【铁道信号】25HZ轨道电路叠加电码化的设计

【铁道信号】25HZ轨道电路叠加电码化的设计
【铁道信号】25HZ轨道电路叠加电码化的设计

25HZ轨道电路叠加电码化的设计

第一章系统简介

根据铁路运输需要,为满足机车在站内能通过轨道接收到移频机车信号信息的要求,站内轨道电路必须实施电码化。

非电气化牵引区段国内的站内一般采用50Hz交流连续式轨道电路(因其轨道继电器为JZXC-480型,习惯简称为480轨道电路)。电气化牵引区段国铁的站内一般采用97型25HZ相敏轨道电路,而且要求正线电码化在列车行驶过程中,要确保连续性,即不得有瞬间中断。侧线电码化为占用发码方式的叠加电码化。

自1988年,在全路推行车站股道电码化工作中,电码化专题组曾按部科技司下达的科研任务的要求,研制了多种轨道电路的多种机车信号电码化,并在全路已推广数千车站。但因当时没有提出适应超速防护装置的需要,即对发码连续性的要求,故该制式是只在满足列车运行速度100km/h 以下时,保证机车信号稳定工作的前提下,同时解决轨道电路的自动恢复问题,故而采用了脉动切换和叠加的发码方式,但不符合铁路提速后电码化的要求。

由于列车运行速度的提高,其制动更加困难,冒进信号的可能性比现在更大。而现有的向机车信号或超防设备提供信息的电码化技术和设备己不能满足提速列车的要求,因此,实施适应在提速区段使用的预叠加电码化技术和设备势在必行。

正线区段电码化在时间上不允许有中断时间,原来车站股道电码化的叠加发码方式必须改为“预先发码”的方式,即列车占用前一个区段时,

本区段就应预先发码。列车占用正线区段内任一区段时,其前方(指列车前进方向)区段应预先发码,彻底消除了中断时间。

采用逐段预先发码的叠加方式,不难看出:任一瞬间均有两个区段在发码,即发送盒的输出端子接向轨道,而叠加发码时轨道电路的送、受电端与电码化发送线是并联的,这就造成相邻两个区段送、受电端也相连,即我们俗称的“相混”,这当然是不允许的,必须予以克服。

发码方式为叠加发码,发码和轨道电路送、受电端是并接的,由此引起轨道电路附加支路的衰耗。由于改变了轨道电路的调整和分路性能,其极限长度能否达到1200m,是必须加以确认的技术问题。电码化轨道电路在机车信号入口电流和轨道电路的调整和分路两方面均应满足各自的技术要求。

由于必须采用预叠加发码方式,这就要求接口设备中的隔离元件具有“故障------安全”性能,当隔离元件出现故障时,串入到并接轨道继电器的电流或电压均不得使之误动。

1.1 电码化技术的发展

在1994年“京九”工程站内正线采用预叠加18信息移频电码化、到发线股道采用叠加18信息移频电码化。1995年通过铁道部技术鉴定,系统器材设计合理,具有“故障-----安全”保证。几年来运用效果良好,特别是上层逻辑控制电路为今后各类预叠加电码化的控制电路广泛采用,成为一种标准电路。

1.1.1 切换与叠加

以往对轨道电路实施电码化一般分为叠加方式电码化和非叠加方式电码化两类。在非电气化牵引区段的站内,通常采用交流连续式轨道电路(俗称480轨道电路)。发送电码化信息的方式一般采用非叠加方式(如采用切换方式)所谓“切换”即电码化发码接点条件在轨道电路电码化过程中,

由平时固定接向轨道电路设备转接向电码化发码设备。切换方式经历了“固定切换”和“脉动切换”。

在交流电气化牵引区段,通常采用与25HZ相敏轨道电路“叠加”移频机车信号信息的电码化方式。所谓“叠加”即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在。传输继电器的作用是在发码时机到来之际,将发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息。

1.1.2 预叠加

随着铁路运输的发展,提速区段对机车信号和超速防护有了更高的需求(即在发码区段内,保证机车信号在时间和空间上均连续) 。日前的“切换和叠加”电码化技术已不满足提速要求,必须在原有电码化“叠加发码”方式的基础上进行改进,采用“叠加预发码”方式,才能保证列车接收地面信息在“时间和空间”上的连续。“预”就是在列车占用某一区段时,其列车运行前方,与本区段相邻的下一个区段也开始发码。

1.2 预叠加电码化原理

电码化系统的设计原则为:正线区段(包括无岔和道岔区段)为“逐段预先发码(简称‘预叠加’) ”,保证列车在正线区段行驶的全过程,地面电码化能不间断地发送机车信号。侧线区段为占用发码叠加发码。

我们以下行正线接发车为例(站场示意图见1) ,略述正线区段逐段预先发码的应用原理。接车进路、发车进路ZPW一2000A电码化发送设备采用“N+l”冗余方式设计。图1中粗线表示的是站内电码化范围。与下行电码化方向相对应,迎着列车行驶方向进行发码,进路内每一轨道区段均设置一台传输继电器CJ。发送的Ⅰ、Ⅱ路输出分别与相邻轨道区段的CJ相连,即Ⅰ路输出若连A、C、E、G区段的CJ,Ⅱ路输出则连B、D、F、H区段的CJ。

(1)列车进入YG区段时,接车进路己排通,即正线继电器ZXJ↑进站信

号开放, LXJ ↑,则接车电码化继电器JMJ↑。直到列车进入D股道, DGJF ↓,切断JMJ的KZ电源,J MJ才落下,表明接车电码化己结束。

列车进入YG区段,YGJF↓,传输继电器电路中ACJ↑,发送设备Ⅰ路的移频信息叠加进A区段的轨道电路信息中,站内电码化开始工作,预发(叠加)第一个码。

(2)列车进入站内电码化第一个区段A,ADGJF↓, ACJ通过自闭电路保持吸起,发送设备Ⅰ路输出继续向A区段轨道传递机车信号信息,同时BCJ ↑,发送设备Ⅱ路的移频信息叠加进B区段的轨道电路信息中,使列车运行在A区段时,B区段已预先发码。同样,列车进入B区段,BDGJF ↓。BCJ通过自闭电路保持吸起,发送的Ⅱ路输出继续向B区段轨道传递机车信号信息。BDGJF↓切断了ACJ的KZ电源,ACJ↓,A区段不再接收到Ⅰ路的移频信息;与此同时CCJ↑,Ⅰ路的移频信息由CCJ叠加进C区段的轨道电路信息中,使列车运行在B区段时,C区段己预先发码。

(3)列车在压入D股道前一个区段C时,DCJ↑,将电码化信息预叠加到D 股道;当列车压入D股道时DGJ↓,JMJ↓,表明接车进路电码化到此结束。

由于列车在D股道,DGJF↓,在检查了1LQ空闲和发车进路排通后,发车电码化继电器FMJ↑,则ECJ↑,发车进路电码化开始工作,这样亦能连续向发车进路预发码。

(4)发车进路的预发码直至列车压入站内电码化最后一个区段H时结束,并直至列车压入ILQ, FMJ↓,叠加电码化信息的工作才结束。

移频电码化发送设备的两路输出信息就是如此被一个接着一个地轮流叠加至站内相邻的两个轨道区段的。它的设计与使用,既满足了任一瞬间发送的每一路输出只向一个区段发码,又满足了任一瞬间都有两个相邻区段在发码,完全实现了“预叠加”方式对站内正线电码化技术的要求。接车进路、发车进路ZPW-2000A电码化发送设备采用“N+ 1”冗余方式设计,接车或发车进路发送设备故障,自动转换至+1设备并报警,确保正线行车

安全可靠。

图1电码化预叠加原理示意图

1.2.1 正线预叠加系统原理

正线区段包括进直的接车进路和出直的发车进路内各区段(正线股道除外),按铁标“铁路车站电码化技术条件”规定,当列车冒进信号时,内方区段不得发码的要求,每一进路需设置一个允许发码的控制继电器(JMJ或FMJ)只有开放相应信号(排除了冒进信号)时才具备发码的条件,它的工作直接区分列车进入内方后能否发码,涉及安全,借助超速防护装置确保防止冒进信号,故该发码的控制继电器应采用“肯定”的逻辑关系,

即它↑吸起时才发码。

继电器的供电电路应按“故障-----安全”原则设计,即构成供电的必备条件也均采用“肯定”的逻辑关系,前接点接通。而继电器开通的时机条件(非安全性)可做成与必备条件相同也可做成“列车接近时”两种方式。

控制继电器的恢复条件或时机,即它供电电路的切断,按接点电路设计的一般原理,知“当它的任务完成时即为它的恢复时机”,不难看出,当列车进入不由它控制发码的区段时,例如接车进路驶入股道或发车进路驶入区间时,即可切断它的供电电路。

