算 (1) 管道系统压力降的计算与不可压缩流体基本相同,即 ⊿P=⊿P f +⊿P S +⊿P N (2.2.2—1)

铜管设计管径

Y型分歧管可从下面的列表中选取: R410A制冷剂系 统 下游室内机容量合计(X) 型号 Y型分歧管 X≤200 FQ01A 200

中央空调铜管安装要求

中央空调铜管安装要求Revised as of 23 November 2020

中央空调铜管安装,管道安装方法,铜管安装注意事项 制冷剂配管的加工切割、去毛剌铜管切割应使用专用切割?切管器,缓慢的转动、在铜管不发生变形的情况下切断铜管,铜管的切割面会产生毛边,必须将其除掉并吹清管内杂物和整修管端。防止异物进入管内。 铜管切割完成后,应用封帽或胶带封堵倒角:刮刀去掉内侧的毛刺,作业时管口朝下;如果管端明显变形,将其切下,中心加工;将铜屑彻底去掉,用棉纱将管内擦净弯管加工加工方法: a、手动弯管一适用于细铜管(cp(p) O b、机械弯管一适用范围较广(cp

安全阀管径选择计算学习资料

火力发电厂标准 1.排放热源为过热蒸汽,安全阀的通流量为: G=0.0024μ1nF(p0/v0)0.5 2.排放热源为饱和蒸汽,安全阀的通流量为: G=0.0024μ1nF(p0/v0)0.5 3.设计压力为1MPa及以下的蒸汽管道或压力容器,可以按下式计算安全阀的通 过能力或在给定通流量下确定安全阀的个数: G=0.00508μ2nF[(p0- p2) /v0]0.5 以上三式中 G-安全阀的通流量,t/h; p0-蒸汽在安全阀前的滞止绝对压力,MPa; v0-蒸汽在安全阀前的滞止绝对比容,m3/kg; p2-蒸汽在安全阀后的绝对压力,MPa;确定p2时,应考虑阀后管道及附件的阻 力; n-并联装置的安全阀数量,个; μ1,μ2-安全阀的流量系数,应有试验确定或按厂家资料取值。可取μ1=0.9; μ2=0.6; B-考虑蒸汽可压缩的修正系数,与绝热指数k,压力比p2/ p0,阻力等因数有关。对于水,取B=1;对于蒸汽,可按 C.8.1查取; F-每个安全阀通流面的最小断面积,其值应按厂家资料确定, 对于全启式安全阀:F=πd2/4; 对于微启式安全阀:F=πdh; 其中d-安全阀最小通流截面直径mm; h=安全阀的阀杆升程mm。 动力管道设计手册 安全阀的选择 1.由工作压力决定安全阀的公称压力; 2.由工作温度决定安全阀的温度适用范围; 3.由开口压力选择安全阀弹簧; 4.最后根据安全阀的排放量,计算安全喉部面积和直径,选取安全阀的 公称通径及型号、个数; 5.由介质种类决定安全阀的材质及结构。 微启式安全阀排放量小,出口通径等于一般等于进口通径,常用于液体介质。 全启式安全阀排放量大,DN≥40时,出口通径比进口通径大一级,多用于气体 介质。

各种常用管道管径的表示方法及对照表

各种常用管道管径的表示方法及对照表 Revised as of 23 November 2020

各种常用管道管径的表示方法及对照表 夏某人2018-03-25 23:56:59 小编现给大家分享一下工程中各种管道管径的表示及对照表,请大家转发、收藏,以备不时之需! ? 一、De、DN、D、d、Φ的含义 一般来说,管子的直径可分为外径(De)、内径(D)、公称直径(DN)。

