三相不平衡的定义、危害及解决方法

三相不平衡的定义、危害及解决方法
三相不平衡的定义、危害及解决方法

三相不平衡

定义:是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。由于各相电源所加的负荷不均衡所致,属于基波负荷配置问题。发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。《电能质量三相电压允许不平衡度》(GB/T15543-1995)适用于交流额定频率为50 赫兹。在电力系统正常运行方式下,由于负序分量而引起的PCC 点连接点的电压不平衡。该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为2%,短时间不得超过4%。电流不平衡不超过10%。

实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。

危害:

1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。

三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。

2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。

在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的25%。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。

3.配变出力减少。配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的限制。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。

其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。

4.配变产生零序电流。配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。配变的绕组绝缘因过热而加快老化,导致设备寿命降低。同时,零序电流的存也会增加配变的损耗。

5.影响用电设备的安全运行。配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。

假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。负载重的一相电压降低,而负载轻的一相电压升高。在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。所以三相负载不平衡运行时,将严重危及用电设备的安全运行。

三相电压不平衡的发生将导致达到数倍电流不平衡的发生。诱导电动机中逆扭矩增加,从而使电动机的温度上升,效率下降,能耗增加,发生震动,输出亏耗等影响。各相之间的不平衡会导致用电设备使用寿命缩短,加速设备部件更换频率,增加设备维护的成本。断路器允许电流的余量减少,当负载变更或交替时容易发生超载、短路现象。中性线中流入过大的不平衡电流,导致中性线增粗。

6.电动机效率降低。配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,

负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。

解决办法

由不对称负荷引起的电网三相电压不平衡可以采取的解决办法:

1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。

2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。

3、加大负荷接入点的短路容量,如改变网络或提高供电电压级别提高系统承受不平衡负荷的能力。

4、装设平衡装置。简要列出以上几种解决三相电压或电流不平衡对电网及电能质量危害的技术措施。

具体应该采取哪一种措施更为合理有效,还要根据实际情况,经过技术和经济比较后确定实施。

在低压三相四线制的城市居民和农网供电系统中:由于用电户多为单相负荷或单相和三相负荷混用,并且负荷大小不同和用电时间的不同。所以,电网中三相间的不平衡电流是客观存在的,并且这种用电不平衡状况无规律性,也无法事先预知。导致了低压供电系统三相负载的长期性不平衡。对于三相不平衡电流,电力部门除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。

电网中的不平衡电流会增加线路及变压器的铜损,还会增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,最终会造成三相电压的不平衡。

调整不平衡电流无功补偿装置,有效地解决了这个难题,该装置具有在补偿系统无功的同时调整不平衡有功电流的作用。其理论结果可使三相功率因数均补偿至1,三相电流调整至平衡。实际应用表明,可使三相功率因数补偿到0.95 以上,使不平衡电流调整到变压器额定电流的10%以内。

根据wangs 定理(王氏定理),在相间跨接的电容可以在相间转移有功电流。调整不平衡电流无功补偿装置就是利用wangs 定理来进行设计的,在各相与相之间以及各相与零线之间恰当地接入不同数量的电容器,不但可以使各相都得到良好的补偿,而且可以调整不平有功电流。

三相不平衡的原因、危害以及解决措施!

三相不平衡就是电能质量得一个重要指标,虽然影响电力系统得因素有很多,但正常性不平衡得情况大多就是因为三相元件、线路参数或负荷不对称。由于三相负荷得因素就是不一定得,所以供电点得三相电压与电流极易出现不平衡得现象,损耗线路。不仅如此,其对供电点上得电动机也会造成不利得影响,危害电动机得正常运行。 配电网三相不平衡得原因 1、三相负荷得不合理分配。 很多得装表接电得工作人员并没有专业得对于三相负荷平衡得知识概念,因此在接电得时候并没有注意到要控制三相负荷平衡,只就是盲目与随意得进行电路得接电荷装表,这在很大程度上造成了三相负荷得不平衡。 其次,我国得大多数电路都就是动力与照明混为一体得,所以在使用单相得用电设备时,用电得效率就会降低,这样得差异进一步加剧了配电变压器三相负荷得不平衡状况。 2、用电负荷得不断变化。 造成用电负荷不稳定得原因包括了地II经常出现得拆迁,移表或者用电用户得增加; 临时用电与季节性用电得不稳定性。这样在总量上与时间上得不确定与不集中性使得用电得负荷也不得不跟随实际情况而变化。 3、对于配变负荷得监视力度得削弱。 在配电网得管理上,经常会忽略三相负荷分配中得管理问题。在配电网得检测上,对配电变压器得三相负荷也没有进行定期得检测与调整。 除此之外,还有很多因素造成了三相不平衡得现象,例如线路得影响以及三相负荷矩得不相等等。 三相不平衡得危害 1、增加线路得电能损耗 在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流得平方成正比。 当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。 当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路得损耗。 2、增加配电变压器得电能损耗 配电变压器就是低压电网得供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗得增加。因为配变得功率损耗就是随负载得不平衡度而变化得。 3、配变出力减少 配变设计时,其绕组结构就是按负载平衡运行工况设计得,其绕组性能基本一致,各相额定容量相等。配变得最大允许出力要受到每相额定容量得限制。 假如当配变处于三相负载不平衡工况下运行,负载轻得一相就有富余容量,从而使配变得出力减少。其出力减少程度与三相负载得不平衡度有关。