另外要保证区段瞬间分路后,由于信号己关闭,为保证不使以后的列车冒进后能错误收到码,此时也应使MJ恢复到落下位置。

现以图2为例:

由于它的“开放信号”的必备条件当列车进入内方后将自动关闭,故它的必备条件应是“曾开放信号”同时应有自闭电路。

控制继电器JMJ和FMJ的供电电路接通公式分别为:

F(JMJ)= [XLXJ ? XZLBJ + JMJ (∑JDGJ) ]? GJ

F(FMJ)= [X

1 ZXJ ? X

1

ZLBJ + FMJ (∑FDGJ) ] ?1LQJ

上式中的XLXJ ? XZLBJ+ X

1ZXJ? X

1

ZLBJ分别表示下行进站信号开放、

开通下行正线进路,一道下行出站信号开放、开通下行一道直股发车进路,∑JDGJ代表接车进路内所有道岔区段和无岔区段的轨道继电器落下(AGJ、BGJ、CGJ)接通并联条件, GJ为DGJ,∑FDGJ代表发车进路内所有道岔区段和无岔区段的轨道继电器落下(EGJ、FGJ、GGJ、HGJ)接通并联条件。

由于采用逐段预先发码方式,虽然进直的接车进路或出直的发车进路

已具备发码的条件,JMJ↑或FMJ ↑,但发送盒能适时地并接到轨道区段,是由每个区段的传输继电器CJ 的动作来实现的。

正线进路内除股道外的所有轨道区段的CJ接通公式为:

F(nCJ) = JMJ ? ZGJ ? [)1

(n

GJ] ? GJ(n+1) ?

GJ? GJ (n ) +)

(-

n

GJ (n+2) ?…

F(nCJ) = FMJ ? ZGJ ? [)1

(n

GJ ] ? GJ(n+1)

GJ? GJ (n ) +)

(-

n

? GJ (n+2) ?…

对应本例, ZGJ接车时为DGJ,发车时为lLQJ。如n为AG时,则

F(ACJ) = JMJ ?DGJ ? [YGJ? AGJ+AGJ ] ? BGJ ? CGJ

为了防止电路相混,供电路的并联条件(YGJ? AGJ +AGJ)分别接通继电器的两个线圈,构成独立的供电支路,见图3 Array图3.预叠加电码化示意图

由接通公式可知,任一瞬间只有相邻的两个CJ吸起,例如列车驶入BG,此时BGJ的BGJ和CCJ的BGJ条件具备从而使BCJ和CCJ均↑吸起。而ACJ由于BGJ而切断供电电路↓落下。如使相邻的两个区段分别由不同的发送盒

发送,则既能保证相邻的轨道电路的送、受电端不相混,又能保证发送盒

任一瞬间只向一个区段发送,从而保证了入口电流和能正确选定发送盒应

有的最小发送功率要求。

1.2.2 侧线预叠加系统原理

由于这些区段的发码不需必备条件只需控制发码时机,故不设MJ仅设CJ,它们的接通公式为:

F(CJ) =CJ

正线股道由于考虑预先发码,故稍有变化,本例为DCJ:

F(DCJ) =DGJ + JMJ ?CGJ

图4.正线股道及到发线股道叠加电码化示意图

1.3 电码化工程设计的有关问题

1.3.1 系统设计原则

1.正线区段(包括无岔和道岔区段)为“逐段预先发码”,保证列车在正线区段行驶的全过程,地面电码化能不间断地发送机车信号信息。侧线区段为占用叠加发码。

2.自动闭塞区段正线接、发车进路的发码设备应采用冗余系统,侧线股道采用单套设备的占用叠加电码化。

3.半自动闭塞区段正线接、发车进路的发码设备应采用冗余系统,侧线股道采用单套设备的占用叠加电码化。接近区段可采用与电码化相应的自动闭塞轨道电路。

4.电码化发送设备载频设置:

国产移频发送设备:一般在下行方向为750 Hz,上行方向为650 Hz。

UM71、WG - 21A、ZPW - 2000发送设备载频设置:一般在下行方向为1700Hz,上行方向为2000 Hz。

5.接车进路、发车进路分别设置一套ZPW-2000系列(或UM71系列)发送设备。

6.为满足主体化机车信号和列车超速防护的需要,在非电化区段,入口电流也按电化区段统一标准,即1700 Hz、2000Hz、2300 Hz为500mA, 2600 Hz为450 mA。

7.在25 Hz相敏轨道电路既有器材不变的前提下,考虑了受电端

ZPW-2000系列(或 UM71系列)信号最大串入量后,电码化轨道电路在道碴电阻为1. 0 Ω? km,并安装补偿电容时极限长度可达1.2Km,入口电流能够满足机车信号接收灵敏度的要求。

8.改进480轨道电路送、受电端变压器,电码化轨道电路在道碴电阻为1.0Ω? km,并安装补偿电容时极限长度可达1. 2km,入口电流能够满足机车信号接收灵敏度的要求。

9.当同时发送25Hz (或50Hz)轨道电路信息、ZPW - 2000系列(或UM71系列)信息时,电缆内的合成电压不超过电缆允许的最高耐压500 V。

10.逐段预叠加发码时,任一瞬间每一路发送只接向一段电码化轨道电路,从而确保了入口电流值及发送不超负荷。各轨道电路虽采用并联接入的叠加发码方式,仍能确保彼此互不相混。

11. 25 Hz电码化轨道电路室外送、受电端BG

2- 130/25 (或BG

3

- 130 /

25)轨道变压器端子固定,只需送电端室内调整。不能采用R型铁芯的轨道

变压器。

12. 50 Hz交流连续式电码化轨道电路室外送电端BG

1

- 80轨道电源变压

器和受电端 BZ

1

-U轨道中继变压器端子固定,只需送电端室内调整。不能采

用R型铁芯的轨道变压器。

13.为实现叠加发码而采用的隔离设备,当出现铁路信号技术中规定的任何故障时,能确保ZPW---2000系列(或UM71系列)机车信号信息串入轨道继电器(包括JRJC

- 70/240 二元二位轨道继电器和JZXC-480轨道继电器)

1

两端电压,不使继电器错误励磁,故隔离设备故障后电码化信息不会使继电器错误励磁,即隔离设备具有“故障一安全”性能。

14.电码化轨道电路不降低原轨道电路的基本性能及自动化技术水平。

1.3.2 对电源及电缆的要求

供电电源

移频设备工作电源采用直流24V供电,电压波动范围23. 5V-24. 5V。

设备耗电量

发送器输出为1电平时,功耗为171. 5W。当发送器输出短路时功耗为257. 3W。发送器空载功耗为12. 3W。单线半自动区段接收正常工作时功耗为12.25W。

对电缆的要求

所用电缆均应采用线径为1.0mm具有星绞组对称综合纽绞电缆。非电化区段可采用塑料护套非屏蔽型电缆,电化区段必须采用屏蔽性能好的金属护套电缆。

相同载频的发送线对不准设在同一星绞组内;发送线对应设在星绞组的对角线对上。

1.采用送电端发码时,自继电器室内至室外送电端变压器箱间,需单独使用一对电缆芯线。

2.为防止移频串音干扰提供解决措施

(1)下列配线需使用屏蔽线:

①当发送盒与一离去区段的接收盒不在同架时,其载频或低频中继的

架间;

②发送盒的功放输出组合侧面端子与本架零层端子间;

③移频发送监测盒组合侧面端子与监测对象组合侧面端子间。

屏蔽线采用ZRVVP2 X 28 X O. 15型双芯对绞屏蔽线,屏蔽网皮需接地良好。

(2)下列配线需使用扭绞塑料线:

①发送盒的低频控制线与编码电路间;

②发送盒载频或低频中继本架组合间。

(3)下列两处采用PZY22型四芯组综合扭绞电缆:

①发送盒功放输出自移频架的零层端子至分线盘端子间;

②发送盒功放输出由分线盘至室外送、受电端变压器箱内端子间。

以上两处电缆,也可不在分线盘上断续,而直接由移频架的零层端子至室外送、受电端变压器箱间使用一根电缆。

电缆芯线使用四芯组成对(1-2、3-4)配线,同频不同发送盒发送不能采用同一四芯组电缆,电码化发送备用电缆芯线须按相同原则执行。室内外电缆在分线盘上对接时,应符合A、B端接续要求,铠装外皮应接地良好。

电码化备用芯线应采用星绞组线对。

第二章二线制电化区段25Hz

相敏轨道电路预叠加ZPW-2000电码化

2.1 设计说明

因为在不同的电路制式,不同的外部条件下(例如在电力牵引或非电力牵引区段) ,当技术要求相同时,其实施的电码化方式也可能不尽相同,另外轨道与电码化信息共用一对电缆芯线,便于工程实施,具体原理图如下:

图5 电化区段25Hz相敏轨道电路预叠加ZPW---2000A电码化原理图

2.2 设备构成

电化区段正线采用预叠加发码方式,股道采用叠加发码方式。电化区段电码化设备由无绝缘移频自动闭塞电码化发送柜,ZPW - 2000系列(或UM71系列)发送器,电码化发送检测盘,室内防雷单元,送、受电端室内、外隔离器,扼流变压器、轨道变压器(不应采用R型铁芯的轨道变压器)、HF

-

3 25型防护盒等构成。

2.2.1 NGL—U型室内隔离盒

1.用途

NGL-U室内隔离盒适用于ZPW-2000系列(或UM71系列)预叠加电码化接

口设备中,为室内送电端和受电端隔离设备通用的隔离盒,可适用移频1700Hz、2000Hz、2300Hz、2600Hz。

2、技术指标

(1)送电端25 Hz指标:

图6.