1、DN是指管道的公称直径,是外径与内径的平均值。DN的值=De的值﹣*管壁厚度。注意:这既不是外径也不是内径。水、煤气输送钢管(镀锌钢管或非镀锌钢管)、铸铁管、钢塑复合管和聚氯乙烯(PVC)管等管材,应标注公称直径“DN”(如DN15、DN50); 2、De主要是指管道外径,PPR、PE管、聚丙烯管外径,一般采用De标注的,均需要标注成外径 x 壁厚的形式,例De25 x 3; 3、D一般指管道内径; 4、d混凝土管内直径。钢筋混凝土(或混凝土)管、陶土管、耐酸陶瓷管、缸瓦管等管材,管径宜以内径d表示(如d230、d380等); 5、φ表示普通圆的直径;也可表示管材的外径,但此时应在其后乘以壁厚。如φ25 x 3,表示外径25mm,壁厚为3mm的管材。对无缝钢管或有色金属管道,应标注“外径 x 壁厚”。例如φ108 x 4,φ可省略。中国、ISO和日本部分钢管标准采用壁厚尺寸表示钢管壁厚系列。对这类钢管规格的表示方法为管外径 x 壁厚。例如φ x ; 6、DN为Nominal diameter意思是公称直径; 7、De为external diameter意思是外径; 8、Dgdiametergong(汉语拼音“公”的声母)这下你就明白了,Dg是国产货,有中国特色的国产货,现在都不用了。 二、管径的表达方式

空调铜管管径管壁厚设计要求

空调铜管管径要求-海尔 1编制目的: a. 介绍各种不同设计压力下冷媒系统配管壁厚选择计算方法和选择方法; b. 防止开发人员在进行管组设计选型时出现错误,造成批量问题。 2参考资料: 引用文献:JIS B 8607 冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头 JIS H 3300 铜以及铜合金无接缝管 专家资料配管壁厚设计基准B-010 GB/T1804 制冷铜配管标准 3适用的范围 这个设计选择标准,是针对一般的冷媒配管用铜管的种类、尺寸以及允许偏差而做的规定。另外,也适用于工厂组装品内部的冷媒配管。 (注) JIS B 8607 冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头,“工厂组装品内部的冷媒配管也是依照这个”来规定的。 4配管的类别 配管的类别、根据最高使用压力(设计压力)来区分第1种、第2种以及第3种。 第1种:相当于R22(包括R407C, R404A, R507A)的设计压力(3.45MPa) 第2种:相当于R410A的设计压力(4.15MPa) 第3种:(4.7MPa)用 5壁厚的计算公式 以日本冷冻保安规则关系为基准来求得的铜管(TP2M)必须厚度的计算公式、如下。 t= [(P×OD)/(2σa + 0.8P)] +α (㎜) t:必须的壁厚 (㎜)

P:最高使用的压力(设计压力) (MPa) OD:标准外径 (㎜) σa:在125℃的基本许可应力 (N/㎜2) *σa = 33 (N/㎜2) α:腐蚀厚度 (㎜) *但是,对铜管的话为0(㎜)。 设计选择示例(TP2M):以下以O型(TP2M)铜管设计为例 ①R22制冷系统排气管组壁厚选择,假设排气管组外径φ19.05,其壁厚选择方法如下: R22制冷系统排气侧最高压力取3.45MPa,计算如下: 壁厚t= [(P×OD)/(2σa + 0.8P)] +α (㎜) =(3.45×19.05)/(2×33+0.8×3.45)+0 =0.9558mm 取整,t=1.0mm。 注:国标GB/T1804规定φ19.05的铜管壁厚V级偏差可以是±0.08mm,这样如果供货厂家为节省成本,采用壁厚偏差-0.08mm来生产管组,则其壁厚就会选取为0.92mm了,这样由计算结果可知,该管组在设计压力为3.45MPa时,就会有裂管的隐患了。这时必须通过适当增加铜管壁厚来保证该管组不会爆裂,或者在技术要求中明确规定管组壁厚在适当的偏差内,即偏差范围在(-0.4,+0.08)mm内,以免除管组爆裂隐患。 实际上,一般设计的R22制冷系统最高压力不会超过3.0MPa,以3.0MPa为设计压力,φ19.05作为高压侧铜管时的壁厚,计算如下: 壁厚t= [(P×OD)/(2σa + 0.8P)] +α (㎜) =(3.0×19.05)/(2×33+0.8×3.0)+0 =0.8355mm 取整t=0.9mm,其壁厚偏差可以定在(-0.06,+0.08)mm内,如果t取1.0mm,就按照国标GB/T1804规定不必考虑壁厚偏差了。 ②R410A 制冷系统排气管组壁厚选择,假设排气管组外径φ19.05,其壁厚选择方法如下: R410A制冷系统高压侧最高压力设计为4.15MPa,则其壁厚计算为:

管径计算公式

管径计算公式 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q=(∏D^2)/4·v·3600`(`m^3`/h) 式中Q—流量(`m^3`/h或t/h); D—管道内径(m); V—流体平均速度(m/s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。 给水管道经济流速 影响给水管道经济流速的因素很多,精确计算非常复杂。 对于单独的压力输水管道,经济管径公式: D=(fQ^3)^[1/(a+m)] 式中:f——经济因素,与电费、管道造价、投资偿还期、管道水头损失计算公式等多项因素有关的系数;Q——管道输水流量;a——管道造价公式中的指数;m——管道水头损失计算公式中的指数。

为简化计算,取f=1,a=,m=,则经济管径公式可简化为: D=Q^ 例:管道流量 22 L/S,求经济管径为多少? 解:Q=22 L/S=0.022m^3/s 经济管径 D=Q^=^=0.201m,所以经济管径可取200mm。 水头损失 没有“压力与流速的计算公式管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以理解为固体相对运动的摩擦力)以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n, 给水管径选择 1、支管流速选择范围0..8~1.2m/s。 内径计算的,16mm也就相当于3分管,20mm差不多相当于4分的镀锌管径 一般工程上计算时,水管路,压力常见为,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=管径^2X流速(立方米/小时)^2:平方。管径单位:mm 管径=sqrt流量/流速) sqrt:开平方

空调铜管管径要求

空调铜管管径要求 1 编制目的: a. 介绍各种不同设计压力下冷媒系统配管壁厚选择计算方法和选择方法; b. 防止开发人员在进行管组设计选型时出现错误,造成批量问题。 2 参考资料: 引用文献:JIS B 8607 冷媒用喇叭口(flare )铜管以及焊接管(brazing )弯头 JIS H 3300 铜以及铜合金无接缝管 专家资料配管壁厚设计基准B-010 GB/T1804 制冷铜配管标准 3 适用的范围 这个设计选择标准,是针对一般的冷媒配管用铜管的种类、尺寸以及允许偏差而做的规定。另外,也适用于工厂组装品内部的冷媒配管。 (注) JIS B 8607 冷媒用喇叭口(flare )铜管以及焊接管(brazing )弯头,“工厂组装品内部的冷媒配管也是依照这个”来规定的。 4 配管的类别 配管的类别、根据最高使用压力(设计压力)来区分第1种、第2种以及第3种。 第1种:相当于R22(包括R407C, R404A, R507A)的设计压力(3.45MPa) 第2种:相当于R410A的设计压力件15MPa) 第 3 种:(4.7MPa)用 5 壁厚的计算公式

以日本冷冻保安规则关系为基准来求得的铜管(TP2M)必须厚度的计算公式、如下。 t = [( P >OD) /(2(T a + 0.8P)] + a (伽) t:必须的壁厚(伽) P:最高使用的压力(设计压力)(MPa) OD标准外径(伽) d a:在125C的基本许可应力(N /伽2) * d a = 33 (N /伽2) a :腐蚀厚度(伽)*但是,对铜管的话为0(伽)。 设计选择示例(TP2M :以下以O型(TP2M铜管设计为例 ①R22制冷系统排气管组壁厚选择,假设排气管组外径$ 19.05,其壁厚选择方法 如下: R22制冷系统排气侧最高压力取 3.45MPa,计算如下: 壁厚t = [(P x OD/ (2 d a + 0.8P)] + a (伽) =(3.45 X 19.05 ) / (2X 33+0.8 x 3.45 ) +0 =0.9558mm 取整,t=1.0mm。 注:国标GB/T1804规定$ 19.05的铜管壁厚V级偏差可以是土0.08mm这样如果供货厂家为节省成本,采用壁厚偏差-0.08mm来生产管组,则其壁厚就会选取为0.92mm了,这样由 计算结果可知,该管组在设计压力为 3.45MPa时,就会有裂管的隐患了。这时必须通过适当 增加铜管壁厚来保证该管组不会爆裂,或者在技术要求中明确规定管组壁厚在适当的偏差内,即偏差范围在(-0.4 , +0.08 ) mm内,以免除管组爆裂隐患。 实际上,一般设计的R22制冷系统最高压力不会超过 3.0MPa,以3.0MPa为设计压 力, $ 19.05 作为高压侧铜管时的壁厚,计算如下: 壁厚t = [( PX OD/ (2 d a + 0.8P)] + a (伽) =(3.0x19.05)/(2x33+0.8x3.0)+0 =0.8355mm 取整t=0.9mm,其壁厚偏差可以定在(-0.06 , +0.08 ) mm内,如果t取1.0mm,就按照国标GB/T1804规定不必考虑壁厚偏差了。