分析主变纵差动保护不平衡电流原因及解决方法

分析主变纵差动保护不平衡电流原因及解 决方法 摘要:本文从对变压器纵差保护原理进行阐述的基础上,较详细地分析了纵差保护不平衡电流的形成原因,并提出了解决变压器纵差保护中不平衡电流的方法。 关键词:主变;纵差保护;不平衡电流;解决方法 前言:纵差动保护是变电站主变压器的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,使得变压器纵差保护所固有原理性矛盾更加突显。 一、变压器纵差保护原理 纵差保护作为变压器内部故障的主保护,将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于“0”,但是实际上在外

部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,因为外部短路电流大,特别是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 二、纵差保护不平衡电流分析 1、稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 (1)由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流

不平衡电流的危害

不平衡电流的危害 电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。 电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。 理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。 不平衡电流对系统铜损的影响 设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡,IA=100A,IB=100A,IC=100A,则总铜损=1002R+1002R+1002R=30000R。 如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损=502R+1002R+1502R=35000R,比平衡状态的铜损增加了17%。 在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损=1502R+1502R=45000R,比平衡状态的铜损增加了50%。 在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=3002R=90000R,比平衡状态的铜损增加了3倍。 不平衡电流对变压器的影响 现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。 并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事故。 由于Yyn0结线组的配电变压器与的零序激磁阻抗较大,因此零线电流会造成较大的电压变化,形成比较严重的三相电压不平衡现象,不但影响单相用户,对三相用户的影响更大。

浅谈三相电压不平衡

浅谈三相电压不平衡 摘要:三相电压不平衡是电力系统运行中的常见非正常现象,本文浅析了中性点接地与非接地的三相系统在正常、事故情况下产生电压不平衡基本理论知识;三相电压不平衡对电力系统以及电力用户的危害;从理论上探讨了改善三相电压不平衡的切实可行措施方法;并给出了三相电压不平衡的国家执行标准。 关键词:电压不平衡不平衡危害改善措施标准 0 引言 在市场经济不断深化,国家电网公司提出建设”一强三优”的现代企业的战略目标的形势下,电能质量问题备受电力供应企业与电力用户的关注。提供优质的电能是电力企业的责任,然而随着国民经济的蓬勃发展,电力网负荷急剧增大,特别是冲击性、非线性负荷容量的不断增长,使得电网发生电压波形畸变、电压波动与闪变和三相不平衡等电能质量问题。这些特征量是评定电能质量的重要指标,三相电压不平衡在电力系统正常运行与异常运行情况下均有出现,而且长时间不平衡严重影响系统正常运行,甚至损坏电气设备,所以保证三相电压平衡更具有重要意义。 1正常运行的三相电压不平衡 三相导线的不对称排列可能使各相导线对地电容不相等而引起三相电压不平衡。设三相对地电容为Ca、Cb、Cc,对于中性点非直接接地系统,由于导线换位不良所造成的不对称电压Upd,当考虑各相绝缘的对地泄露电阻时,不平衡电压Upd为: Ca、Cb、Cc--系统的三相对地电容 假设三相电压平衡,各相泄漏电阻相等,即ra=rb=rc,则 系统采用中性点经消弧线圈接地可补偿对地电容不相等而引起三相电压不平衡问题,则不平衡电压如下[1]: 消弧线圈接地系统正常运行时电压不平衡的大小与补偿度有关,补偿度越小,中性点电压越高,三相电压愈不平衡;补偿度等于零,即谐振补偿时,中性点的电压最高即电压不平衡情况越严重。因此,一般规定补偿度选取原则是过补偿5~30%,欠补偿20~30%。 当消弧线圈调谐不当和系统对地电容处于串联谐振状态时,会引起中性点电压过高,从而引起三相对地电压的严重不平衡。这种由零序电压引起的三相电压不平衡并不影响三相线电压的平衡性,因此不影响用户的正常供电,但对输电线、变压器、互感器、避雷器等设备的安全是有威胁的,必须加以控制。

