真空灭弧室

真空灭弧室
真空灭弧室

1 真空灭弧室工作原理

1.1电弧

电弧是一种能量集中、温度高、亮度大的气体放电现象,是一种电离的气体,质量极轻,发出耀眼的光芒,在外力作用下迅速移动、卷缩和伸长。在操作电力开关分断电路的过程中,当开关的触头即将分离时,由于触头的接触面突然减小,使得触头接触处的电阻猛增,同时电路上被消耗的电能将产生上千度的高温,使触头产生热电子发射,这与人们在电子管中观察到的热电子发射情况类似,只不过这时触头表面的温度比电子管内灯丝的温度要高得多,发射的热电子强度也大得多。同时在开关触头分离的瞬间,电路加在触头上的电压将在触头间极小的间隙内形成很强的电场,它将在高温作用下触头发射的热电子迅速加速,这些高速运动的热电子碰撞其周围的气体分子而产生自由电子和正离子,被电离出来的自由电子在高温和强电场的作用下继续加速,又碰撞其附近的其它气体分子,如此继续,形成连锁反应,使开关触头间的气体在极短的时间发生雪崩似的电离,接通电路,发出耀眼的亮光,这就是人们看到的电弧。

1.2熄灭电弧的方法

交流电弧的熄灭条件是在零休期间不发生热击穿,同时在此之后弧隙介质恢复过程总是胜过电压恢复过程,也即不发生击穿。但从灭弧效果来看,零休期间是最好的灭弧时机:一则这时弧隙的输入功率近乎等于零,只要采取适当措施加速电弧能量的散发以抑制热电离,即可防止因热击穿引起电弧重燃;二则这时线路所储能量很小,需借电弧散发的能量不大,不易因出现较高的过电压而引起电击穿。反之,若灭弧非常强烈,在电流自然过零前就“截流”,强迫电

弧熄灭,则将产生很高的过电压,即使不致影响灭弧,对线路及其中的设备也很不利。因此,除非有特殊要求,交流开关电器多采用灭弧强度不过强的灭弧装置,使电弧是在零休期间,而且是在电流首次自然过零时熄灭

实际上交流电弧未必均能于电流首次自然过零时熄,有时需经2~3个半周才熄灭。如图2所示,触头刚分(t=t0)时,弧隙甚小,uh也不大。故电流在首次过零(t=t1)前,其波形基本上仍属正弦波,且在电流过零处电源电压滞后约为δ≈90°。这时,介质强度ujf不大,恢复电压uhf于不久后上升到大于燃弧电压ub1时,弧隙击穿,电弧重燃。

图1-1

在第二个半周,弧隙增大,弧隙增大了,uh和ujf均增大,电流再过零(t =t2)时的滞后角δ2<δ1。由于ujf仍不够大,在uhf>ujf2时,弧隙再次被击穿,电弧仍重燃。此后,因弧隙更大,当t=t3、即电流第三次过零时,δ3<δ2,且ujf始终大于uhf,电弧不再重燃,电弧终被熄灭,交流电路也完全切断了。

1.3灭弧室工作原理

真空灭弧室是利用高真空工作绝缘灭弧介质,靠密封在真空中的一对触头来实现电力电路的通断功能的一种电真空器件。当其断开一定数值的电流时,动静触头在分离的瞬间,电流收缩到触头刚分离的一点上,出现电极间电阻剧烈增大和温度迅速提高,直至发生电极金属的蒸发,?同时形成极高的电场强度,导致极强烈的发射和间隙击穿,产生真空电弧,当工频电流接近零时,同时也是触头开距的增大,?真空电弧的等离子体很快向四周扩散,电弧电流过零后,?触头间隙的介质迅速由导电体变为绝缘体,于是电流被分断。由于触头的特殊构造,?燃弧期间触头间隙会产适当的纵向磁场,这个磁场可使电弧均匀分布在触头表面,维持低的电弧电压,?从而使真空灭弧室具有较高弧后介质强度恢复速度,小的电弧能量和小的腐蚀速率。这样,?就提高了真空灭弧室开断电流的能力和使用寿命。

2 真空灭弧室的基本结构

图2-1

2.1 气密绝缘系统

由玻璃或陶瓷制成的气密绝缘外壳、动端盖板、定端盖板,不锈钢波纹管组

成了气密绝缘系统。为了保证玻璃、陶瓷与金属之间有良好的气密性,除了封接时要有严格的操作工艺外,还要求材料本身的透气性尽量小和内部放气量限制到极小值。不锈钢波纹管的作用不仅能将真空灭弧室内部的真空状态与外部的大气状态隔离开来,而且能使动触头连同动导电杆在规定的范围内运动,以完成真空开关的闭合与分断操作。

2.2 导电系统

定导电杆、定跑弧面、定触头、动触头、动跑弧面、动导电杆构成了灭弧室

的导电系统。其中定导电杆、定跑弧面、定触头合称定电极,动触头、动跑弧面、动导电杆合称动电极,由真空灭弧室组装成的真空断路器,真空负荷开关和真空接触器合闸时,操动机构通过动导电杆的运动,使两触头闭合,完成了电路的接通。为了使两触头间的接触电阻尽可能减小且保持稳定和灭弧室承受动稳定电流时有良好的机械强度,真空开关在动导电杆一端设置有导向套,

并使用一组压缩

弹簧,使两触头间保持有一个额定压力。当真空开关分断电流时,灭弧室两触头分离并在其间产生电弧,直至电流自然过零时电弧熄灭,便完成了电路的开断。

2.3 屏蔽系统

真空灭弧室的屏蔽系统主要由屏蔽筒,屏蔽罩和其他零件组成。

屏蔽系统的主要作用是:

(1)防止触头在燃弧过程中产生大量的金属蒸汽和液滴喷溅,污染绝缘外壳的内壁,避免造成真空灭弧室外壳的绝缘强度下降或产生闪络。

(2)改善真空灭弧室内部的电场分布,有利于真空灭弧室绝缘外壳的小型化,尤其是对于高电压的真空灭弧室小型化有显著效果。

(3)吸收一部分电弧能量,冷凝电弧生成物。特别是真空灭弧室在开断短路电流时,电弧所产生的热能大部分被屏蔽系统所吸收,有利于提高触头间的介质恢复强度。屏蔽系统吸收电弧生成物的量越大,说明他吸收的能量也越大,这对增加真空灭弧室的开断容量起良好作用。

2.4 触头

触头是产生电弧、熄灭电弧的部位,对材料和结构的要求都比较高。

2.4.1 对触头材料要求

(1)高开断能力。要求材料本身的导电率大,热传导系数小,热容量大,热电子发射能力低。

(2)高击穿电压。击穿电压高,介质恢复强度就高,对灭弧有利。

(3)高的抗电腐蚀性。即经得起电弧的烧蚀,金属蒸发量少。

(4)抗熔焊能力。

(5)低截流电流值,希望在2.5A以下。

(6)低含气量。

2.4.2 触头结构

触头结构对灭孤室的开断能力有很大影响。采用不同结构触头产生的灭弧效果有所不同的,早期采用简单的圆柱形触头,结构虽简单,但开断能力不能满足断路器的要求,仅能开断10kA以下电流,目前仅有真空负荷开关、高压真空接触器等用真空开关管才采用。目前,常采用的有螺旋糟型结构触头、带斜槽杯状结构触头和纵磁场杯状结构触头三种,其中以采用纵磁场杯状结构触头为主。