最新R410A系统铜管要求

R410a系统冷媒配管 2.1 铜管及配件应有铜管厂家出具的合格证及复验报告。 2.2铜管除去表面缺陷后的实际壁厚应按照以下规定壁厚进行选取 注: 1.对于R410A空调的配管口径为Φ19.05,配管类型可自行决定。 2.冷媒管应使用磷脱氧铜材。 3.O材为软铜管(退火盘管),1/2H为硬铜管(直管)。 4.R410A的最大使用压力为4.30MPa,冷媒管应该确保在最大使用压力下的安全性。 2.3铜管存放 保存中的铜管是否已用端盖或胶带封口——此举可防止水分、垃圾、灰尘等异物进入配管 2.4.1铜管焊接操作及焊点检查 2.4.1.1硬钎焊的种类: ①磷铜钎焊钎焊温度735—840℃,不要焊接溶剂(铜对铜);②银钎焊钎焊温度700—845℃,耐酸性好。 2.4.1.2 作业注意事项: ①钎焊部位的清洁 ·磨光——去除连接部的金属原料。(去除氧化膜)(无纺布,研磨布,砂纸) ·脱脂——如有油污的话,用丙酮或酒精溶剂进行去油处理。 ②确认管与接头的间隙是否合适,铜管与接头间隙为0.05~0.21mm。 ③用惰性气体保护钎焊(氮气置换):钎焊时将氮气充入冷媒管保持0.5bar的压力(钎焊后应继续吹氮气直到铜管冷却方可。)充氮焊接不良则会产生氧化膜,造成系统堵塞,损坏压缩机。 ④钎焊:·加热:当表面呈红褐色的时候最佳,这时如果将钎焊接触一下间隙,就会被吸收进去。 ·必须由母材(铜管)的温度来熔化焊材,而不是由火焰直接熔化。 ·焊缝形成作业:铜管表面从暗红色向混暗红色变化。焊缝越大钎焊接头强度越大。 ⑤完工后检查以下内容:·焊缝部有无气孔和砂眼;有无明显的“钎料下垂”。

2.4.2. 冷媒配管设计范围 2.4.3 管道穿越墙孔位置及保护 2.4. 3.1 穿越墙孔时,必须在管道外设保护套管 2.4. 3.2 垂直布设的管道,穿越楼板的孔中的保护套管,应与楼板底平、楼板面高出2CM以上。2. 4.3.3 管道和保护套管之间的空隙用不燃的柔性材料封堵。 2.4. 3.4 铜管焊缝不得置于穿墙孔中。 2.4.4 弯管施工 2.4.4.1 手动弯管器加工(适合φ6.35-φ22.22);电动(液压)弯管器加工((适合φ6.35-φ41.28)。 2.4.4.2手动弯管的弯曲半径:大于100mm。 2.4.4.3防止局部弯曲过度(双手大拇指作支点,其余八个手指用力/支点移动,慢慢弯曲)。 2.4.5 扩口或翻边管子的外表 2.4.5.1 铜管的切割应尽量使用割管器切割,注意防止铜屑落入管内。 2.4.5.2 扩口后不得有歪斜、变形、裂口等缺陷。 2.4.5.3 胀管加工:同管径的铜管连接,应采用其一铜管一端胀管,另一铜管插入焊接作业。