三相不平衡的定义、危害及解决方法

三相不平衡 定义:是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。由于各相电源所加的负荷不均衡所致,属于基波负荷配置问题。发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。《电能质量三相电压允许不平衡度》(GB/T15543-1995)适用于交流额定频率为50 赫兹。在电力系统正常运行方式下,由于负序分量而引起的PCC 点连接点的电压不平衡。该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为2%,短时间不得超过4%。电流不平衡不超过10%。 实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。 危害: 1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。 三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。 2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。 在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的25%。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。

不平衡电流产生的原因

不平衡电流产生的原因 1励磁涌流的影响 变压器在正常运行时,它的励磁电流只流过变压器的电源测,因此,通过电流互感器反映到差动回路中就不能被平衡。在正常情况下,变压器励磁电流不过为变压器额定电流的 2% ~3%;在外部故障时,由于电压降低,励磁电流也相应减少,其影响就更小。在实际整定时可以不必考虑。 但是,在变压器空载投入和外部故障切除后电压恢复时,则可能产生数值很大的励磁涌流,其数值可达变压器额定电流的6~8倍。励磁涌流中含有大量的非周期分量和高次谐波分量。励磁涌流的大小与合闸瞬间外加电压的相位,铁芯中剩磁的大小和方向以及铁芯的特性有关。若正好在电压最大值时合闸,则不会出现励磁涌流,而只有正常时的电流。但对于三相变压器而言,由于三相电压相位不同,无论在任何瞬间合闸,至少有两相要出现程度不同的励磁涌流。励磁涌流可分解成各次谐波,以二次谐波为主,同时在励磁涌流波形中还会出现间断角。励磁涌流的波形如图2。 2绕组连接方式不同的影响 变压器各侧绕组的连接方式不同,如双绕组变压器采用Y,d接线,三绕组变压器采用Y,y,d 接线时,各侧电流相位就不同。这时,即使变压器各侧电流互感器二次电流大小能相互匹配,但不调整,相位差也会在差动回路中产生很大的不平衡电流。 3实际变比与计算变比不同的影响 由于电流互感器选用的是定型产品,其变比都是标准化的,很难与通过计算得出的变比相吻合,这样就会在主变差动回路中产生不平衡电流。 4改变调压档位引起的不平衡电流及克服措施 电力系统中带负荷调整变压器分接头是调节系统电压的重要手段。改变调压档位实际上就是改变变压器的变比。而差动保护已按照某一变比调整好,当分接头改换时,就会产生一个新的不平衡电流流入差动回路。此时不可能再用重新选择平衡线圈匝数的方法来消除这个不平衡电流,这是因为变压器的分接头是经常在改变,而差动保护的电流回路在带电时是不可能进行操作的。因此,对由此产生的不平衡电流,通常是根据具体情况提高保护动作的整定值加以克服。 5型号不同产生的不平衡电流 由于变压器各侧电流互感器的型号不同,它们的饱和特性和励磁电流(归算到同一侧)就不相同,因此,在差动回路中所产生的不平衡电流也就较大。 转子一点接地保护 转子一点接地保护反应发电机转子对大轴绝缘电阻的下降。顾名思义,转子一点接地就是转子上只有一个点与地接触了,发电机转子一点接地后励磁回路对地电压将有所升高。在正常情况下,励磁回路对地电压约为励磁电压的一半。当励磁回路的一端发生金属性接地故障时,另一端对地电压将升高为全部励磁电压值,即比正常电压值高出一倍。在这种情况下运行,当切断励磁回路中的开关或一次回路的主断路器时,将在励磁回路中产生暂态过电压,

三相不平衡危害

不平衡电流的危害 时间:2013-01-28 11:27来源:未知作者:admin 点击: 231 次 . 电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。 电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。 理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。 不平衡电流对系统铜损的影响: 设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡, IA=100A,IB=100A,IC=100A,则总铜损=100*100R+100*100R+100*100R=30000R。 如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损 =50*50R+100*100R+150*150R=35000R,比平衡状态的铜损增加了17%。 在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损 =150*150R+150*150R=45000R,比平衡状态的铜损增加了50%。 在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=300*300R=90000R,比平衡状态的铜损增加了3倍。 不平衡电流对变压器的影响: 现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。 由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。 并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事