5、波纹管

真空灭弧室的波纹管主要担负保证动电极在一定范围内运动和长期保持高真空的功能,并保证真空灭弧室具有很高的机械寿命。

真空灭弧室的波纹管是由厚度为0.1~0.2mm的不锈钢制成的薄壁元件。真空开关在分合过程中,灭弧室波纹管受伸缩作用,波纹管截面上受变应力作用,所以波纹管的寿命应根据反复伸缩量和使用压力来确定。

波纹管的疲劳寿命和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这就会影响波纹管的疲劳强度

3 设计与计算

3.1外壳设计

真空灭弧室的外壳主要由玻璃圆通、动端盖板、静端盖板和波纹管组成。为了保证真空灭弧室在运行中有足够高的真空度。(气压不高于310-pa ),外壳必须是不透气的,完全密封的,而实际上,真空灭弧制成后,并不能永远维持其原来的真空压力,随着存放时间的增加,灭弧室的真空度将降低,其主要原因在于绝缘外壳等密封件和焊缝的慢性漏气以及内部零件的放气,慢性漏气决定了真空灭弧室的寿命,允许的最大漏气率Q.可由式(1)表示

()P

Q V T

=? (1)

其中 Q---允许的最大漏气率(3a

P cm S

?

);

V---真空灭弧室体积(3cm ); P---真空压力的允许最大值(a P );

T---规定的真空寿命(S );

另外,除了要求密封外,还要求外壳有一定的机械强度。

3.2主屏蔽罩的设计

真空灭弧室中要设置各种各样的屏蔽罩,如触头周围的主屏蔽罩、保护波纹管的波纹管屏蔽罩以及均压用的均压屏蔽罩等。主屏蔽罩的作用有:①防止燃弧过程中触头间产生大量的金属蒸汽和液滴喷溅到外壳绝缘筒的内壁,造成真空灭弧室外壳绝缘强度的降低或闪络;②改善真空灭弧室内部电压的均匀分布,有利于真空灭弧室外壳向小型化发展;③冷却和凝结电弧生成物,有助于电弧熄灭后,残余等离子体的迅速衰减。

一般认为电弧70%的热量被主屏蔽罩所吸收,假设其中50%的热量消耗在正对着触头间隙的屏蔽罩表面上,则有

0.35W UIt = (2) 其中 W---屏蔽罩吸收的热量(kW ); U---电弧电压(V ),有效值; I---分断电流(kA ),有效值; t---燃弧时间(s );

屏蔽罩吸收的热量与屏蔽罩允许吸收的最大功率密度有下列关系: min max (d t W W =????πD ) (3) 其中 min D ---主屏蔽罩内径的最小值(cm ) d---触头开距(cm )

max W ?---允许吸收的最大功率密度(2kW cm )。

根据式(2)和式(3),可推算得

m in m ax

=0.35(d U I

D W

??π) (4) 由于主屏蔽罩的直径要大于min D ,并且要保证主屏蔽罩内表面和触头外缘之间有足够大的距离,根据经验可确定主屏蔽罩的另一个直径:

1

m in '2(10~15)10()e D D cm -=+? (5)

其中 e D ---触头直径(cm )

3.3触头设计

3.3.1 触头直径的确定

一般扩散型真空电弧在分断的半个周波内过零熄灭,故每分断一次,触头所消耗

的重量为

6

10

e

G q ω

-=

?? (6)

其中 G---分断一次触头所消耗的重量(g ); e I ---额定电流(kA ); q---触头材料的电磨损率(

g

kc

μ);

e

ω

---半个周波内通过触头的电量(kc );

设分断N 次(触头的电寿命),则触头材料的总耗损量为

6

10()e

G N q N g ω

-?=

??? (7)

设触头允许的磨损厚度12

h lk ?≤

?,则触头允许耗损量为:

23

c 1104

y G D h -=????π (8)

式中 y G ---触头允许的磨损量(g ) ?---触头材料的密度(3

g

cm

h ?---触头允许的磨损厚度(cm ) lk ?---触头超程(cm )

显然,为满足具有足够长的电寿命要求应有:

y G N G ?≤

3.3.2 导电杆直径的计算

假设在额定发热的情况下,触头处产生的全部热量由暴露在大气部分的导电杆或散热器散出,根据能量平衡有:

2

j T d d Ie R K S T =?? (9)

其中 T K ---散热系数(2W

cm C

?

?);

d S ---散热面积(2cm ); d T ---触头允许温升(C ?);

d l ?---导电杆伸出灭弧室外部的长度(cm ); j R ---触头接触电阻(Ω); 由式(9)可得

2

e j

d d d T

I R D T l K ?=

????π (12)

结论

这次真空灭弧室课程设计的学习,学到了很多关于电器学理论方面和实践方面的知识,受益匪浅。我对这门课程设计非常感兴趣。不仅锻炼了自己的动手能力,也从一定程度上巩固了对电器学灭弧方面知识的理解。更多的是让我看清了自己,明白了凡事需要耐心,实践是检验真理的唯一标准。理论知识的不足在这次实习中表现的很明显。这将有助于我今后的学习,端正自己的学习态度,从而更加努力的学习。只有这样我们才能真正的去掌握它,而不是只懂得一点皮毛。通过本次设计使我对真空灭弧原理方法有了进一步的认识,对灭弧原理和真空灭弧室的结构也有了进一步的了解,更对电器学这本书得知识做了进一步的巩固。把书本上的知识运用到了实际应用中。通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续学习是一个很好的指导方向,我们了解了电器设计的基本内容,掌握了电器设计的主要程序和方法,增强了分析和解决电器实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强电器设计能力的训练和培养严谨求实的科学作风更尤为重要。

参考文献

[1] 张冠生.电器理论基础.北京:机械工程出版社,1990.

[2] 方鸿发.低压电器.北京:机械工程出版社,1988.

[3] 王季梅.真空开关理论和应用.西安:西安交通大学出版社,1985.

[4] 方鸿发.低压电器及其测试技术.西安:西安交通大学出版社,1990.

[5] 夏天伟,丁明道.电器学》.北京:机械工业出版社,1999.

[6] 《常用电工材料手册.上海市电子电器协会.

[7] 王宝龄.电磁电器设计手册.北京:国防工业出版社,1989.

[8] 张节容.高压电器理论及应用.北京:清华大学出版社,1989.

[9] 张冠生.电器理论基础.北京:机械工业出版社,2002.

[10] 方大千.高低压电器速查速算手册.北京:中国水利水电出版社,2004.

[11] 张节容.高压断路器原理和应用.北京:清华大学出版社,2002.