管径选择与管道压力降计算(一)1~60

管径选择与管道压力降计算 第一部分管径选择 1.应用范围和说明 1.0.1本规定适用于化工生产装置中的工艺和公用物料管道,不包括储运系统的长距离输送管道、非牛顿型流体及固体粒子气流输送管道。 1.0.2对于给定的流量,管径的大小与管道系统的一次投资费(材料和安装)、操作费(动力消耗和维修)和折旧费等项有密切的关系,应根据这些费用作出经济比较,以选择适当的管径,此外还应考虑安全流速及其它条件的限制。本规定介绍推荐的方法和数据是以经验值,即采用预定流速或预定管道压力降值(设定压力降控制值)来选择管径,可用于工程设计中的估算。 1.0.3当按预定介质流速来确定管径时,采用下式以初选管径: d=18.81W0.5 u-0.5ρ-0.5(1.0.3—1) 或d=18.81V00.5 u-0.5(1.0.3—2) 式中 d——管道的内径,mm; W——管内介质的质量流量,kg/h; V0——管内介质的体积流量,m3/h; ρ——介质在工作条件下的密度,kg/m3; u——介质在管内的平均流速,m/s。 预定介质流速的推荐值见表2.0.1。 1.0.4当按每100m计算管长的压力降控制值(⊿Pf100)来选择管径时,采用下式以初定管径: d=18.16W0.38ρ-0.207 μ0.033⊿P f100–0.207(1.0.4—1) 或d=18.16V00.38ρ0.173 μ0.033⊿P f100–0.207(1.0.4—2) 式中 μ——介质的动力粘度,Pa·s; ⊿P f100——100m计算管长的压力降控制值,kPa。 推荐的⊿P f100值见表2.0.2。 1.0.5本规定除注明外,压力均为绝对压力。

管道管径的计算 管内流速的选择

关于平台工艺管路设计(三) 本节主题:1.管道管径的计算 2. 管内流速的选择 1.概述 管径的计算在很多资料中都有叙述,一般过程是这样的:首先根据工艺条件明确:管内介质和流量,选择合适的介质流速,然后就可以计算管径了。管径计算公式很简单,其核心问题是正确选择管内流速以及压降的计算,还有管径选择的经济性分析。本节我们只介绍管径的计算和流速的选择,对于管道摩阻将专题做介绍。本节的目标是能够根据项目的不同需求选择合理的管径。 2.管道管径的计算 计算公式:d=式2.1 其中:d——管子内径m; Q——流量m3/s; V——流速m/s; 根据式2.1,只要确定其中的两个参数,就能推导出第三个变量。 3.管内流速的选择 流速的选择要考虑管材质、流体性质、系统使用寿命、使用频率。对于海洋平台上的管路流速,管子流速一般在1~5m/s 之间,如果流速小于1m/s, 液体中的砂或其他固体可能沉积下来。若大于5m/s, 会对一些部位如控制阀,管件等产生喷射冲刷。在此流速范围内,一般摩阻很小。 下面分为液、气、油气混输三种情况介绍: 3.1液体 (1)对于铜镍合金管推荐流速 ≤2” 1.6m/s 4” <2.2m/s 6” <2.5m/s ≥8” <3.0m/s (2)碳钢管内液体推荐流速和压降

3.2 气体 可参见下图选择 3.3油气混输 油气两相流在管内的流动特点不同于单相流,其情况较为复杂。具有流体流态不稳定、流型变化多、管路中常有气液滑脱和积液现象等特点。 一般油气混输管路管内流速介于最小流速和冲蚀流速之间。 (1)最小流速 如果可能,气液两相流管路中的最小流速应该是大约3m/s,这样可以减少分离设备中的段塞流,这样对于有标高变化的长管路尤其重要。 (2)冲蚀流速 当超过冲蚀速度时,由于流体对管壁的撞击而产生冲蚀,其结果是对弯头和三通等会造成损害。由于流体中含砂等固体,是冲蚀问题变得更加复杂。 为了减少流体的冲蚀作用,就要限定流体在管内的流速,依照API RP14E标准,用下面经验公式可计算气液两相流的冲蚀流速: )-0.5 式3.1 Vc=C(ρ m 其中:Vc ——冲蚀流速m/s; C ——经验常数152(用于间断作业);122(由于连续作业) ρm ——在操作情况下气液混合物密度kg/m3; 注意:如果流体中有固体(砂),则流速应该相应减少。 (本节结束,未完待续)整理日期:August 16,2002 Changshilong