配电网三相不平衡常见原因分析

龙源期刊网 https://www.360docs.net/doc/2b11994854.html, 配电网三相不平衡常见原因分析 作者:杨磊刘天纵张兆娴张翠 来源:《科技风》2017年第02期 摘要:随着用电需求不断增加,对配电网的要求也越来越高。不仅要保证供电可靠性,还要保证电能质量。然而,在实际运行中,由于多种原因,可能造成配电台区发生严重三相不平衡,威胁配电网安全经济运行。因此,对造成三相不平衡原因进行归纳分析十分重要。本文阐述了三相不平衡的概念和实际应用中对三相不平衡台区的判定,总结了三相不平衡的四个主要危害,并对遇到的超过100个三相不平衡台区进行重点分析,归纳了产生三相不平衡的四个主要原因,为三相不平衡台区原因查找及治理提供参考。 关键词:配电网;配电变压器;三相不平衡 当前,配电网结构复杂,电力用户的用电类型也多种多样,由于负荷类型不同、用电时间不同等多种原因,可能导致配电变压器台区出现严重的三相不平衡。随着用户对电能质量的要求不断提高,配电网三相不平衡问题日益突出。在配电台区中,理想状态是使负荷平均地分配到A、B、C三相上并运行于三相平衡状态,但实际中很难做到。实际负荷多以单相负荷、单-三相负荷混合形式存在,某些地区单相负荷占比大,所以会产生三相不平衡,严重的三相不平衡状态会对供电质量造成影响,本文主要对实际中遇到的超过100个三相不平衡台区的产生原因进行归纳分析,总结了四个主要原因。 一、三相不平衡概念 三相不平衡是电能质量的指标之一,分为三相电压不衡和三相电流不平衡。对于三相电压不平衡,国标GB15543-2008《电能质量三相电压不平衡》对电压不平衡的定义为,三相电压在幅值上不同或相位差不是120度,或兼而有之[ 1 ]。且规定电力系统公共连接点电压不平衡度限值为负序电压不平衡度允许值不超过2%,短时不超过4%。 在实际中,还常用到三相电流不平衡的概念,三相电流不平衡与三相电压不平衡类似,引入三相电流不平衡度来表示不平衡程度大小,国网公司PMS2.0监测系统中将其定义为: 三相不平衡度=(最大相电流-最小相电流)/最大相电流*100%, 根据上述定义,如果某台区三相不平衡度大于25%且负载率大于60%,持续时间在2小时以上,就认为该台区三相不平衡。图1为某个三相不平衡台区24小时电流波形。 ■ 图1 三相不平衡台区某天电流波形

浅谈三相负荷不平衡的原因及危害(新版)

浅谈三相负荷不平衡的原因及 危害(新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0423

浅谈三相负荷不平衡的原因及危害(新版) [摘要]低压电网三相负荷可能因多种原因,导致不平衡,甚至不平衡度非常严重。三相负荷不平衡对低压电网、配电变压器、6~10kV高压线路均造成危害,对供电企业安全供电降低线损、用户安全用电影响较大。 [关键词]低压电网、三相负荷不平衡、安全供电、降低线损 1引言 农网改造中采取了诸如配电变压器放置在负荷中心,增添配电变压器数量,缩短供电半径,加大导线直径,增加低压线路,用电户电能表集中安装等措施,极大地改变了农村低压电网状况,给我们建造了一个好的电网“硬件”。但若“软件”配套不好,尤其是三相负荷不平衡,则不能挖掘出这个好“硬件”的内部潜力,致使低压电网的可靠性和稳定性差,线损率较高。

2三相负荷不平衡的原因 低压电网三相负荷失衡有以下数种原因: (1)低压电网三相负荷不平衡要增加损耗,虽然是是早已被提出来了的。但在农网改造前,由于①农村低压电网不在电业部门的必管范围,设备线路状况极差,线损很高,收不够上缴电费就涨电价,即线损水平虽高但降损的压力不大。②农村照明等单相负荷很小,只占总用电负荷的5~20%左右,故虽进行过低压整改,多是把配电变压器移到负荷中心、改造低压线路、整改户内线路等。三相负荷不平衡由于是较次要的因素,没有也不可能引起人们足够注意,故实践很少,亦不可能提出调平三相负荷的具体方法。 (2)农网改造由于规模大、任务重、时间紧,不可能面面俱到(如规划调平三相负荷);加之改造资金有限,为了降低费用,架设了一定数量的单相两线线路,尤其是低压分支线路中,单相两线线路占一定比例;还有在下户线接火施工中,一些施工人员素质低,没有三相负荷平衡的概念,施工中或随意接单相负荷,或为了不接成380V,把单相负荷都接到中间两根线上。这在一定程度上加重了