①测试接线: AT 8、18短接;AT 13、17短接, AT 5、15并接lk Ω负载。

②电气指标: AT 2、12输入220V25Hz ,其输出电压: I U 3、15----U 3、15|≤2V 。I U 2----U 25|≤2V 。 (2)受电端25H Z 指标:

图7

①测试接线: AT 8、18短接; AT 13、17短接, AT 2、12并接HF 2-25型防护盒、JRJC 1 -70 / 240 型继电器。

②电气指标:AT5、15输入25Hz 其输出电压: I U 5、15----U 2、12|≤0.3 (3) ZPW 一2000指标:

8.

AT8、18分别输入100 V,频率1700 Hz、2000 Hz、2300 Hz、2600 Hz时,

测试|U

2-U

12

| ≤10 V,频率接线见下表。

(4)使用仪表及器材

(5)绝缘电阻:≥ lOOM Ω 。 (6)绝缘耐压: 50Hz 1200V 。

(7)振幅频率: 10 Hz--- 55 Hz ,加速度幅值30m / S 2 (3g)。

2.2.2 WGL-U 型室外隔离盒

1.用途

WGL - U 室外隔离盒适用于ZPW - 2000系列(或UM71系列)预叠加电码化接口设备中,为室外送电端和受电端隔离设备通用的隔离盒。

2.技术指标 (1)送电端25Hz 指标: ①测试接线:

图9

②电气指标:端子Ⅰ1、Ⅰ2、输入220V 25Hz ,其输出电压: I U 7、8---U 5、6 I ≤ 2.5V , I U 1、 2---U 3、4 l ≤ 10V (2)受电端25Hz 指标 ①测试接线

:

图10.

②电气指标:端子Ⅰ7、Ⅰ8输入3V 25Hz ,其输出电压: I U 7、8----U 5、6 I ≤ 0.2V , I U I 、2-U 3、4 I ≤IV (3) ZPW-2000测试 ①测试接线:

图11

②电气指标:

空载测试:不接入lk Ω电阻时,当U Ⅰ输入100士IV 2000 Hz 时, U2=25士IV ,A ≤30mA 。

负载测试:在空载的基础上并入lk Ω电阻, U Ⅰ输入100士IV 2000Hz 时, U2≥24 V 。

2.2.3 DWG-F 室外隔离器

1.用途

DWG -F 室外隔离器材适用于25Hz

相敏轨道电路叠加移频电码化送电端。

防止移频信号干扰其它区段。主要用于送电端集中供电、受电端发码区段,在送电端防止移频进入。

2.技术指标

(1) 25Hz指标

①测试接线图

图12.

②电气指标:端子Ⅰ

1、Ⅰ

2

输入220V、25 Hz,其输出端子Ⅱ

1

、Ⅱ

2

的电压=220

士5V。

(2)移频指标:

①测试接线:

图13

②电气指标:

空载测试指标:断开电阻50 Ω,Ⅱ

1、Ⅱ

2

输入650Hz (或2000 Hz), 220V

士2V时,Ⅱ

1、Ⅱ

2

输出电压U2≤ 2V。

负载测试指标:接上电阻50Ω,Ⅱ

1、Ⅱ

2

输入650Hz (或2000H z), 220V

士2V时,Ⅱ

1、Ⅱ

2

输出电压U2≤IV。

2.2.4 DMT--2 5电码化隔离调整变压器

1.用途

BMT-25电码化隔离调整变压器用于电化区段25Hz相敏轨道电路预叠加ZPW2000系列〈或U M一71系列〉电码化接口设备中,放置在送电端室内隔离设备的托盘上,为25Hz轨道电路提供电源,并可在室内调整轨道电路。

2.技术指标

(1)额定功率: 80W,使用频率25Hz 。

(2)空载电压:

输入: Ⅱ

1、Ⅱ

2

输入25Hz 220 V。

输出: Ⅱ

1、Ⅱ

2

5--- 180V。

输出:输出电压范围士5%

(3)空载电流: Ⅰ

1-4

≤ 16mA。

(4)绝缘电阻:≥ 1000MΩ。

(5)绝缘耐压: 50Hz 2000 V。

(6)效率:η≥ 90%

2.2.5 HF3- 25型25Hz防护盒

1.用途

HF

3

- 25型防护盒主要用于铁路25Hz相敏轨道电路中,防护JRJC型轨道继电器,使其不受50 Hz牵引电流干扰;对25 Hz信号频率的无功分量进行补偿;减少25 Hz信号在传输中的衰耗和相移;保证JRJC型轨道继电器的正常工作,是站内电码化配套产品。

HF

3- 25型防护盒是HF

2

- 25更新换代产品,在HF

2

- 25型的基础上进行改

进的,增加可调端子,提高了性能,可通过调整三种谐振槽路获得更佳的防护性能和25 Hz信号相位角的改善。

2.技术指标

防护盒谐振于50Hz士1Hz,当1-3端子两端加50Hz 10V电压时,谐振电压U1、U2大于150 V,且Ul -U2 ≤3V。防护盒的品质因数Q值大于15 (Q=U Ⅰ/ 10)。

(1)测试接线见图

(2)电气指标:按图调节调压器TB使输出电压U=10V土O. 3V。分别连接2-6-7-8 端子、4-7-8端子、5-8端子,测试三种连接方式时U1、U2的谐振电压均符合技术指标,品质因数Q值大于15。

2.2.6 室内电码化轨道电路防雷

MGFL1- U室内电码化轨道防雷组合由20组NFL匹配单元组成(根据用户要求可分别选用国产或进口元器件),组装在一块绝缘板上。外部配线拧接在18柱端子正面,组合内部配线背面焊接。组合配线采用ZRV32XO.15阻燃塑料线。电化非电化通用。

2.2.7 电阻调整盒

送、受电端电阻调整盒(RTH-F、RTH-R用来调整每一个轨道区段的输出电码化电流,分别放置在送电端室内隔离组合和受电端室内隔离组合中。其中RTH放置3组可调电阻,RTH-R放置5组可调电阻。二线制电化区段25Hz 相敏轨道电路、二线制非电化区段25Hz相敏轨道电路、二线制非电化区段480轨道电路预叠加ZPW-2000电码化通用。

电阻调整表

铁路的信号—25Hz相敏轨道电路

25Hz相敏轨道电路 一、25Hz相敏轨道电路的制式特点 1、用25Hz电源作为轨道电路的信号源。具有频率稳定性,恒等于工频的一半。(25Hz=50Hz/2) 2、用25Hz交流二元二位轨道继电器。此继电器不仅有频率的选择性而且具有相位的选择性。它的相位选择性可以保证对绝缘节短路有可靠的检查。 3、轨道继电器有两个线圈即轨道、局部线圈(局部超前轨道90°)。抗干扰能力强。 二、25Hz相敏轨道电路的组成 1、JRJC-70/240二元二位继电器 1)结构:该继电器轨道线圈的直流电阻为70欧,局部线圈的直流电阻为240欧。继电器包括带轴翼板、局部线圈、轨道线圈和接点组。

2)特点:具有可靠的相位和频率选择性。 3)动作原理:二元二位继电器属于交流感应式继电器,是根据电磁铁所建立的交变磁场与金属转子中感应电流之间相互作用的原理而动作的。 2、HF-25防护盒 1)结构:由0.845H 的电感和12μ的电容串接而成。电容为3×4μ +1μ 。防护盒并接在轨道线圈上。25Hz 时,它相当于16μ的电容,50Hz 时,它相当于20Ω的电阻。 2)作用:对25Hz 的信号电流起着减少轨道电路传输衰耗和相移的作用。对50Hz 的干扰电流,起着减少轨道线圈上干扰电压的作用。 3)防护盒故障情况 4 )HF DJ3 -25接线图 N1 PC 监测 N2 采样信号 隔离变压器 低通滤波 触发鉴别 逻辑判断 驱动控制 当采样电压高于11V 或14V 时,执行继电器落下,局部电源正常工作;当采样电压低于 11V 或14V 时,执行继电器吸起,切断局部电源,迫使二元二位继电器落下。