空调铜管规格尺寸

空调铜管规格尺寸 空调铜管管径要求 1编制目的: a.介绍各种不同设计压力下冷媒系统配管壁厚选择计算方法和选择方法; b.防止开发人员在进行管组设计选型时出现错误,造成批量问题。 2参考资料: 引用文献:JISB8607冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头 JISH3300铜以及铜合金无接缝管 专家资料配管壁厚设计基准B-010 GB/T1804制冷铜配管标准 3适用的范围 这个设计选择标准,是针对一般的冷媒配管用铜管的种类、尺寸以及允许偏差而做的规定。另外,也适用于工厂组装品内部的冷媒配管。 (注)JISB8607冷媒用喇叭口(flare)铜管以及焊接管(brazing)弯头,“工厂组装品内部的冷媒配管也是依照这个”来规定的。 4配管的类别

配管的类别、根据最高使用压力(设计压力)来区分第1种、第2种以及第3种。 第1种:相当于R22(包括R407C,R404A,R507A)的设计压力 第2种:相当于R410A的设计压力 第3种:用 5壁厚的计算公式 以日本冷冻保安规则关系为基准来求得的铜管(TP2M)必须厚度的计算公式、如下。 t=[(P×OD)/(2σa+]+α(㎜) t:必须的壁厚(㎜)? P:最高使用的压力(设计压力)(MPa)? OD:标准外径(㎜) σa:在125℃的基本许可应力(N/㎜2) *σa=33(N/㎜2) α:腐蚀厚度(㎜)*但是,对铜管的话为0(㎜)。 设计选择示例(TP2M):以下以O型(TP2M)铜管设计为例

①R22制冷系统排气管组壁厚选择,假设排气管组外径φ,其壁厚选择方法如下: R22制冷系统排气侧最高压力取,计算如下: 壁厚t=[(P×O D)/(2σa+]+α(㎜) =(×)/(2×33+×)+0 =0.9558mm 取整,t=。 注:国标GB/T1804规定φ的铜管壁厚V级偏差可以是±,这样如果供货厂家为节省成本,采用壁厚偏差来生产管组,则其壁厚就会选取为了,这样由计算结果可知,该管组在设计压力为时,就会有裂管的隐患了。这时必须通过适当增加铜管壁厚来保证该管组不会爆裂,或者在技术要求中明确规定管组壁厚在适当的偏差内,即偏差范围在(,+)mm内,以免除管组爆裂隐患。实际上,一般设计的R22制冷系统最高压力不会超过,以为设计压力,φ作为高压侧铜管时的壁厚,计算如下: 壁厚t=[(P×OD)/(2σa+]+α(㎜) =(×)/(2×33+×)+0 =0.8355mm

中央空调安装规范标准

中央空调安装规范 第一章施工前的准备 1.1.技术准备 技术准备是施工准备的核心,任何技术的差错或隐患都可能引起人身安全和质量事故,造成人、财、物的损失,因此必须认真细致地做好技术准备工作。 1.1.1.施工图纸会审:组织技术人员认真学习设计施工图,掌握施工图纸的全部内容,熟悉设计目的、设计意图、领会设计效果。凡发现施工设计图中存在的问

题,必须做出专项记录,向设计部门联系,同时请设计者做出解释;若施工图确实存在一些问题,应由设计部门做出设计变更。 1.1. 2.会同有关单位搞好现场接收工作:现场交接的重点是施工测量与有关资料的移交,熟悉场地情况,包括场地构筑物、管线埋设条件等。 1.1.3.编制施工图预算:依据设计施工图、招投标文件、合同条款编写详细施工图预算。它是签订合同、工程结算、进度拨款、成本核算、材料计划编制、加强经营管理的重要依据。 1.1.4.技术交底:在工程开工前,工程技术负责人应组织参加施工的人员进行技术交底,应结合具体工程内容、施工现场、关键工序和施工难点的质量要求、操作要点及注意事项,验收标准等进行交底。 1.2.物质准备

物资准备工作包括材料准备、施工机具准备和安全防护用品的准备。 1.2.1.材料准备:工程所用材料都必须符合国家标准。根据工程内容确定需用量,确定好货源,签订购买合同。根据进度要求制订进场计划,组织好运输。对主要材料,应根据实际情况做好材料采购计划,分批进场。 1.2.2.必须在工程现场设置临时材料仓库,对各种材料的入库、检验、保管和出库应严格做好记录,同时加强防盗、防火的管理。 1.2.3.施工机具准备:根据施工工艺的需要,对公司自有的机械设备,提前检修保养好,对不够的机械设备须提前做好计划。 1.3.施工准备

相关文档
最新文档