变压器三相负荷不平衡原因分析及防范措施

变压器三相负荷不平衡原因分析及防范措施 发表时间:2018-06-11T15:06:54.410Z 来源:《河南电力》2018年2期作者:张璇 [导读] 变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。 (国网山西省电力公司太原供电公司山西太原 030012) 摘要:变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。因此变压器台区三相负荷不平衡问题应当引起重视。 关键词:变压器三相负荷不平衡;原因;防范措施 一、变压器三相负荷不平衡引起的麻烦 某地区多个台变多次出现一相总熔断器熔丝烧断的情况,利用用电采集系统采集配变的三相负荷数据,均为三相负荷不平衡引起,随着夏季用电负荷的不断增加,这种不平衡的情况也突显出来,随之带来抢报修以及服务热线诉求工单的数量猛增,给企业的优质服务带来影响。 在线损合格台区整改提高工作中也发现,因三相负荷的不平衡也会造成台区线损率的增加。在三相负荷不平衡度较大的情况下,在配电变压器中性点不接地或接地电阻达不到技术要求时,中性点将发生位移造成中性线带有一定的电压,从而加大线路电压的电压降,降低功率的输出,线路供电电压偏低,尤其是线路末端的电压远远超出电压降的允许范围,直接导致用户的用电设备不能正常工作,电气效能降低,同时极大的增加了低压线损率。通过用电采集系统提供的相关数据证明,一般情况下三相负荷不平衡可引起低压线损率升高2%~10%,三相负荷不平衡度若超过15%,则线损率显著增加,不平衡度越高对低压线损率的影响越大,如不平衡度超过30%,通过计算影响低压线损可以达到3%~6%。而事实上由于城乡用户受经济条件的制约和家用电器普及率的逐年提高,三相负荷不平衡度情况越来越严重,目前通过用电采集系统提供的数据计算,每天三个用电高峰期三相负荷不平衡度超过10%的占总综合变台区的60%,不平衡度超20%的台区数占总台区的40%,不平衡度超过30%的台区数占台区的26%。不平衡度越大的台区供电线路末端用户普遍反映电压偏低,而低压线损率也普遍反映较大。在低压三相负荷不平衡度的影响下,使配电变压器处于不对称运行状态,造成配电变压器的负载损耗和空载损耗增大,而影响到10kV线损率。 二、三相不平衡对变压器的影响 (1)三相不平衡将增加变压器的损耗 变压器的损耗包含空载损耗和负荷损耗,正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随着变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。 (2)三相不平衡降低了配电变压器的出力 配电变压器容量的设计和制造是以三相负载平衡条件确定的,如果三相负载不平衡,配电变压器的最大出力只能按三相负载中最大一相不超过额定容量为限,负荷轻的相就有富裕容量,从而使配电变压器出力降低。例如100kVA配电变压器,二次额定电流为144A,若Ia为144A,Ib、Ic分别为72A,配电变压器的出力只有67%。 (3)三相不平衡可能造成烧毁变压器的严重后果 上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器的寿命。(温度每增加8度,使用年限将减少一半,甚至烧毁绕组。 (4)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高 在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序通磁,这些零序通磁就会在变压器的油箱壁或其它金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重使将导致变压器运行事故。 三、影响变压器三相负荷不平衡的原因 三相负荷不平衡发生的原因主要是管理上存在薄弱环节,由于在对配电变压器三相负荷的分配上存在盲目性、工作随意性,以及运行维护人员对配电变压器三相负荷管理的责任心不到位,农村用电动力、照明的混用,尤其是居民用电单相负荷发展时无序延伸,用户用电情况不好掌握等客观因素,而在管理中又由于缺乏有效的监测、调整和考核机制,导致目前农村综合变压器三相负荷处于不平衡状态下运行。 四、防止变压器负荷不平衡运行采取的措施 (1)加强配电变压器负荷不平衡运行管理。运维班安排专人负责利用用电采集系统定期进行三相不平衡电流测试,并结合台区责任人的现场测量情况,按季度考核变压器三相负荷不平衡度的情况,把它列入考核项目,以提高农电管理人员搞好三相负荷平衡的自觉性和积极性。负荷每月至少进行一次测量,特殊情况下(如高峰负荷期间,负荷变化较大时等)可增加测量次数,对配电变压器负荷状况做到心中有数,并完善相关记录台帐,为调整配电变压器负荷提供准确可靠的数据。 管理人员应熟悉台区的每个用户用电情况、设备安装地点、用电能量变化情况,特别是注意大功率用电设备数量和容量等,看其分布在那相上。然后根据情况及时调整负荷。 (2)改造配电网,加强对三相负荷分布控制。在改造台区供电方案前,要了解所改造台区的负荷变化规律和负荷分配情况,对所改造的台区进行现场勘察,掌握负荷分布情况,同时绘制台区负荷分配接线图,并严格按三相负荷平衡的原则进行布线,尽量使三相四线深入到各重要负荷中心。配电变压器设置于负荷中心,供电半径不大于500m,主干线、分支干线均采用三相四线制供电,5户以上居民尽量不采用单相供电,中性线导线截面与其它相线截面一致,以减少损耗,消除断线的事故隐患。同时制定台区负荷分配接线图,做到任何一