ZPW-2000电码化调整标准、方法介绍

ZPW-2000电码化调整标准、方法介绍 一、技术标准 1、二元二位轨道继电器:北京全路通信信号研究设计院“ZPW-2000 系列站内电码化预发码技术”介绍:轨道继电器电压:15~18V有效值,调整电压18~26V。据有的电务段介绍:调整状态时,轨道继电器线圈上的有效电压应不小于18V。结合《维规》调整表对于电压参考范围:股道:18~21V;小于200m的无岔区段:15.5~18V;一送多受道岔区段:16~18V最大不超过20V。(相关电务段有要求的按电务段有要求调) 2、残压。用0.06Ω标准分路线在轨道送受端分路时,轨道继电器残压≤7.4v。 3、轨道电路的限流电阻: (1)送电端限流电阻(Rx): 一送一受区段,送受均设扼流变压器:Rx=4.4Ω 一送一受区段,送受均无扼流变压器:Rx=0.9Ω 一送多受道岔区段,送受均设扼流变压器:Rx=4.4Ω 一送多受道岔区段,送受均无扼流变压器:Rx=1.6Ω (2)受电端限流电阻(Rs):一送多受道岔区段设扼流变压器时用:Rs=4.4Ω,无扼流变压器的区段不用限流电阻。

4、入口电流:在电码化轨道区段,于机车入口端用0.15Ω标准分路线分路时的短路电流,1700Hz、2000Hz、2300Hz不小于500ma,2600Hz不小于450ma。 5、轨道电路长度大于350m时,应设补偿电容。 载频1700Hz、2000Hz补偿电容容量80uf,载频2300Hz、2600Hz 补偿电容容量60uf。补偿电容间距为100m,均匀设置, 补偿电容设置:以股道长度1010m 为例,电容个数11个,等距离长度△=L/Nc=1010/11=92m ,股道两头△/2=46m 。 二、 25Hz相敏轨道电路调整 一)室外轨道变压器采用 BG2-130/25: 1、变压器和钢轨间有扼流变压器,送、受电端变压器一、二次侧输出电压固定在一定电压档: 一次侧使用Ⅰ1、Ⅰ4连接Ⅰ2、Ⅰ3(220V档), 二次侧使用Ⅲ1、Ⅲ3 (15.84V档)。 在室内对调整变压器输出电压进行调整,保证GJ正常工作。 2、变压器和钢轨间无扼流变压器,受电端变压器一、二次侧输出电压固定在一定电压档:一次侧使用Ⅰ1、Ⅰ4连接Ⅰ2 、Ⅰ3(220V档),二次侧使用Ⅲ1、Ⅱ3 连接Ⅱ4、Ⅲ2(4.4V档)。 送电端输出调整按照区段类型的长度编制调整表,再根据调整表连接调试送电端输出电压,保证 GJ 正常工作。 三、电码化轨道区段室内调整:

25Hz相敏轨道电路预叠加ZPW-2000A站内电码化

25H z相敏轨道电路预叠加Z P W-2000A站内电码化摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段25HZ相敏轨道电路预叠加ZPW-2000A 电码化系统进行阐述。 关键词:电码化、轨道电路、预叠加 在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要的作用。 随着铁路跨越式发展的不断深入,列车运行速度越来越快,提速区段越来越多,提速区段对机车信号有了更高的要求。为确保机车信号的正确显示,与之配套的地面信号设备需要进行改造。 在自动闭塞区段,区间设备通常采用ZPW-2000A无绝缘轨道电路。而站内轨道电路采用交流连续式轨道电路、25Hz 相敏轨道电路。机车在区间和站内运行,需要接收相应的地面信息,保证列车运行安全。为了使机车信号不间断地接收站内与区间的信息,站内正线上的各个轨道电路区段和侧线股道,均应实现电码化。 1 相关术语 电码化:由轨道电路转发或叠加机车信号信息技术的总称。 车站股道电码化:车站内到发线的股道及正线实施的电码化。 车站接发车进路电码化:车站内按列车进路实施的电码化。 预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也实施的电码化。 2 实施车站闭环电码化的范围 列车占用的股道区段; 经道岔直向的接车进路,为该进路中的所有区段; 半自动闭塞区段,包括进站信号机的接近区段; 自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。 3 电码化主要设备 (1)ZPW-2000A电码化发送设备:载频为1700Hz、2000Hz、2300Hz、2600Hz。 (2)ZPW-2000系列闭环电码化调制频率为10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、

24-站内轨道电路电码化

第24讲站内轨道电路电码化 一、系统功能描述 1)为主体化机车信号提供安全信息传输设备。 2)地对车安全信息传输设备是实现主体化机车信号的关键设备,设备除满足信 息传输的功能需求外,还必须符合信号故障-安全的设计原则,达到可靠性、可用性和稳定性。 3)实现监测、故障报警的功能。 4)系统设置维护终端,可实现对系统设备状态的监测、故障报警功能。根据需 要,还可为集中监测系统提供必要的监测信息。 二、主要工作原理 采用冗余的电码化控制系统,实时监测电码化的完好,不影响站内轨道电路正常工作。为机车信号设备提供安全可靠的地面信息。 集中检测维护机:监测各模块或单元板的故障,故障记录,站内报警,构成局域网,向远端维护站工区,段站传送数据。 三、术语和定义 1)电码化:由轨道电路转发或叠加机车信号信息技术的总称。 2)车站股道电码化:车站内到发线的股道及正线实施的电码化。 3)车站接发车进路电码化:车站内按列车进路实施的电码化。 4)预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也 实施的电码化。 5)闭环电码化:具有闭环检查功能的电码化。 6)电码化轨道电路:具有轨道电路和电码化双重功能的轨道电路。 7)入口电流:机车第一轮对进入轨道区段时,钢轨内传输机车信号信息的电流。 8)出口电流:机车在电码化轨道电路发送端短路时,钢轨内传输机车信号信息 的电流。 9)机车信号钢轨最小短路电流值:地面信号设备发送的机车信号信息被列车轮 对短路时的最小电流值。 10)机车信号灵敏度:使机车信号设备工作(稳定译码)的最小的钢轨短路电流 值。 11)机车信号应变时间:车载信号设备从钢轨线路接收到机车信号新信息开始, 到给出相应机车信号显示所需要的时间。 12)机车信号邻线干扰:相邻线路上的机车信号信息对本线机车信号设备的干 扰。 13)机车信号信息:由地面向机车上传递反映线路空闲与进路状况的信息。

四线制ZPW-2000站内及闭环电码化应用分析

第一章基本原理概述 1.1 站内电码化的概念 列车在区间运行时,机车信号都能不间断地反映地面信号机的显示状态。当列车通过车站时,机车信号将无法正常工作。为了使机车通过站内时机车信号不间断地工作,就必须对站内轨道电路实施电码化,即站内到发线及正线上的轨道电路能够传输根据列车运行前方信号机的显示所编制的各种信息。 站内电码化设备的主要任务是保证机车信号在站内正线上能够连续显示,在站内到发线也能够显示地面信号信息。 站内电码化设备在列车进入站内正线或到发线股道后,按照列车接近的地面信号显示,通过轨道电路向列车发送信息,在列车出清该区段后,恢复站内轨道电路的正常工作。 1.2 站内电码化的分类 目前国内轨道电路电码化大致分为四类:切换式、叠加式、预发码式、闭环式站内电码化。在设计电码化时,可根据轨道电路制式及运营需要,确定实施何种类型的电码化。 所谓“切换式”,即钢轨通过发码的接点条件,平时固定接向轨道电路设备,当需要向轨道发码时,切换到发码设备,轨道电路设备停止工作;当发码结束后,自动转接到轨道电路设备,恢复正常轨道电路状态。 当列车以较高速度通过站内较短的轨道电路区段时,由于传输继电器有0.6s的落下时间,因此经常造成“掉码”,使机车信号不能连续工作,不利于行车安全。因此又出现了叠加方式的站内电码化,即当发码条件构成后,将移频轨道电路叠加在原轨道电路上,两种类型的轨道电路由隔离器隔离而互不影响。