[12] 熊泰昌.真空开关电器.北京:中国水利水电出版社,2002.

电子管基础知识大全

电子管,电子管基础知识大全(图) 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7.阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v;10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的变化。 内阻Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。 这回就先说电子管的构造和工作原理吧。照顾一下咱的老习惯,以后所涉及的管型和单元电路均以国产管为例,在最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。 不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路电流。把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属,陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。

真空检漏常用方法和技巧

真空检漏1 一、概述1.概漏的基本概念真空检漏就是检测真空系统的漏气部位及其大小的过程。漏气也叫实漏,是气体通过系统上的漏孔或间隙从高压侧流到低压侧的现象。虚漏,是相对实漏而言的一种物理现象。这种现象是由于材料放气、解吸、凝结气体的再蒸发、气体通过器壁的渗透及系统内死空间中气体的流出等原因引起真空系统中气体压力升高的现象。气密性是表征真空系统器壁防止气体渗透的性能,它包括通过漏孔(或间隙)的漏气和材质的渗气。最小可检漏率是指某种检漏方法能够检测出的漏率的最小值。最佳灵敏度是指检漏仪器或检漏方法在最佳条件下所能检测出的最小漏率。对于检漏仪器来讲,最佳灵敏度又称作仪器灵敏度。检漏灵敏度是指在具体条件下,某种检漏方法所能检测出的最小漏率。检漏灵敏度又称作有效灵敏度。反应时间,即从检漏方法开始实施(如开始喷吹示漏气体)到指示方法(如仪表)做出反应的时间。消除时间,即从检漏方法停止(如停止喷吹且开始抽出示漏气体)到指示方法的指示消失的时间。漏率,即单位时间内流过漏孔(包括间隙)的气体量。2.漏孔、漏率及其单位真空技术中所指的漏孔,由于尺寸微小、形状复杂、形式多样(如图1所示),无法用几何尺寸表示其大小。所以一般用等效流导或漏气速率(简称为漏率)表示漏孔的大小。用漏率表示漏孔大小时,如果不加特殊说明,则是指在漏孔入口压力为×105Pa,出口压力低于×103Pa,温度为296士3K的标准条件下,单位时间内流过漏孔的露点温度低于248K的空气的气体量。漏率的单位是帕斯卡×立方米/秒,记为Pam3/s。为了方便,有时用帕斯卡×升/秒,记为PaL/s。3.最大容许漏率真空系统漏气是绝对的,不漏气是相对的在真空检漏技术中所指的“漏”是和最大容许漏率的概念联系在一起的。对于动态真空系统,只要其平衡压力能够达到所要求的真空度,这时即使存在着漏孔,也可以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。动态真空系统的最大容许漏率qLmax应满足qLmax≤1/10PwS (1) 式中Pw----系统工作压力S----系统的有效抽速对于静态真空系统,要求在一定时间内,其压力维持在容许的压力以下,这时即使存在着漏孔,同样叮以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。如果要求在时间t内,容积为V的系统的压力由p 升至pt,则其最大容许漏率qLmax应满足qLmax≤(pt-p)V/t (2) 各种真空设备的

高压开关柜中真空负荷开关的结构和工作原理

高压开关柜中真空负荷开关的结构和工作原理 目前,国内高压开关柜市场上最常用的负荷开关是真空负荷开关和SF6负荷开关。今天,山西开关柜厂家锦泰恒着重介绍一下真空负荷开关的结构和工作原理。 真空负荷开关是利用真空灭弧室作为灭弧装置的负荷开关,开断电流大,适宜于开关柜中频繁操作。其灭弧室较真空断路器的灭弧室简单、管径小。真空灭弧室固定在隔离刀上,真空断口与隔离断口串联。熄弧由真空灭弧室完成,主绝缘由隔离断口承担。关合时,隔离刀关合真空灭弧室快速关合;开断时,真空灭弧室先分断后隔离刀打开,通过换向装置,隔离刀继续运动至接地位置。灭弧断口与隔离断口的配合有两种结构,即联动和联锁。 1.联动式结构的负荷开关。ZFN-□-RD(□表示各种电压等级)型真空负荷开关采用联动式结构,将开断时的灭弧与绝缘功能分开,隔离刀承担绝缘功能。如图1所示,由一个操作手柄,通过特殊设计的

传动系统同时操作真空灭弧室和串联的外隔离刀,以保证这两个端口按正常程序动作。为了减小负荷开关的高度,真空灭弧室2固定在了隔离刀1上。主轴4可操作隔离操作轴3和真空灭弧室操作轴5。合闸时,轴3带动隔离刀先合,真空灭弧室在过中弹簧的作用下后合;分闸时,真空灭弧室在过中弹簧的作用下快速分闸后,隔离刀接着分开。 2.联锁式结构的负荷开关。FZN21-12D系列户内式真空负荷开关采用联锁式结构,将真空灭弧室与隔离刀两功能单元通过机械连锁保证两元件按正常程序动作。其结构如图2所示,主要由隔离开关1、真空灭弧室2、接地开关4组成。其中,真空灭弧室由弹簧机构3操动。真空灭弧室既能关合、开断各种电流,又能承受绝缘实验电压。隔离开关只在真空开关检修时打开。隔离开关与接地开关用一个操作手柄联动操作,以保证两者之间的操动机构,整台真空负荷开关具有两个操作手柄,既可以电动,也可手动。弹簧机构采用了电动弹簧过

真空灭弧室的基本结构及工作原理

一、真空灭弧室基本结构 组成真空灭弧室的主要结构件为绝缘外壳、动静盖板、触头、波纹管、屏蔽罩、动静导电杆、导向套等,分别根据相应的功用选用不同的材料,采用真空钎焊工艺将相应的零部件封接成密闭的真空腔室,借助真空优良的绝缘性能与熄弧性能,在切断电源后能迅速熄弧并抑制电流, 1、结构简图 1—静端盖板2—主屏蔽罩3—动静触头4—波纹管 5—动端盖板6—静导电杆7—绝缘外壳8—动导电杆 2、各个主要零部件的作用 1)绝缘外壳 一般选用Al2O3陶瓷管壳。Al2O3陶瓷材料具有优异电绝缘性能、较高的机械强度、高温下不易分解与蒸发等一系列优点,即能保证真空灭弧室在生产及运行过程中的气密性又不易损坏。 2)波纹管