电动机三相电流不平衡的原因及处理方法

电动机三相电流不平衡的原因及处理方法 l 当三相电源基本对称时,异步电动机在额定电压下的三相空载电流,其任何一相与平均值的偏差不得大于平均值的10%。因此,只有在三相电压不平衡程度过大,或电动机本身存在故障的情况下,电动机才会出现较大的三相电流不平衡。三相异步电动机运行时出现三相电流不平衡时,其可能原因有: (1)三相电源电压不平衡而引起电动机的三相电流不平衡; (2)电动机绕组匝间短路; (3)绕组断路(或绕组并联支路中一条或几条支路断路); (4)定子绕组内部分线圈接反; (5)电动机三相绕组的匝数不相等。 三相异步电动机如由于上述原因而产生三相电流不平衡故障时,可采用以下方法处理: (1)用电压表测量三相电源电压如确系不平衡时,则应找出原因子以排除; (2)对于电动机绕组匝间短路故障,首先可观察绕组端部有无因高温使线圈烧焦、变色的地方,或闻到绝缘烧焦的气味。当目测观察找不出匝间短路位置时,可用短路侦察器进行检查。如果线圈内存在匝间短路,则串接在短路侦察器线圈回路的电流表读数就将明显增大; (3)绕组的断路故障可用万用表或电桥表测量三相电阻进行检查,电动机绕组三相电阻的最大差值不得超过三相电阻平均值的3%;

(4)检查定子绕组部分线圈接反故障,可对某相绕组施加以低压直流电压,并沿铁心槽面用指南针逐槽检查其极性。如果指南针在每个极相组上的指示方向依次按N、S、N、S改变,则表示绕组的接法正确;反之,即表明某极相组被接反;如果指南针放在同一极相组内邻近的几槽槽面上,其方向变化不定,则说明该极相组内可能有个别线圈嵌反或接错。对接错或嵌反的极相组与线圈,均应按绕组展开图或接线原理图的接法予以更正; (5)对于三相绕组匝数不相等的故障,则可将各相首、尾端串联通电,并用电压表分段测量电压降。先测量每相电压是否相等,再测量不正常一相的各极相组电压是否相等,最后测量不正常极相组内各线圈电压是否相等,这样就可最终找到匝数有错误的线圈。

电动机三相电流不平衡的原因及表现

For personal use only in study and research; not for commercial use 电动机三相电流不平衡的原因及表现 1三相电压不平衡 如果三相电压不平衡,电动机内就有逆序电流和逆序磁场存在,产生较大的逆序转矩,造成电动机三相电流分配不平衡,使某相绕组电流增大。当三相电压不平衡度达5%时,可使电动机相电流超过正常值的20%以上。三相电压不平衡主要表现在: (1)变压器三相绕组中某相发生异常,输送不对称电源电压。 (2)输电线路长,导线截面大小不均,阻抗压降不同,造成各相电压不平衡。 (3)动力、照明混合共用,其中单相负载多,如:家用电器、电炉、焊机等过于集中于某一相或某二相,造成各相用电负荷分布不均,使供电电压、电流不平衡。 2负载过重 电动机处于过载运行状态,尤其是起动时,电动机定、转子电流增大发热。时间略长,极易出现绕组电流不平衡现象。负载过重主要表现在: (1)皮带、齿轮等传动机构过紧或过松。 (2)联轴机件歪斜,传动机构有异物卡住。 (3)润滑油干涩,轴承卡壳,机械锈死(其中包括电动机本身机械故障)。 (4)电压过高或过低,使损耗增加。 (5)负载搭配不当,电动机额定功率小于实际负载。 3定子、转子经组故障 定子绕组出现匝间短路、局部接地、断路等,都会引起走子绕组中某一相或其二根电流过大,使三相电流严重不平衡。走子、转子绕组故障表现在: (1)定于内膛有灰尘、杂物、硬性创伤,造成匝间短路。 (2)定子绕组某相断路。 (3)定子绕组受潮,有漏电流现象。 (4)轴承、转子受损变形,转子与走子绕组相擦。 (5)鼠笼式转子绕组断条焊裂,产生不稳定电流。 4操作、维护不当 操作人员不能定期做好电气设备的检查保养工作,是人为造成电动机漏电、缺相运行,产生不平衡电流的主要因素。 操作维护不当主要表现在: (1)操作安装人员将相、零线接反。 (2)进线与接线盒相碰,有漏电流。 (3)各连接开关、触点松脱、氧化等原因造成缺相现象。 (4)频繁起动,起动时间过长或过短,造成熔丝断相。