机车信号连续显示的要求,所以站内正线采用预发码方式,即当列车压入前方区段本区段即向轨道发送信息。 为了及早发现和解决电码化电路存在的问题,保证电码化电路的完整性,需要对电码化电路实行闭环检查,即采用闭环电码化。 1.3 站内电码化的范围及技术要求 1.3.1 经道岔直向的接车进路和自动闭塞区段经道岔直向的发车进路中的所有轨道电路区段、经道岔侧向的接车进路中的股道区段,应实施股道电码化。 1.3.2 在最不利条件下,入口电流应满足机车信号可靠工作的要求。 1.3.3 在最不利条件下,出口电流不损坏电码化轨道电路设备。 1.3.4 已发码的区段,当区段空闲后,轨道电路应能自动恢复到调整状态。 1.3.5 列车冒进信号时,其占用的所有咽喉区段不应发码。 1.3.6 与电码化轨道电路相邻的非电码化区段,应采取绝缘破损防护措施,当绝缘破损时不导向危险侧。 1.3.7 电码化应采取机车信号邻线干扰防护措施。 1.3.8 机车信号机显示除按《铁路技术管理规程》执行外,还应满足TB/T3060《机车信号信息定义及分配》的规定。 1.4 切换式站内电码化电路的特点 轨道电路的送、受电端的电缆都引到车站机械室,发码传输继电器全部设在机械室里,便于维修。一般小站继电集中轨道电路送电端电缆都使用共用干线电缆,当采用送电端发码时传输继电器放在室外采取就地控制。 电路中没有使用第一离去和第二离去表示继电器的条件。因为电路中的离去条件,是用离去区段的轨道继电器XLQGJ的接点,通过电缆控制车站机械室中一个反复示继电器XLQGCJ,再由XLQGCJ控制译码器,这样就将

铁路信号—Hz相敏轨道电路

25Hz 相敏轨道电路 一、25Hz 相敏轨道电路的制式特点 1、用25Hz 电源作为轨道电路的信号源。具有频率稳定性,恒等于工频的一半。(25Hz=50Hz/2) 2、用25Hz 交流二元二位轨道继电器。此继电器不仅有频率的选择性而且具有相位的选择性。它的相位选择性可以保证对绝缘节短路有可靠的检查。 3、轨道继电器有两个线圈即轨道、局部线圈(局部超前轨道90°)。抗干扰能力强。 二、25Hz 相敏轨道电路的组成 防护盒并接在轨道线圈上。25Hz 时,它相当于16μ的电容,50Hz 时,它相当于20Ω的电阻。 2)作用:对25Hz 对50Hz 3)防护盒故障情况

4)HF DJ3-25接线图 三、25Hz 轨道变压器降压后(5V3/1 1/3变压后,送给受端轨道变压器,经升压后送回室内JRJC-70/240继电器3-4线圈。室内常供局部电源110V送至JRJC-70/240继电器1-2线圈。当轨道电压值(15)满足继电器吸起值,并且轨道电压与局部电压相位差满足要求(90°)后,二元二位继电器吸起。 JRJC二元二位继电器局部并联电容C:JRJC二元二位继电器局部线圈耗电8.8VA,设计并联电容C来补偿其无功电流,使并联后的总电流达到最小值,从而减少继电器局部线圈消耗功率。实际证明,每个局部线圈并联1цf效果最佳,使每个线圈消耗的功率从8.8VA降为5.5-7VA,也改善了局部变频器的工作条件。 四、25Hz相敏轨道电路极性交叉及相位测试 1、极性交叉的检查测试 双扼流区段: 2V3大于V1 2V3大于V2 同时成立有交叉。 2、相位测试: 如果A否则表针停在 N1 PC监测 N2 JRJC-70/2 采样信隔离变压 低通滤触发鉴 逻辑判驱动控 当采样电压高于11V或 14V时,执行继电器落 下,局部电源正常工作; 当采样电压低于11V或 14V时,执行继电器吸 起,切断局部电源,迫 V3 V3

站内轨道电路及25Hz相敏轨道电路预叠加ZPW一A电码化

站内轨道电路及25Hz 相敏轨道电路 预叠加ZPW一2000A电码化 站内轨道电路预叠加ZPW一2000A电码化 一、叠加 在交流电气化牵引区段,通常采用与25Hz相敏轨道电路“叠加”移频机车信号信息的电码化方式。所谓“叠加”即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在。传输继电器的作用是在发码时机到来之际,将发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息。 二、预叠加 随着铁路运输的发展,提速区段对机车信号和超速防护有了更高的需求(即在发码区段内,保证机车信号在时间和空间上二均连续)。目前的“切换和叠加”电码化技术已不满足提速要求,必须在原有电码化“叠加发码”方式的基础上进行改进,采用“叠加预发码”方式,才能保证列车接收地面信息在“时间和空间”上的连续。“预”就是在列车占用某一区段时,其列车运行前方,与本区段相邻的下一个区段也开始发码。 三、预叠加原理 电码化系统的设计原则为:正线区段(包括无岔和道岔区段)为“逐段预先发码(简称:“预叠加”)”,保证列车在正线区段行驶的全过程,地面电码化能不间断地发送机车信号。侧线区段为占用发码叠加发码。

我们以下行正线接发车为例(站场示意见图LC9-3),略述正线区段逐 段预先发码的应用原理。接车进路、发车进路ZPW--2000A电码化发送设备采用“N+l”冗余方式设计。图l中粗线表示的是站内电码化范围。与 下行电码化方向相对应,迎着列车行驶方向进行发码,进路内每一轨道区段均设置一台传输继电器CJ。发送的I 、Ⅱ路输出分别与相邻轨道区段的CJ相连,即I路输出若连A、C、E.G区段的C J,Ⅱ路输出则连 B、D、F、H区段的CJ. (1)列车进入YG区段时,接车进路已排通,即正线继电器ZXJ↑,进站信号开放,LXJ↑,则接车电码化继电器JMJ↑。直到列车进入D股道, DGJF↓,切断JMJ的KZ电源,JMJ才落下,表明接车电码化已结束。

25Hz相敏轨道电路预叠加ZPW 2000A站内电码化资料

25Hz相敏轨道电路预叠加ZPW-2000A站内电码化 摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段25HZ相敏轨道电路预叠加ZPW-2000A 电码化系统进行阐述。 关键词:电码化、轨道电路、预叠加 在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要的作用。 随着铁路跨越式发展的不断深入,列车运行速度越来越快,提速区段越来越多,提速区段对机车信号有了更高的要求。为确保机车信号的正确显示,与之配套的地面信号设备需要进行改造。 在自动闭塞区段,区间设备通常采用ZPW-2000A无绝缘轨道电路。而站内轨道电路采用交流连续式轨道电路、25Hz 相敏轨道电路。机车在区间和站内运行,需要接收相应的地面信息,保证列车运行安全。为了使机车信号不间断地接收站内与区间的信息,站内正线上的各个轨道电路区段和侧线股道,均应实现电码化。 1 相关术语 电码化:由轨道电路转发或叠加机车信号信息技术的总称。 车站股道电码化:车站内到发线的股道及正线实施的电码化。 车站接发车进路电码化:车站内按列车进路实施的电码化。 预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也实施的电码化。 2 实施车站闭环电码化的范围 列车占用的股道区段; 经道岔直向的接车进路,为该进路中的所有区段; 半自动闭塞区段,包括进站信号机的接近区段; 自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。 3 电码化主要设备 (1)ZPW-2000A电码化发送设备:载频为1700Hz、2000Hz、2300Hz、2600Hz。(2)ZPW-2000系列闭环电码化调制频率为10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、29Hz。 (3)机车信号信息的定义 L3 准许列车按规定速度运行,表示运行前方5个及以上闭塞分区空闲。 L2 准许列车按规定速度运行,表示运行前方4个及以上闭塞分区空闲。 L 准许列车按规定速度运行。 LU 准许列车按规定速度注意运行。 LU2 要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示一个黄色灯光。

叠加方式站内轨道电路电码化

叠加方式站内轨道电路电码化

目录 第一章综述 (3) 第一节实施电码化技术的必要性 (4) 一、轨道电路必须实行电码化 (4) 二、常用的站内轨道电路必须实行电码化 (4) 三、电码化是防“冒进”的需要 (5) 第二节电码化技术的发展 (6) 一、叠加移频电码化 (6) 二、车站接、发车进路电码化 (7) 三、预叠加移频电码化 (9) 四、闭环电码化 (10) 第二章电码化叠加预发码技术 (11) 第一节实施叠加预发码技术的原因 (11) 一、采用预发码的原因 (11) 二、预叠加电码化的作用及主要特点 (12) 三、系统设计原则及技术要求 (13) 第二节预叠加电码化控制电路 (14) 一、预叠加电码化原理 (14) 二、正线区段控制电路 (14) 三、正线股道和到发线股道区段 (16) 四、电码化电路设计举例 (16) 第三节关于空间连续 (21) 一、绝缘节空间连续的处理 (21) 二、道岔跳线和弯股跳线设置 (23) 第四节工程设计 (23) 一、站内发送频率的选择 (23) 二、电码化电缆及配线的选择 (24) 三、电码化设备的使用环境 (24) 四、隔离设备的使用 (25) 五、电码化配套设备的使用 (25) 六、非电气化牵引区段移频电码化 (25) 七、电气化牵引区段移频电码化 (27) 第五节电码化码序编制原则 (30) 一、制定码序标准的必要性 (30) 二、编制原则 (30) 三、电码化码序的编制 (33) 第三章ZPW-2000(UM)系列 (41) 预叠加电码化系统 (41) 第一节系统类型和设计原则 (41) 一、简介 (41) 二、系统设计原则 (42) 第二节电码化补偿电容设置原则 (43) 一、补偿电容结构特征和技术指标 (43) 二、设置方法 (43) 三、举例计算 (44) 四、补偿电容设置参考表(表4-2) (45)