波纹管是真空灭弧室中不可缺少的重要元件。是唯一可动的外壳部分,因此它的作用也称为“动密封”。既能保证灭弧室的密封,又能借助于它来实现触头的相对运动,波纹管的允许伸缩量决定了所能获得的最大触头开距。 波纹管的材料壁厚仅为0.10——0.16mm,开关在每次合分动作时都会使波纹管的波状薄壁产生一次较大幅度的机械变形。由于剧裂而频繁的机械变形很容易使波纹管因疲劳而损坏,最终导致灭弧室漏气而报废。某种程度上,波纹管的疲劳寿命也就决定了真空灭弧室的机械寿命,所以说,整个寿命期间,一定严禁扭伤或划伤波纹管。 波纹管的疲劳寿命还和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这也会影响波纹管的疲劳强度。 3)触头 真空灭弧室是真空开关的心脏,而触头则是真空灭弧室的心脏,因此触头材料和触头结构等对真空灭弧室的性能影响极大。 ①触头材料主要从开断能力、耐受电压能力、抗电腐蚀性、抗熔焊能力、截流 值、含气量等方面来选择。目前断路器用真空灭弧室的触头材料大都采用铜铬合金,铜与铬各占50%。 ②触头结构对灭孤室的开断能力有很大影响。采用不同结构触头产生的灭弧效 果有所不同的,早期采用简单的圆柱形触头,结构虽简单,但开断能力不能满足断路器的要求,仅能开断10kA以下电流,目前仅有真空负荷开关、高压真空接触器等用真空灭弧室才采用。目前采用较多的有螺旋糟型结构触头、带斜槽杯状结构触头和杯状纵磁结构触头三种,其中以采用杯状纵磁结构触头为主。 4)主屏蔽罩 主屏蔽罩也称为中间屏蔽罩或冷凝屏蔽罩。设置在触头周围,应该正对着触头拉开后的燃弧区。其主要作用是可以阻挡电弧生成物四周喷溅的作用,有助于电弧熄灭后残余等离子体的衰减,防止绝缘外壳受污染。因而主屏蔽罩对真空灭弧室的弧后介质强度恢复速度和开断能力的提高起到很大作用。 5)动静导电杆

高压开关柜基本知识

高低压配电知识问答 第一章高压开关柜概述 一、基本概念 1.开关柜(又称成套开关或成套配电装置):它是以断路器为主的电气设备;是指生产厂家根据电气一次主接线图的要求,将有关的高低压电器(包括控制电器、保护电器、测量电器)以及母线、载流导体、绝缘子等装配在封闭的或敞开的金属柜体内,作为电力系统中接受和分配电能的装置。 2.高压开关设备:主要用于发电、输电、配电和电能转换的高压开关以及和控制、测量、保护装置、电气联结(母线)、外壳、支持件等组成的总称。 3.开关柜防护要求中的“五防”:防止误分误合断路器、防止带电分合隔离开关、防止带电合接地开关、防止带接地分合断路器、防止误入带电间隔。 4.母排位置相序对应关系: 表1-1

5.防护等级:外壳、隔板及其他部分防止人体接近带电部分和触及运动部件以及防止外部物体侵入内部设备的保护程度。 表1-2

二、开关柜的主要特点: 1.有一、二次方案,这是开关柜具体的功能标志,包括电能汇集、分配、计量和保护功能电气线路。一个开关柜有一个确定的主回路(一次回路)方案和一个辅助回路(二次回路)方案,当一个开关柜的主方案不能实现时可以用几个单元方案来组合而成。 2.开关柜具有一定的操作程序及机械或电气联锁机构,实践证明: 无“五防”功能或“五防功能不全”是造成电力事故的主要原因。 3.具有接地的金属外壳,其外壳有支承和防护作用.因此要求它应具有足够的机械强度和刚度,保证装置的稳固性,当柜内产生故障时,不会出现变形,折断等外部效应。同时也可以防止人体接近带电部分和触及运动部件,防止外界因素对内部设施的影响;以及防止设备受到意外的冲击。 4.具有抑制内部故障的功能,“内部故障”是指开关柜内部电弧短路引起的故障,一旦发生内部故障要求把电弧故障限制在隔室以内。

真空断路器必须知道的基本常识(国标和IEC)

真空断路器必须知道的基本常识(国标和IEC) 真空断路器主要包含三大部分:真空灭弧室、电磁或弹簧操动机构、支架及其他部件。以 下是对基本术语和各部分的具体介绍:1.真空断路器技术标准真空断路器在我国近十年来 得到了蓬勃的发展,至今方兴未艾。产品从过去的ZN1~ZN5几个品种发展到现在数十多 个型号、品种,额定电流达到3150A,开断电流达到50kA的较好水平,并已发展到电压达35kV等级。 80年代以前,真空断路器处于发展的起步阶段,技术上在不断摸索,还不能制定技术 标准,直到1985年后才制定相关的产品标准。 目前国内主要依据标准为: JP3855-96《3.6~40.5kV交流高压真空断路器通用技术条件》 DL403-91《10~35kV户内高压断路器订货技术条件》 这里需要说明:IEC标准中并无与我国JB3855相对应的专用标准,只是套用《IEC56 交流高压断路器》。因此,我国真空断路器的标准至少在下列几个方面高于或严于IEC标准: (1) 绝缘水平: (2)电寿命试验结束后真空灭弧室断口的耐压水平:IEC56中无规定。我国JB3855一96规定为:完成电寿命次数试验后的真空断路器,其断口间绝缘能力应不低于初始绝缘水平的80%,即工频1min33.6kV和冲击60kV。 (3)触头合闸弹跳时间:IEC无规定,而我国规定要求不大于2ms。 (4)温升试验的试验电流:IEC标准中,试验电流就等于产品的额定电流。我国DL403-91中规定试验电流为产品额定电流的110%。2.真空断路器的主要技术参数真空断路器的参数,大致可划分为选用参数和运行参数两个方面。前者供用户设计选型时使用;后者则是断路器本身的机械特性或运动特性,为运行、调整的技术指标。 下表是选用参数的列项说明,并以三种真空断路器数据为例。

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。

户内真空高压真空断路器结构及原理

ZN65-12户内高压真空断路器 一. 概述  断路器作为配电线路中的一个重要元件,承担着线路电力的接通、切断、故障保护等功能。真空断路器以其绝缘强度高,熄弧能力强,没有火灾和爆炸危险等诸多优点而受到电力部门的完全认可,在7.2kV~12kV范围内,真空断路器以占绝对优势,并在很短的时间内会完全取代油(或少油)断路器。 九十年代以来,国外著名的公司纷纷推出新一代12kV真空断路器,如德国SIEMENS公司推出的3AH1~3AH5系列真空断路器,ABB公司推出的VD4型真空断路器,日本三菱公司推出的VK型真空断路器等等。它们显著的特点是:可靠性大为提高,尺寸小巧,外观精美,适合目前电力行业的发展要求。  随着我国电力事业的大力发展,市场迫切需要在性能、可靠性、外观上接近但价格明显低于国外同类产品的真空断路器。根据这一趋势,我厂根据我国电力行业的要求和国际上真空断路器技术发展的最新发展趋势自行研制开发的ZN65A-12型新一代系列户内交流真空断路器,并通过甘肃省经济贸易委员会组织的专家鉴定。本断路器可以使用在交流50Hz (60Hz ),12kV 及以下的电力系统中。 ZN65A –12系列户内高压真空断路器符合GB1984、DL403、GB/T11022、IEC56等标准规定,并在国家高压电器质量监督检验中心和KEMA 试验站通过了严格的型式试验。  二. ZN65A-12/T630 ̄4000-20 ̄63系列交流高压真空断路器技术参数(表1)  表1  数 值 序号 名称 单位 ZN65A -12/20 ZN65A -12/25 ZN65A -12/31.5 ZN65A -12/40 ZN65A -12/63 1 额定电压 kV 12 2 额定电流 A 630 1000 1250 1000 1250 1250 1600 2000 2500 1250 1600 2000 2500 3150 4000 1min 工频耐受电压 42 3 额定绝 缘 水平 冲击耐受电压 kV 75 4 额定短路开断电流 20 2 5 31.5 40 63 5 额定短路关合电流(峰值) 50 63 100(80) 130(100) 160 6 额定动稳定电流(峰值) 50 63 100(80) 130(100 160 7 额定热稳定电流(有效值) kA 20 25 31.5 40 63 8 额定短路开断电流开断次数 次 50 30 20 9 额定短路开断电流的直流分量 ≥35% ≥40% 10 额定热稳定时间 s 4