三相电压、电流不平衡的影响

三相电压不平衡度是指三相系统中三相电压的不平衡程度,用电压或电流负序分量与正序分量的均方根百分比表示。三相电压不平衡(即存在负序分量)会引起继电保护误动、电机附加振动力矩和发热。额定转矩的电动机,如长期在负序电压含量4%的状态下运行,由于发热,电动机绝缘的寿命将会降低一半,若某相电压高于额定电压,其运行寿命的下降将更加严重。 我国目前执行的GB/T 15543—1995《三相电压允许不平衡度》规定了电力系统公共连接点正常电压不平衡度允许值为2%,同时规定了短时的不平衡度不得超过4%,其短时允许值的概念是指任何时刻均不能超过的限制值,以保证继电保护和自动装置正确动作。对接入公共连接点的每个用户引起该点正常电压不平衡度允许值一般为1.3% 。 大部分用户在使用过程中发生的三相电力不平衡主要原因如下: 1)太偏重于单相负载使各相之间发生不平衡; 2)系统的无效电力,高次谐波电流使各相之间发生不平衡; 3)机器接触端子及电缆接触不良导致另外的不平衡; 4)外部环境的人力,电力导致不平衡的发生; 三相不平衡对负载的影响: 1)电压不平衡的发生导致达到数倍的电流不平衡的发生; 2)诱导电动机中逆扭矩增加使温度上升,效率降低,损失增加,发生震动,输出节减等影响; 3)各相之间不平衡的发生带来缩短机器寿命和加快机器及部品交替周期和增加了设备维持补修的费用; 4)断路器容许电流的余量减少,负载变更时或负载交替时发生超载、短路; 5)中性线中流入过大的不平衡电流所以中性线增粗; 三相负载不平衡运行对变压器的危害 1)三相负载不平衡将增加变压器的损耗; 2)三相负载不平衡运行会造成变压器零序电流过大,局部金属件温升增高; 三相负荷不平衡对线损的影响 采用三相四线制供电方式,由于用户较为分散,线路较长,如果三相负荷不平衡,将直接增加电能在线路的损耗:当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小。 当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。 当三相负荷不平衡时,不论何种负荷分配情况,电流不平衡度越大,线损增量也越大。 为此在三相四线制的低压网络运行中,应经常测量三相负荷并进行调整,使之平衡,这是降损节能的一项有效措施,对于输送距离比较远的配电线路来说,效果尤为显著。 三相电压不平衡度是指三相电力系统中三相电压的不平衡程度,用电压负序分量与正序分量的方均根值百分比表示;测量时需要在系统正常运行的最小运行方式下,负荷不平衡度最大的时候测量;按上一版国标规定(网上也能查到新国 标),电力系统公共连接点正常电压不平衡度允许值为2%,短时不得超过4%。接入公共连接点的每个用户引起该点正常电压不平衡度允许值一般为1.3% 。

三相电流不平衡

近年来,由于城农网改造及加强供用电管理,使供电企业的经济和社会效益有了明显提高。但一些单位在加强管理、降损节能的同时,只看到了许多表面化现象,而对有关技术改进方面缺少足够的重视。 低压电网的三相平衡一直就是困扰供电单位的主要问题之一,低压电网大多是经10/0.4KV变压器降压后,以三相四线制向用户供电,是三相生产用电与单相负载混合用电的供电网络。在装接单相用户时,供电部门应该将单相负载均衡地分接在A、B、C三相上。但在实际工作及运行中,线路的标志、接电人员的疏忽再加上由于单相用户的不可控增容、大功率单相负载的接入以及单相负载用电的不同时性等,都造成了三相负载的不平衡。低压电网若在三相负荷不平衡度较大情况下运行,将会给低压电网与电气设备造成不良影响。 一、低压电网三相平衡的重要性 1.三相负荷平衡是安全供电的基础。三相负荷不平衡,轻则降低线路和配电变压器的供电效率,重则会因重负荷相超载过多,可能造成某相导线烧断、开关烧坏甚至配电变压器单相烧毁等严重后果。 2.三相负荷平衡才能保证用户的电能质量。三相负荷严重不对称,中性点电位就会发生偏移,线路压降和功率损失就会大大增加。接在重负荷相的单相用户易出现电压偏低,电灯不亮、电器效能降低、小水泵易烧毁等问题。而接在轻负荷相的单相用户易出现电压偏高,可能造成电器绝缘击穿、缩短电器使用寿命或损坏电器。对动力用户来说,三相电压不平衡,会引起电机过热现象。 3.三相负荷保持平衡是节约能耗、降损降价的基础。三相负荷不平衡将产生不平衡电压,加大电压偏移,增大中性线电流,从而增大线路损耗。实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。 有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。通过电网技术改造,要真正使低压电网线损达到12%以下,上述指标只能紧缩,不能放大。 4.只有三相阻抗平衡,才能保证低压漏电总保护良好运行,防止人身触电伤亡事故。 二、三相负载不平衡的影响 1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。 2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。