站内叠加电码化

站内25HZ相敏轨道电路预叠加ZPW-2000A电码化 预叠加电码化的范围 自动闭塞区段 1、正线 正线正方向:电码化范围包括正线接车进路和正线发车进路 正线反方向:电码化范围仅为反方向正线接车进路。 2、侧线 侧线电码化范围仅为股道占用发码。 半自动闭塞区段 站内电码化范围:正线接车进路。侧线接车时电码化范围仅为股道。 二、发送器发送范围 复线自动闭塞站内电码化正线发送器发码范围为XJM下行正线接车进路、XFM下行正线发车进路、SJM上行正线接车进路、SFM上行正线发车进路、XFJM下行反向正线接车进路、SFJM上行反向正线接车进路。侧线股道发送器上下行方向各设一个发送器每一股道设置使用两个发送器。 下行I道接车时,XJM发送器移频信息经过FTU1-U匹配单元后分两路、分别向IAG、1DG、7DG、IG发送移频信息。 下行I道发车时,XFM发送器经过FTU1-U匹配单元后分两路别向4DG、2-8DG、IBG 发送移频信息。 电码化发码简图 (三)电码化电路原理 1、下行接车电码化电路 当下行I道接车时,下行接车进路X进站信号开放XLXJ↑ XZXJ↑开通正线XJMJ↑列车进入三接近时X3JGJ↓---1AG的GCJ↑后1AG预先发码,当列车进入1AG时1DG的GCJ↑后1DG预先发码,当列车进入1DG时7DG的GCJ↑后7DG预先发码的同时断开1AG的GCJ电路并停止向1AG发码…………当列车占用本区段的接近区段时本区段预先发码当列车进入本区段时下一区段预先发码,并停止接近区段发码复原接近区段发码电路。当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原状。 X行接车正线发车正线示意图 2、下行发车电码化电路 当下行一道发车X1开放出站信号时X1LXJ↑.列车占用1道1GJ↓..XFMJ↑--4DG的GCJ↑后4DG预先发码,当列车出发进入4DG时2-8DG的GCJ↑后2-8DG预先发码, 当列车进入2-8DG时1BG的GCJ↑后1BG预先发码的同时断开4DG的GCJ电路并停止向4DG发码。当列车出清最后一个区段1BG时XFMJ以及进路上所有的GCJ恢复原状。 3、上行反方向接车电码化电路 当上行反方向一道正线接车时,开放SF进站信号SFLXJ↑ SFZXJ↑开通正线SFJMJ↑-同时使SFGPJ↑--SFJM发送器的载频频率改变为1700-1列车进入X1LQ时1LQJ↓---1BG的GCJ↑后1BG预先发码,当列车进入1BG时2-8DG的GCJ↑后2-8DG预先发码,当列车进入2-8DG时4DG的GCJ↑后4DG预先发码的同时断开1BG的GCJ电路并停止向1BG发码。…………当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原

站内电码化

站内电码化 第一节综述 ?一、实施电码化技术的必要性 ?二、电码化技术条件 ?三、电码化技术的发展 一、实施电码化技术的必要性 二、电码化技术条件 电码化适用范围 三、电码化技术的发展 ⒈交流连续式轨道电路(简称480轨道电路) 到1988年前,电码化技术仅仅实施于车站内的正线列车进路,而车站站线列车进路未实施该技术。而且,在有双进、双出口的车站和有弯进直出或直进弯出的车站,其正线接车进路也未实施电码化技术。 ⒈固定切换电码化 1988年以前采用的占用固定切换发码方式,即原交流连续式轨道电路移频电码化(过去谓之的“站内正线移频化”) ⑴将原本为自动化的轨道电路因实施电码化的缘故而降低到半自动化,从而也降低了车站电气集中的技术水平,并且在控制台上需增设故障表示灯和复原按钮。甚至有时因忙乱或判断不清,车站值班员没有及时按压复原按钮而影响接发列车。 ⑴脉动切换电码化的提出 ⑴脉动切换电码化的优点 ⑵脉动切换电码化3种类型 ⑷叠加式电码化类型

⑵实施情况 ⑵预叠加移频电码化类型 ⑵闭环电码化类型 第二节电码化叠加预发码技术 一、实施叠加预发码技术的原因 二、预叠加电码化控制电路 三、关于空间连续 四、工程设计 一、实施叠加预发码技术的原因 切换发码技术存在的问题 采用预发码的原因 系统设计原则及技术要求 二、预叠加电码化控制电路 预叠加电码化原理 二、预叠加电码化控制电路 正线区段控制电路 正线股道和到发线股道区段 电码化电路设计举例 ⑴控制电路 ⑵转换开关电路 ⑵发码电路 绝缘节空间连续的处理

道岔跳线和弯股跳线设置 四、工程设计 站内发送频率的选择 电码化电缆及配线的选择 电码化设备的使用 第三节8、18、多信息移频叠加预发码 一、非电气化区段480预叠加移频电码化 二、电气化区段25 Hz预叠加移频电码化 三、轨道电路集中供电预叠加电码化 四、电码化设备开通与维护 一、非电气化区段480预叠加移频电码化 二、电气化区段25 Hz预叠加移频电码化 三、轨道电路集中供电预叠加电码化 四、电码化设备开通与维护 站内电码化设备在投入运用前要进行一次全面、系统的开通试验,以保证设备稳定、可靠地工作。 第四节ZPW-2000(UM)系列预叠加电码化 一、系统类型和设计原则 二、电码化补偿电容设置原则 三、主要设备 四、开通与维护 一、系统类型和设计原则 ZPW-2000(UM系列)系列站内电码化预发码技术及配套器材的内容,其中包括:非电气化牵引区段交流连续式轨道电路(480轨道电路)及25 Hz相敏轨道电路叠加ZPW-2000(或UM)系列移频预发码技术;电气化牵引区段25 Hz相敏轨道电路叠加ZPW-2000(UM)系列移频预发码技术。ZPW-2000(UM)系列预叠加电码化主要包括以下六种类型: 一、系统类型和设计原则 二线制电气化区段25 Hz相敏轨道电路预叠加ZPW-2000(UM)系列。 二线制非电气化区段25 Hz相敏轨道电路预叠加ZPW-2000(UM)系列。 二线制非电气化区段480轨道电路预叠加ZPW-2000(UM)系列。 四线制电气化区段25 Hz相敏轨道电路预叠加ZPW-2000(UM)系列。 四线制非电气化区段25 Hz相敏轨道电路预叠加ZPW-2000(UM)系列。 四线制非电气化区段480轨道电路预叠加ZPW-2000(UM)系列。 二、电码化补偿电容设置原则

【铁道信号】25HZ轨道电路叠加电码化的设计

25HZ轨道电路叠加电码化的设计 第一章系统简介 根据铁路运输需要,为满足机车在站内能通过轨道接收到移频机车信号信息的要求,站内轨道电路必须实施电码化。 非电气化牵引区段国内的站内一般采用50Hz交流连续式轨道电路(因其轨道继电器为JZXC-480型,习惯简称为480轨道电路)。电气化牵引区段国铁的站内一般采用97型25HZ相敏轨道电路,而且要求正线电码化在列车行驶过程中,要确保连续性,即不得有瞬间中断。侧线电码化为占用发码方式的叠加电码化。 自1988年,在全路推行车站股道电码化工作中,电码化专题组曾按部科技司下达的科研任务的要求,研制了多种轨道电路的多种机车信号电码化,并在全路已推广数千车站。但因当时没有提出适应超速防护装置的需要,即对发码连续性的要求,故该制式是只在满足列车运行速度100km/h 以下时,保证机车信号稳定工作的前提下,同时解决轨道电路的自动恢复问题,故而采用了脉动切换和叠加的发码方式,但不符合铁路提速后电码化的要求。 由于列车运行速度的提高,其制动更加困难,冒进信号的可能性比现在更大。而现有的向机车信号或超防设备提供信息的电码化技术和设备己不能满足提速列车的要求,因此,实施适应在提速区段使用的预叠加电码化技术和设备势在必行。 正线区段电码化在时间上不允许有中断时间,原来车站股道电码化的叠加发码方式必须改为“预先发码”的方式,即列车占用前一个区段时,