见过这么全的真空灭弧室的基础知识吗

见过这么全的真空灭弧室的基础知识吗? 1、什么是真空 真空是指在给定的空间内,远低于一个环境大气压的气体状态。真空状态下气体的稀薄程度通常用真空度来描述,以压强值来表示。 1大气压= 760×133.3=1.013×105(帕斯卡)或0.1013 压强越高则真空度越低;压强越低则真空度越高。 真空灭弧室中,真空度很高,一般为10-3~10-4。 2、什么是真空灭弧室 真空灭弧室也叫真空开关管或真空泡,是真空开关的核心器件。它是用一对密封在真空中的电极(触头)和其它零件,借助真空优良的绝缘和熄弧性能,实现电路的关合或分断,在切断电源后能迅速熄弧并抑止电流的真空器件。 3、真空灭弧室的分类 按外壳分:玻璃真空灭弧室、陶瓷真空灭弧室。 按用途分:断路器用真空灭弧室、负荷开关用真空灭弧室、接触器用真空灭弧室、重合器真空灭弧室、分段器用真空灭弧室与其它特殊用途真空灭弧室。 40.5/2500-31.5 T 陶瓷外壳 D 断路器用40.5为电压等级单位2500为额定电流单位A 31.5为短路开断电流单位为 12/3150-40 B 玻璃外壳D断路器用12 3150A额定电流40短路开断电流 12为T陶瓷外壳F 负荷开关用

12为T陶瓷外壳接触器用 4、真空灭弧室的基本结构 真空灭弧室主要由气密绝缘系统、导电系统、屏蔽系统、触头系统几部分组成。 4.1 绝缘外壳 材料:绝缘外壳的材料有玻璃、陶瓷、微晶玻璃三种。微晶玻璃价格昂贵,因而没有得到过实际应用;玻璃结构强度较差,使用量已逐渐减少;陶瓷综合性能最好,因而应用最广泛。 主要作用:绝缘外壳主要是起绝缘支撑作用,并参与组成气密绝缘系统。 4.2 波纹管 材料:波纹管主要由厚度为0.1~0.2的不锈钢制成。 主要作用:波纹管主要担负动电极在一定范围内运动、与高真空密封

关于高压断路器基本知识 一

关于高压断路器基本知识一 关于高压断路器基本知识(一)2010年08月20日星期五11:151、断路器'高压断路器的用途是什么? 答:在发电厂和变电所中,断路器'高压断路器是1000KV以上电路中的主 要控制设备。在正常运行时,用来接通或断开电路的负荷电流;故障时,用来 迅速断开短路电流,切除故障。 2、对断路器'高压断路器有什么基本要求? 答:对断路器的基本要求有以下几点: (1)在合闸状态时应为良好的导体。 (2)在合闸状态时应具有良好的绝缘性。 (3)在开断规定的短路电流时,应有足够的开断能力和尽可能短的开断时间。 (4)在接通规定的短路电流时,短时间内断路器的触头不能产生熔焊等情况。 (5)在制造厂给定的技术条件下,断路器'高压断路器要能长期可靠地工作,有一定的机械寿命和电气寿命要求。 此外,断路器'高压断路器还应具有结构简单、安装和检修方便、体积小、重量轻等优点。 3、断路器'高压断路器有哪些类型? 答:根据断路器安装地点,可分为户内和户外两种。根据断路器使用的灭 弧介质,可分为以下几种类型: (1)油断路器。油断路器是以绝缘油为灭弧介质。可分为多油断路器和少油断路器。在多油断路器中,油不仅作为灭弧介质,而且还作为绝缘介质,因此

用油量多,体积大。在少油断路器中,油只作为灭弧介质,因此用油量少体积小,耗用钢材少。 (2)空气断路器。空气断路器是以压缩空气作为灭弧介质,此种介质防火、防爆、无毒、无腐蚀性,取用方便。空气断路器属于他能式断路器,靠压缩空 气吹动电弧使之冷却,在电弧达到零值时,迅速将弧道中的离子吹走或使之复 合而实现灭弧。空气断路器开断能力强,开断时间短,但结构复杂,工艺要求高,有色金属消耗多,因此,空气断路器一般应用在110KV及以上的电力系统中。 (3)六氟化硫(SF6)断路器。SF6断路器采用具有优良灭弧能力和绝缘能力 的SF6气体作为灭弧介质,具有开断能力强、动作快、体积小等优点,但金属 消耗多,价格较贵。近年来SF6断路器发展很快,在高压和超高压系统中得到 广泛应用。尤其以SF6断路器为主体的封闭式组合电器,是高压和超高压电器 的重要发展方向。 (4)真空断路器。真空断路器是在高度真空中灭弧。真空中的电弧是在触头分离时电极蒸发出来的金属蒸汽中形成的。电弧中的离子和电子迅速向周围空 间扩散。当电弧电流到达零值时,触头间的粒子因扩散而消失的数量超过产生 的数量时,电弧即不能维持而熄灭。真空断路器开断能力强,开断时间短、体 积小、占用面积小、无噪声、无污染、寿命长,可以频繁操作,检修周期长。 真空断路器目前在我国的配电系统中已逐渐得到广泛应用。 此外,还有磁吹断路器和自产气断路器,它们具有防火防爆,使用方便等 优点。但是一般额定电压不高,开断能力不大,主要用作配电用断路器。 4、断路器'高压断路器的型号是怎样规定的? 答:目前我国断路器型号根据国家技术标准的规定,一般由文字符号和数 字按以下方式组成: 其代表意义为: ①-产品字母代号,用下列字母表示:S-少油断路器;D-多油断路器;K-空气断路器;L-六氟化硫断路器;Z-真空断路器;Q-产气断路器;C-磁吹断路器。