电动机三相电流不平衡的原因及表现

电动机三相电流不平衡的原因及表现 1三相电压不平衡 如果三相电压不平衡,电动机内就有逆序电流和逆序磁场存在,产生较大的逆序转矩,造成电动机三相电流分配不平衡,使某相绕组电流增大。当三相电压不平衡度达5%时,可使电动机相电流超过正常值的20%以上。三相电压不平衡主要表现在: (1)变压器三相绕组中某相发生异常,输送不对称电源电压。 (2)输电线路长,导线截面大小不均,阻抗压降不同,造成各相电压不平衡。 (3)动力、照明混合共用,其中单相负载多,如:家用电器、电炉、焊机等过于集中于某一相或某二相,造成各相用电负荷分布不均,使供电电压、电流不平衡。 2负载过重 电动机处于过载运行状态,尤其是起动时,电动机定、转子电流增大发热。时间略长,极易出现绕组电流不平衡现象。负载过重主要表现在: (1)皮带、齿轮等传动机构过紧或过松。 (2)联轴机件歪斜,传动机构有异物卡住。 (3)润滑油干涩,轴承卡壳,机械锈死(其中包括电动机本身机械故障)。 (4)电压过高或过低,使损耗增加。 (5)负载搭配不当,电动机额定功率小于实际负载。 3定子、转子经组故障 定子绕组出现匝间短路、局部接地、断路等,都会引起走子绕组中某一相或其二根电流过大,使三相电流严重不平衡。走子、转子绕组故障表现在: (1)定于内膛有灰尘、杂物、硬性创伤,造成匝间短路。 (2)定子绕组某相断路。 (3)定子绕组受潮,有漏电流现象。 (4)轴承、转子受损变形,转子与走子绕组相擦。 (5)鼠笼式转子绕组断条焊裂,产生不稳定电流。 4操作、维护不当 操作人员不能定期做好电气设备的检查保养工作,是人为造成电动机漏电、缺相运行,产生不平衡电流的主要因素。 操作维护不当主要表现在: (1)操作安装人员将相、零线接反。 (2)进线与接线盒相碰,有漏电流。 (3)各连接开关、触点松脱、氧化等原因造成缺相现象。 (4)频繁起动,起动时间过长或过短,造成熔丝断相。 (5)长期使用,缺少保养,使电动机衰老,局部绝缘退化。

三相电压不平衡度

三相电压不平衡度 1主题内容与适用范围 本标准规定了三相电压不平衡度的允许值及其计算、测量和取值方法。 本标准适用于交流额定频率为50Hz电力系统正常运行方式下由于负序分量而引起的公共连接点的电压不平衡。 2术语、符号 2.1不平衡度ε unbalance facor ε 指三相电力系统中三相不平衡的程度,用电压或电流负序分量与正序分量的方均根值百分比表示。电压或电流不平衡度分别用εu或εI表示。 2.2正序分量Positive—sequence component 将不平衡的三相系统的电量按对称分量法分解后,其正序对称系统中的分量。 2.3负序分量negative—sequence component 将不平衡的三相系统的电量按对称分量法分解后,其负序对称系统中的分量。 2.4公共连接点Point of common coupling 电力系统中一个以上用户的连接处。 3电压不平衡度允许值 3.1电力系统公共连接点正常电压不平衡度允许值为2%,短时不得超过4%(取值见附录A)。 电气设备额定工况的电压允许不平衡度和负序电流允许值仍由各自标准规定,例如旋转电机按GB755《旋转电机基本技术要求》规定。 3.2接于公共接点的每个用户,引起该点正常电压不平衡度允许值一般为1.3%,根据连接点的负荷状况,邻近发电机、继电保护和自动装置安全运行要求,可作适当变动、但必须满足3.1条的规定。 4用户引起的电压不平衡度允许值换算

电压不平衡度允许值一般可根据连接点的正常最小短路容量换算为相应的负序电流值,为分析或测算依据;邻近大型旋转电机的用户,其负序电流值换算时应考虑旋转电机的负阻抗。有关不平衡度的计算见附录B。 5不平衡度的测量(见附录A) 附录A不平衡度的测量和取值(补充件) A1本标准中ε值指的是在电力系统正常运行的最小方式下负荷所引起的电压不平衡度为最大的生产(运行)周期中的实测值。例如炼钢电弧炉应在熔化期测量;对于日波动负荷,可取典型日24h测量。 A2本标准规定的正常ε允许值,对于波动性较小的场合,应和实测的五次接近数值的算术平均值对比;对于波动性较大的场合,应和实测值的95%概率值对比,以判断是否合格。其短时允许值是指任何时刻均不能超过的限值。 为了实用方便,实测值的95%概率值可将实测值(不少于30个)按由大到小次序排列舍弃前面5%的大值,取剩余实测值中的最大值;对于日波动负荷,也可以按日累计超标时间不超过72min,且每30min中超标时间不超过5min来判断。 A3不平衡度测量仪器应满足本标准的测量要求。每次测量,一般按3s方均根取值,对于离散采样的测量仪器,推荐按下式计算: (A1) 式中:εk——在3s内第k次测得的不平衡度; m——在3s内均匀间隔取值次数(m≥6)。 对于特殊情况,由供用电双方另行商定。 仪器的电压不平衡度测量的绝对误差不超过0.2%;电流不平衡度测量的绝对误差不月过1%。

相关文档
最新文档