本区段就应预先发码。列车占用正线区段内任一区段时,其前方(指列车前进方向)区段应预先发码,彻底消除了中断时间。 采用逐段预先发码的叠加方式,不难看出:任一瞬间均有两个区段在发码,即发送盒的输出端子接向轨道,而叠加发码时轨道电路的送、受电端与电码化发送线是并联的,这就造成相邻两个区段送、受电端也相连,即我们俗称的“相混”,这当然是不允许的,必须予以克服。 发码方式为叠加发码,发码和轨道电路送、受电端是并接的,由此引起轨道电路附加支路的衰耗。由于改变了轨道电路的调整和分路性能,其极限长度能否达到1200m,是必须加以确认的技术问题。电码化轨道电路在机车信号入口电流和轨道电路的调整和分路两方面均应满足各自的技术要求。 由于必须采用预叠加发码方式,这就要求接口设备中的隔离元件具有“故障------安全”性能,当隔离元件出现故障时,串入到并接轨道继电器的电流或电压均不得使之误动。 1.1 电码化技术的发展 在1994年“京九”工程站内正线采用预叠加18信息移频电码化、到发线股道采用叠加18信息移频电码化。1995年通过铁道部技术鉴定,系统器材设计合理,具有“故障-----安全”保证。几年来运用效果良好,特别是上层逻辑控制电路为今后各类预叠加电码化的控制电路广泛采用,成为一种标准电路。 1.1.1 切换与叠加 以往对轨道电路实施电码化一般分为叠加方式电码化和非叠加方式电码化两类。在非电气化牵引区段的站内,通常采用交流连续式轨道电路(俗称480轨道电路)。发送电码化信息的方式一般采用非叠加方式(如采用切换方式)所谓“切换”即电码化发码接点条件在轨道电路电码化过程中,

铁路信号设备

绪论 一、铁路信号设备的地位是组织指挥列车运行,保证行车安全,提高运输效率,传递信息,改善行车人员劳动条件的关键设施。铁路信号的基础设备:信号继电器、信号机、轨道电路、转辙机等。 1、信号继电器是铁路信号中所用各类继电器的统称。安全型继电器是信号继电器的主要定型产品,采用24V 直流系列的重弹力式直流电磁继电器,其基本结构是无极继电器。电磁原理使其吸合,依靠重力使其复原。利用其接点控制相应的电路。在无极继电器的基础上,派生出了加强接点继电器、整流式继电器、有极继电器、偏极继电器和单闭磁继电器等以满足电路的不同要求。采用插入式结构,便于更换。交流二元二位继电器是交流感应式继电器,因其具有可靠的频率和相位选择性,在25HZ相敏轨道电路中用做轨道继电器。动态继电器是双机热备计算机联锁的接口部件。 2、信号机和信号表示器构成信号显示,用来指示列车运行和调车作业的命令。在列车提速的情况下,迫切需要将机车信号主体化,其显示方式也逐步实现数字化。 3、轨道电路用来监督列车对轨道的占用和传递行车信息。站内采用25HZ反映列车占用情况。移频轨道电路是移频自动闭塞的基础,通过它发送各种行车信息。分为有绝缘和无绝缘两种。无绝缘又为谐振、衰耗式,还要研发数字编码轨道电路,以满足列车运行超速防护的需要。轨道电路有调整状态、分路状态和断轨状态三种最基本的工作状态,其基本参数有道岔电阻、钢轨阻抗等。 4、转辙机用于完成道岔的转换和锁闭,是关系行车安全的最关键设备。内锁闭方式的ZD6系列,外锁闭方式的S700K。 二、铁路信号控制设备易遭雷击,造成设备的损坏或误动,严重影响运输生产,对信号设备必须采取必要的防雷措施。凡与外线连接的信号设备必须设防雷装置。同时还需要设置防雷地线、安全地线、屏蔽地线。

ZPW—2000R移频自动闭塞及站内电码化调试方法

ZPW—2000R移频自动闭塞及站内电码化调试方法 摘要:随着我国社会的进步和经济的发展,我国的交通运输业也得到了长足的 发展。我国的交通运输主要是依靠铁路、飞机、汽车三种不同的交通形势来进行的。其中铁路在我国的交通运输方式当中应用的最早,并且目前的覆盖率也最高,可以说铁路已经成为我国长途运输中最为常用的一种交通运输方式。铁路的经济 性能良好,在三种不同交通运输工具当中铁路的运输成本是最低的,并且在效率 和稳定性方面都有着不错的表现。我国铁路技术的发展很快,并且对于一些先进 设备的引入也是不遗余力的,对于设备的应用也是比较迅速的,不过在ZPW—2000R一拼自动闭塞及站内电码化调试方面始终还有着一定的问题。 关键词:移频自动闭塞站内电码调试方法 我国的铁路普,线路总长度是世界第一的。而我国的火车之多也是世所罕见的,作为我 国最重要的交通工具之一,火车在我国各个城市和乡村的站点数量已经达到了一个惊人的数量,这样一个数量对其进行调度工作室极为困难和复杂的,尽管调度工作是分为各个不同区 域的并非同一调度,因此更加灵活但是其调度难度也相当之高。而ZPW-2000R无绝缘移频自 动闭塞是辅助调度来进行地面线路行车许可信息、实现列车占用检查的设备,其是否可以平 稳安全的运行直接影响到调度的效率及火车的安全性,因此它是非常重要的。但是目前我国 对于ZPW—2000R移频自动闭塞及站内电码化调试方法研究的还不够透彻,造成了许多不必 要的麻烦,今天笔者就通过本文和大家来谈一谈关于ZPW—2000R移频自动闭塞及站内电码 化的调试方法。 1、ZPW—2000R移频自动闭塞及站内电码化系统的作用 ZPW—2000R移频自动闭塞及站内电码化系统其本身是由我国从法国引进而来的,该系统 是为了我国的高铁建设而引进的,它可以在最大程度上对我国铁路运输的高效、高速、高安 全性进行保障。ZPW—2000R移频自动闭塞及站内电码化系统是一套在国际上也处在优势地 位的先进的列车运行指挥系统,其不仅具有着其他列车运行指挥系统所具备的优点,还可以 实现对整个列车行驶过程中的电气折断进行检查,以防止各类因为电气原因引起的安全事故,并且其对于分路死区的检查精确到了5M。这样的精确度使得由于分路死区所引发的事故率 大大降低。可以说我国高铁能够得以快速的建设和安全平稳的运行都与ZPW—2000R移频自 动闭塞及站内电码化系统有着密不可分的关系,因此对于我国高铁运营部门而言对ZPW—2000R移频自动闭塞及站内电码化系统进行调试使其功能更加稳定和精确是目前我国铁路部 门的当务之急。 2、调试实施方案 对ZPW—2000R移频自动闭塞及站内电码化系统的调试工作,我们主要从设备调试程序、设备调试内容、站内电码化调试、信号机单点实验、室内室外设备单点实验及整体排空实验。下面我们来具体介绍一些这些调试的内容。 2.1 设备调试程序 对于ZPW—2000R移频自动闭塞站内电码化系统的调试工作而言,其是具有一定程序的,并不是调试人员自己想当然地制定调试程序而是应当按照一定规律从始至终地进行调试的。 首先我们要做的是对站内电码化进行调试工作,这个调试包括了对轨道区段的模拟盘制作、 测试发送数据和连锁实验。在完成了这些工作之后我们就要对室内室外的设备进行单点实验,这种实验主要包括了对室内设备的模拟实验及对室外设备的检查校对和审核、室外信号机单 送电实验、室外设备与室内设备之间连接的实验并且最终要将相关的数据进行测试。调试程 序的最后一步就是整体排空试验,这个实验的最主要目的是为了对新连接在设备组中的设备 进行整体调试并且要对新设备进行数据测验。 2.2 设备调试内容 首先设备调试的内容其要比设备调试的程序更加具体。室外设施调试主要是对设施的可 靠性进行测验之后进行必要的调试,其主要的内容有通道的导通,及各类室外设备的校对和 核查保证设备正处在正常运行状态,接下来则是各类设备的单送电实验,这时为了保证每一