真空灭弧室结构及原理

真空灭弧室结构及原理 ◆ 电弧 ◆ 真空和真空度 ◆ 真空电弧 ◆ 交流真空电弧 ◆ 真空击穿 ◆ 灭弧原理 ◆ 真空灭弧室的寿命 1、电弧 电弧或弧光放电是气体放电的一种形式。气体放电在性质上和外观上是各种各样的。在正常状态下,气体有良好的电气绝缘性能。但当在气体间隙的两端加上足够大的电场时,就可以引起电流通过气体。这种现象称为放电。放电现象与气体的种类和压力、电极的材料和几何形状、两极间的距离以及加在间隙两端的电压等因素有关。例如在正常状态下,给气体间隙两端的电极加压到一定程度时,普通空气中电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,这时,气体开始发光,两电极变为炽热,电流迅速增大。这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。这时,由于电场的支持,放电并不停止,故称为自持放电。电弧则是气体自持放电的一种形式。电弧具有电流密度大和阴极电位降低的特点。 2、真空和真空度 低于1个大气压的气体状态,都称为真空。描述真空程度的量叫真空度,用该气体的压力大小来表示。 l大气压= 760×133.332Pa=1.013×105Pa(帕斯卡)或0.1013MPa 真空技术中将广阔的真空度范围划分为粗、低、高、超高、极高等区域。其中高真空区域的气体压力为 10-1~10-6Pa,这一区域的后半段,即 1.33 ×10-3~1.33 ×10-6就是真空灭弧室通常采用的真空度范围。

在高真空区域中,单位体积内的气体分子数目大大减少了,气体分子之间碰撞的几率大大减少,气体分子之间的平均距离大大增加。 真空度的高低对灭孤能力有影响。实验表明:灭孤室真空度在10-3Pa 数量级时就能够可靠地灭弧。真空灭弧定制造厂在产品出厂时,提高了灭孤室的真空度,达到 10-5~ 10-6 Pa,待经过20年的使用或贮存期,或多或少产生外部渗气等现象使其真空度下降到10-3Pa范围,仍能保证它的灭孤能力。 3、真空电弧 在真空环境中,气体非常稀薄,残存气体的电离可忽略不记。一对带电触头在这种高真空环境中的分离,便会产生真空电弧。真空电弧是这样产生的:当触头行将分离前,触头上原先施加的接触压力开始减弱,动静触头间的接触电阻开始增大,由于负荷电流的作用,发热量增加。在触头刚要分离瞬间,动静触头之间仅靠几个尖峰联系着,此时负荷电流将密集收缩到这几个尖峰桥上,接触电阻急剧增大,同时电流密度又剧增,导致发热温度迅速提高,致令触头表面金属产生蒸发,同时微小的触头距离下也会形成极高的电场强度,造成强烈的场致发射,间隙击穿,继而形成真空电弧。真空电弧一旦形成,就会出现电流密度在 104A/cm2 以上的阴极斑点,使阴极表面局部区域的金属不断熔化和蒸发,以维持真空电弧。在电弧熄灭后,电极之间与电极周围的金属蒸气密度不断下降直到零,仍然恢复高真空状态。 3.1真空中电弧的形式: 真空中的电弧有两种形式,扩散形电弧和收缩形电弧。 3.1.1扩散型真空电弧: 当真空电弧电流不大时,阴极斑点将不停地运动,通常是由电极中心向边缘运动。当阴极斑点到达边缘,等离子锥便弯曲,接着阴极斑点就突然熄灭,在电极中心又会继续不断地产生新的阴极斑点。如果电流保持不变,阴极表面存在的阴极斑点数基本上维持不变。当电弧电流增大或减小时,阴极斑点也随之增加或减少。这种存在许多阴极斑点的真空电弧,随着阴极斑点的运动不断地向四周扩散,所以叫扩散型真空电弧。

常用灭弧器的工作原理

①少油断路器 少油断路器以变压器油作为灭弧介质及动、静触头之间的绝缘。而用空气、陶瓷或有机绝缘材料作为相与相之间或相与地之间的绝缘。因此,少油断路器油量少、体积小、耗用钢材,价格便宜。目前在我国10~220KV电力系统中得到广泛应用。 其灭弧原理是少油断路器在油中开断电流时,触头间将产生电弧。高温电弧使油急速蒸发和分解。于是电弧便在油蒸汽和油分解的气体气泡中燃烧。油分解的气体中氢气约占70% ~ 80%,而且氢气的热导率非常高,并有很强的扩散作用。氢气和其他冷热气体对弧道产生强烈的冷却和去游离作用,特别是当电流经过零值瞬间,这种作用更加强烈,有利于熄灭电弧。断路器通常采用绝缘材料制成灭弧室,电弧在灭弧室中燃烧,利用灭弧室内升高的压力(可达几十兆帕)使油一方面流动,一方面与电弧接触,则灭弧效果更好。 ②六氟化硫断路器 六氟化硫断路器采用SF6气体作为灭弧介质和绝缘介质,SF6气体具有良好的绝缘性能和灭弧能力,因此在断路器中的应用得到迅速发展。SF6断路器的类型按灭弧方式分,有单压式和双压式;按触头工作方式可分为定开距式和变开距式;按总体结构分,有落地罐式和瓷瓶支柱式。 灭弧原理: 单压式SF6断路器只有一种压力较低的压力系统,既只有0.3~0.6MPa 压力(表压)的SF6气体作为断路器的内绝缘。在断路器开断的过程中,

由动触头带动压力活塞或压气罩,利用压缩气流吹熄电弧。分闸完毕,压气作用停止,分离的动静触头处在低压的SF6气体中 双压式SF6断路器内部有高压区和低压区,低压区0.3~0.5Mpa的SF6气体作为断路器的主绝缘。在分闸过程中,排气阀开启,利用高压区约1.5MPa的气体吹熄电弧。分闸完毕,动、静触头处于低压气体中或高压气体中。高压区喷向低压区的气体,再经气体循环系统和压缩机抽回高压区。 目前我国生产的SF6断路器采用单压式;并且触头多采用变开距结构 ③真空断路器 真空断路器是利用真空(真空度为10-4mm汞柱以下)具有良好的绝缘性能和耐弧性能等特点,将断路器触头部分安装在真空的外壳内而制成的断路器。真空断路器具有体积小、重量轻、噪音小、易安装、维护方便等优点。尤其适用于频繁操作的电路中。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。(责任编辑:admin)

真空灭弧室的基本结构和工作原理

真空灭弧室的基本结构和工作原理 真空灭弧室,又名真空开关管,是中高压电力开关的核心部件,其主要作用是,通过管内真空优良的绝缘性使中高压电路切断电源后能迅速熄弧并抑制电流,避免事故和意外的发生,主要应用于电力的输配电控制系统,还应用于冶金、矿山、石油、化工、铁路、广播、通讯、工业高频加热等配电系统。具有节能、节材、防火、防爆、体积小、寿命长、维护费用低、运行可靠和无污染等特点。真空灭弧室从用途上又分为断路器用灭弧室和负荷开关用灭弧室,断路器灭弧室主要用于电力部门中的变电站和电网设施,负荷开关用灭弧室主要用于电网的终端用户。 我公司生产的多种型号的真空灭弧室,按其用途、参数、开断容量可分为断路器用真空灭弧室、负荷开关用真空灭弧室、接触器用真空灭弧室、重合器用真空灭弧室和分段器用真空灭弧室等。 其结构形式均由气密绝缘外壳、导电回路、屏蔽系统、波纹管等部分组成。 1、 气密绝缘系统 由玻璃或陶瓷制成的气密绝缘外壳、动端盖板、定端盖板,不锈钢波纹管组成了气密绝缘系统。为了保证玻璃、陶瓷与金属之间有良好的气密性,除了封接时要有严格的操作工艺外,还要求材料本身的透气性尽量小和内部放气量限制到极小值。不锈钢波纹管的作用不仅能将真空灭弧室内部的真空状态与外部的大气状态隔离开来,而且能使动触头连同动导电杆在规定的范围内运动,以完成真空开关的闭合与分断操作。 2 、导电系统 定导电杆、定跑弧面、定触头、动触头、动跑弧面、动导电杆构成了灭弧室的导电系统。其中定导电杆、定跑弧面、定触头合称定电极,动触头、动跑弧面、动导电杆合称动电极,由真空1.排气管保护罩 2.排气管密封刀口 3.环氧树脂填料 4.定端盖版 5.定导电杆 6.屏蔽筒 7.玻壳(或陶瓷壳) 8.定触头座 9.定触头 10.动触头 11.动触头座 12.动导电杆 13.波纹管 14.均压罩 15.动端盖版 16.导向套

真空开关基础知识

真空开关基础知识—真空的绝缘性能 一、真空的基本概念 真空技术中,“真空”泛指在给定的空间内,气体压强低于一个大气压的气体状态,也就是说,同正常的大气压相比,是较为稀薄的一种气体状态。 真空度是对气体稀薄程度的一种客观量度。根据真空技术的理论,真空度的高低通常都用气体的压强来表示。在国际单位制中,压强是以帕(Pa)为单位 1Pa=1N/m2。另外常用的单位还有托(Torr)、毫米汞柱(mmHg)、毫巴 (mbar)、工程大气压(公斤/厘米2)等。 真空区域的划分没有统一规定,我国通常是这样划分的: 粗真空:(760~10)托 低真空:(10~10-3)托 高真空:(10-3~10-8)托 超高真空:(10-8~10-12)托 极高真空:10-12托 托和帕的关系:1 托=1 毫米汞柱(mmHg)=133.322Pa,1 帕=7.5×10-3托。 真空区域的特点不同其应用也不同,例如吸尘器工作于粗真空区域,暖瓶、灯泡等工作于低真空区域,而真空开关管和其它一些电真空器件则是工作在高真空区域。 二、真空间隙的绝缘特性 真空中放置一对电极,加上高压时,在一定的电压下也会产生电极之间的电击穿。它的击穿与空气中的电击穿有很大不同。空气中的击穿是由于气体中的少量自由电子在电场作用下高速度运动,与气体分子碰撞产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子。这种雪崩式的电离过程,在电极间形成了放电通道,产生了电弧。而真空中,由于压强较低,气体分子极少,在这样的环境中,即使电极间隙中存在着电子,它们从一个电极飞向另一个电极时,也很少有机会与气体分子碰撞。因而不可能有电子和气体分子碰撞造成雪崩式的电击穿。正是因为气体分子十分稀少,真空间隙电击穿需要在非常高的电压下出现场致发射等其它现象时才有可能形成。从理论上推测,电场强度需达到108V/cm以上时才会造成电击穿,实际上真空间隙的绝缘强度由于一系列不利因素例如电极表面粗糙度、洁净度等的影响,将低于理论计算值几个数量级。 真空灭弧室中的真空度很高,一般为10-3~10-6帕,此时真空间隙的绝缘强度远远高于1 个大气压的空气和SF6 的绝缘强度,比变压器油的绝缘强度还要高。正因为真空的绝缘强度很高,真空灭弧室中的所有电气间隙都可以做得很小。例如12kV 真空灭弧室的触头开距只有8~12mm,40.5kV 真空灭弧室的触头开距也只要18~25mm,真空灭弧室中的其它电气间隙也在此尺度范围。 三、影响真空绝缘水平的主要因素 真空绝缘是一个十分复杂的物理过程,其机理到目前为止仍没有明确的结论。从实际应用情况来看,主要有以下几个方面: 1、电极的几何形状 电极的几何形状对电场的分布有很大的影响,往往由于几何形状不够恰当,引起电场在局部过于集中而导致击穿,这一点在高电压的真空产品中尤其突出。

临床检验基础知识点整理

血液样本采集和血涂片制备 1血液由红细胞,白细胞,血小板和血浆组成。 2离体后的血液自然凝固,分离出来的淡黄色透明液体称为血清 3血清与血浆的区别是血清缺少某些凝血因子 4血清适用于临床化学和临床免疫学检查 5正常人血量约为(70土10ml)/kg体重,成人4~5L,占体重的6%~8%,其中血浆占55%,血细胞占45% 6血液的红色来自红细胞内血红蛋白,动脉血氧合血红蛋白含量较高,呈鲜红色,静脉血还原血红蛋白含量高,呈暗红色 7严重一氧化碳中毒或氰化物中毒者血液呈樱红色 8正常人血液ph值的波动范围是7.35~7.45 9正常男性的血液比密为1.055~1.063,女性为1.051~1.060,相对黏度为4~5,血浆比密为1.025~1.030,血细胞比密为1.090。血液比密与红细胞含量,红细胞内血红蛋白含量有关。血浆比密和血浆内蛋白浓度有关 10血液具有红细胞的悬浮稳定性,粘滞性,凝固性这三种特性 11正常人的血浆黏度约为生理盐水黏度的1.6倍 12血液黏度与血细胞比容,血浆黏度有关 13血液生理功能包括:运输功能,协调功能,维护集体内环境稳定和防御功能14静脉血通常使用的采血部位是肘部静脉,手背静脉,内踝静脉,股静脉 15在静脉采血时为了避免血小板激活,常使用塑料注射器和硅化处理后的试管或者塑料管

16世界卫生组织(who)推荐采集左手无名指指端内侧血液,婴幼儿可采集拇趾或足跟内外侧缘血液,严重烧伤患者可选择皮肤完整处采血 17彩色真空定量采血用于葡萄糖,糖耐量测试,添加的抗凝剂是氟化钠 18彩色真空管定量采血用于血培养,应添加的抗凝剂是多聚茴香脑硫酸钠 19皮肤采血法的缺点是易于溶血,凝血,混入组织液,而且局部皮肤揉擦,针刺深度不一,个体皮肤厚度差异等都影响检查结果,所以,皮肤采血检查结果重复性差,准确性不好 20采血方法应在患者,采血,溶血,样本处理,实验结果分析等方面进行质量控制 21乙二胺四乙酸盐能与血液中钙离子结合成螯合物,使钙离子失去凝血作用,组织血液凝固 22 EDTA盐对血细胞形态,血小板计数影响很小,适用于血液学检查,尤其是血小板计数 23草酸盐的优点是溶解度好,价廉 24肝素可加强抗凝血酶灭活丝氨酸蛋白酶作用,阻止凝血酶的形成,并阻止血小板聚集等作用,从而阻止血液凝固 25枸橼酸钠能与血液中钙离子结合成螯合物,枸橼酸钠与血液的抗凝比例为1:9或1:4 26采用手工推片法制备血涂片时,通常推片与载玻片保持25~30度角 27采用厚血膜涂片法制备血涂片时,载玻片中央置血1滴,用推片将血由内向外旋转涂成厚薄均匀,直径约1.5cm的圆形血膜,待干后,加蒸馏水使红细胞溶解,再干后染色镜检

中冷器基本知识

中冷器基本知识 中冷器的安装目的,主要是为降低进气温度,或许读者会问:为何需要降低进气温度这就得提到涡轮增压的原理。涡轮增压的工作原理,简单说是利用引擎排废气来冲击排气叶片,然后带动另一侧进气叶片,强制压缩空气并送往燃烧室中,由于排废气的温度通常都高达8、9百度,连带使涡轮本体同样处于极高温的状态,如此便会提高流过进气涡轮端空气的温度,加上压缩过的空气同样也会产生热度(因为压缩过的空气分子距离变小,会相互挤压、磨擦产生热能现象),如果这股高温气体未经冷却就进入汽缸中,很容易导致引擎燃烧温度过高,接着就会使汽油预燃发生爆震,让引擎温度更加上升,同时压缩空气的体积也会因热膨胀而大幅降低含氧量,如此一来便会降低增压效益,自然无法产生该有的动力输出。另外,高温也是引擎的隐形杀手,若不设法降低运转温度,一旦遇到天气较热的环境,或是长时间操驾的情况下,很容易增加引擎故障机率,因此才需加装中冷器来降低进气温度。知道中冷器的功能后,接着我们来探讨它的构造及散热原理为何。 中冷器主要是由两个部分所组成。第一部分名称为Tube,其功能在于提供一个通道,容纳压缩空气使之流过,因此Tube必须是密闭空间,如此压缩空气才不至于发生泄漏压力的问题,且Tube的外形还分成四方形、椭圆形与长锥形三种,其差别在于风阻与冷却效率间的取舍。第二部分名称为Fin,也就是俗称的鳍片,通常位于上下两层Tube间,并紧密的与Tube相粘在一起,其功能在于散热,因为当压缩热空气流经Tube时,会将热量经由Tube的外壁传达到鳍片上,此时若有外界温度较低的空气流经鳍片时,就能顺便将热量带走,达到冷却进气温度的目的。经由上述两部分不断重叠一起,直到10~20层的结构物,则称为Core,这部分就是所谓的中冷器主体。另外,为了使来自涡轮的压缩气体在进入Core前,能有缓冲及蓄压的空间,及出Core后能提升空气流速,通常都会在Core两侧,再装上名为Tank的零件,其外型像漏斗状一般,其上还会设置圆形进出口,以方便连接硅胶管,而中冷器就是经由上述四个部分所组成。至于中冷器散热的原理就如同刚才提到的一般,是利用众多的横向Tube分割压缩空气,然后来自车头的外界直向冷风,再经过与Tube相连的散热鳍片,就可达到冷却压缩空气的目的,使进气温度较为接近外界温度,因此若要增加中冷器的散热效率,只要加大其面积及厚度,以增加Tube数量、长度和散热鳍片等,就可达到此目的。但有这么容易吗其实不然,因为愈长、面积愈大中冷器,就愈容易产生进气压力耗损的问题,而这也是本单元主要探讨的问题之一。 ? ? 虽然大容量中冷器,因热交换时间延长有更好的冷却效能,但却会发生空气流速变慢及压力损失的问题,且进一步使涡轮迟滞现象更为严重,为什么这要从两个方面谈起。相信曾经自己洗过车的读者都知道,要让水管里的水柱喷的较远、较快,只需挤压水管头就可达成,为什么会这样那是因为在水压不变的情况下,单位时间的流量不会因管径大小而改变,因此为达到这目的,只要缩小管径,流速自然变快,相反的一增加管径、流速就会变慢,而这情况也发生在整个进气管路里。因为当空气由原先容纳空间较小的进气管路中,流经空间较大的中冷器时,就会产生流速变慢的现象,且此问题对于小出风量涡轮搭配大型中冷器时尤其严重,如此一来将使涡轮迟滞现象更为严重。另外,当空气由进气管路进入中冷器的Tube时,会因管径粗变细的分流转换,产生流速阻力,造成一定程度的压力损失,再加上许多中冷器为增加冷却效率,都会在Tube里设置鳍片(Tube不一定是中空的),这样也会产生气流阻力,两者相加,涡轮迟滞问题相对会更加明显。值得一提的,上述提到的压力损失,指的并非是增压值的减少,因为进气管路是密闭的,所以排气泄压阀的泄压动作,一定需达到车主设定的增压值才会进行,因此恒压值是不会降低,只不过会延长到达的时间(因为部分压力被消耗掉)及影响增压反应,而这也是压力损失造成的最大影响。既然加装中冷器会使涡轮迟滞更加明显,可是又不能不装,因此如何兼顾冷却效率及压力

真空断路器灭弧原理

真空断路器灭弧原理 真空断路器是利用真空(真空度为10-4mm汞柱以下)具有良好的绝缘性能和耐弧性能等特点,将断路器触头部分安装在真空的外壳内而制成的断路器。真空断路器具有体积小、重量轻、噪音小、易安装、维护方便等优点。尤其适用于频繁操作的电路中。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。 真空灭弧室是真空断路器的灭弧和绝缘部件。主要有动触头、静触头、动端跑弧面、动端法兰、静端法兰、瓷柱、不锈钢支撑法兰、屏蔽罩、动静导电杆、玻壳和波纹管等,经过清洗由玻璃封装、真空焊、亚弧焊、排气等工艺程序处理后封装而成。各主要零部件均密封在玻壳中,玻壳不仅通过动静法兰起到密封作用,还能起到绝缘作用。波纹管系一动态密封的弹性元件,通过真空灭弧室在操动机构的作用下可完成分合闸动作,而又不会破坏其真空度。

真空灭弧室制造成一个整体,不能拆装,损坏后应整体更换。 真空电弧的熄灭是基于利用高真空介质(一般为压强低于10-4mm汞柱的稀薄气体)的绝缘强度及在这种气体中的电弧生成物(带电粒子和金属蒸汽)具有极高的扩散速度,在电弧电流过零后,触头间隙的介质强度可以迅速恢复起来的原理而实现的。燃弧过程中的金属蒸汽和带电粒子在强烈的扩散中为屏蔽罩所冷凝,带三条阿基米德螺旋槽的跑弧面使电弧电流在其流经路线上的触头间产生一个横向磁场,这时电弧电流在主触头上沿切线方向快速移动,从而降低了主触头表面的温度,减少了主触头的烧损,稳定了断路器的开断性能,提高了断路器的寿命。

相关文档
最新文档