站内轨道电码化

=、第六章 站内轨道电路电码化 为了保证行车安全和提高运输效率,使机车信号和列控车载设备在站0内能连续不断地接收到地面信号而不间断显示,需在站内原轨道电路的基础上进行电码化。站内轨道电路电码化是机车信号系统和列控系统不可缺的地面发送设备。 第一节站内轨道电路电码化概述 一、站内轨道电路电码化 所谓站内轨道电路电码化,指的是非电码化的轨道电路在采取一定的技术措施后能根据运行前方信号机的显示发送各种电码。对于移频制式,电码化就是移频化。 我国铁路站内轨道电路通常采用25Hz相敏轨道电路或交流连续式轨道电路(480轨道电路),它们只有占用检查的功能,既只能检查本区段是否有车占用或空闲,不能向机车信号车载设备传递任何信息。如果站内轨道电路不进行电码化,列车在站内运行时机车信号将中断工作,无法保证行车安全。 二、站内轨道电路电码化范围 站内轨道电路电码化范围是列车进路,但由于技术方面的原因,还不能覆盖全部列车进路。 1.自动闭塞区段 (1)正线 正线正方向,轨道电路电码化范围包括接车进路和发车进路。 正线反方向,一般均采用自动站间闭塞,轨道电路电码化范围只包括接车进路。 (2)侧线 侧线轨道电路电码化范围仅仅是股道。这是因为正线轨道电路电码化要求咽喉区道岔绝缘设在弯股,侧线轨道电路电码化通路被切断,无法实现。 2.半自动闭塞区段 站内轨道电路电码化范围只包括正线接车进路和侧线股道,以及进站信号机外方的接近区段,在提速半自动闭塞则为进站信号机外方的第一接近区段和第二接近区段。 三、站内轨道电路电码化发送的信息 对于接车进路和侧线股道,站内轨道电路电码化发送的是和车站信号机显示相联系的信息。对于发车进路,站内轨道电路电码化发送的是和防护二离去区段的通过信号机显示相联系的信息。对于半自动闭塞区段进站信号机外方的接近区段,轨道电路电码化发送的是和进站信号机显示相联系的信息。 四、站内轨道电路电码化方式 电码化有切换方式和叠加方式两种。切换方式因由较多缺陷,尤其不能满足列车提速的要求,已不再使用。目前多采用叠加方式,既电码化电路叠加在原轨道电路上。在主要干线正线则推广闭环方式。 第二节电码化器材 各种移频自动闭塞,都有其相应的电码化设备,现以ZPW-2000A型站内电码化设备为例进行介绍。 一、电码化机柜 图6-1

MPB-2000G型站内电码化系统

MPB-2000G型站内电码化系统 用户手册 固安信通铁路信号器材 有限责任公司

目录 第一章系统概述 (1) 第一节系统简介 (1) 一、特点及功能 (1) 第二节工程设计 (2) 一、设计原则 (2) 二、站内MPB-2000G股道叠加电码化电 容计算 (4) 三、电码化电缆及配线的选择 (6) 第二章二线制电化区段25Hz相敏轨道电路预叠加MPB-2000G电码化 (8) 第一节设计说明 (8) 一、设备安装说明 (8) 二、其他说明 (10) 三、二线制电化区段25Hz轨道电路叠加MPB-2000G电码化电路图 (11)

第二节设备构成及安装 (11) 一、ZP.F-G发送器 (13) 二、NGL-T型室内隔离盒 (22) 三、WGL-T型室外隔离盒 (25) 四、BMT-25型室内调整变压器 (28) 五、ZPW.TFG型股道发送调整器 (30) 六、RT-F型送电调整电阻盒 (32) 七、RT-R型受电调整电阻盒 (34) 八、WGFH型室外隔离防护盒 (36) 九、MGFL-T型室内轨道电路防雷组合 (38) 十、HF3-25型防护盒 (40) 十一、主要设备清单 (42) 第三节现场开通 (44) 一、电码化轨道电路联调 (44) 二、测试内容 (47) 三、开通测试记录 (48)

第一章系统概述 第一节系统简介 “MPB-2000G型半自动闭塞区段车站电码化系统”是针对半自动闭塞区段应用特点,按照ZPW-2000(UM)等系列轨道电路技术规范开发的适用于半自动闭塞区段的车站电码化系统。 一、特点及功能 “MPB-2000G型半自动闭塞区段车站电码化系统”由站内电码化和接近区段轨道电路两部分组成,其中站内电码化采用ZP.F-G型移频发送器和成熟的站内电码化器材,接近区段采用ZPW-2000系列轨道电路,发送设备采用ZP.F-G发送器。 站内电码化和半自动闭塞接近区段轨道电路的发送采用N+1冗余,接收采用双机热备的工作方式,提高了系统的可靠性。 ZP.F-G发送器具有8种载频,运用大规模集成电路技术平台,采用直接数字频率合成(DDS)、发码源闭环检查结构设计,完成信号合成、电压幅度、载频及调制频率的反馈检查,具有自我诊断功能。

轨道电路的原理及应用

25Hz相敏轨道电路的原理及应用 前言 截止到2005年底,中国铁路总营业里程已达到7.5万公里,复线达到2.5万公里,电气化达到2万公里,并且还将修建更多铁路。目前在电气化铁路上有90%的车站采用25Hz相敏轨道电路,因此该制式成为电气化铁路站内轨道电路的首选。 1997年经铁道部鉴定,决定用“97型25Hz相敏轨道电路”替代原“25Hz 相敏轨道电路”在全路推广使用。97行25Hz相敏轨道电路具有工作稳定可靠,维修简单和故障率低的优点,具有很高的抗干扰能力,并延长了轨道电路的极限长度(可达1500m),深受现场欢迎。 第一章轨道电路概述 一、轨道电路作用及构成 轨道电路是铁路信号自动控制的基础设备。利用轨道电路可以自动检测列车、车辆的位置,控制信号机的显示;通过轨道电路可以将地面信号传递给机车,从而可以控制列车运行。 轨道电路是以铁路线路的两根钢轨作为导体,两端加以电气绝缘或电气分割,并接上送电和受电设备构成的电路。 二、轨道电路的原理 当两根钢轨完整,且无车占用,即轨道电路空闲时,电流通过两根钢轨和轨道继电器,使轨道继电器吸起,前接点闭合,信号开放。当列车占用轨道电路时,电流通过机车车辆轮对,轨道电路被分路。由于轮对电阻比轨道继电器电阻小得多,使电源输出电流显著加大,限流电阻上的压降随之增加,两根钢轨间的电压降低,流经轨道继电器的电流减少到它的落下值,使轨道继电器落下,后接点闭合,信号关闭。同时,当轨道电路发生断轨、断线时,同样会使轨道继电器落下。 三、轨道电路分类 1、按轨道电路的工作方式分为开路式和闭路式轨道电路。闭路式轨道电路能够检查轨道电路的完整性,所以目前信号设备中多采用闭路式轨道电路。 2、按牵引电流通过方式分为单轨调和双轨条轨道电路。双轨条轨道电路工作比单轨条轨道电路稳定可靠,极限长度基本上可以满足闭塞分区长度的要求,但成本高。电气化区段多采用双轨条轨道电路。 3、按相邻钢轨线路的分割方法分绝缘节式和无绝缘节式轨道电路。 4、按信号电流性质分直流、和交流;连续式和脉冲式供电等几种。我国目前应用的有:50Hz轨道电路、25Hz相敏轨道电路、微电子交流计

铁路信号轨道电路介绍及故障分析 宋晓璋

铁路信号轨道电路介绍及故障分析宋晓璋 发表时间:2019-08-29T15:32:36.623Z 来源:《防护工程》2019年12期作者:宋晓璋 [导读] 由于国民经济的高速成长,经济建设开始日益依赖运行优良的铁路运输。 中国铁路北京局集团有限公司天津电务段天津 300140 摘要:铁路信号轨道电路是保证车辆安全行驶的重要基础,本文主要对铁路信号轨道电路进行分析,并结合轨道信号电路故障问题,提出相应的故障解决策略。 关键词:铁路信号;轨道电路;电路故障;故障分析 引言 由于国民经济的高速成长,经济建设开始日益依赖运行优良的铁路运输。通过六次全面提速,我国铁路的行车密度以及列车行进速度持续增加,此时轨道电路电码化信息的所有参数都必须符合更高标准才能满足车载信号设备的工作需求,因此轨道电路能否平稳运行,直接关系到行车安全以及铁路能否进一步提速。探讨引发轨道电路干扰问题的深层根源,并精准地找出解决之道的重要性也就日益凸显。 1轨道电路工作原理 我国轨道电路技术虽然起步较晚,但是发展速度很快。随着传输的信息量增加,它的使用范围也越来越广,对铁路发展有着重要作用。轨道电路主要由电源、轨道线路、限流装置、轨道绝缘和接收装置组成。当轨道电路部分空闲时,一定强度的信号电流将使用轨道线从轨道电源自动传输到轨道电路的接收端。接收设备的继电器在电路的作用下激励,关闭前触点,从而连接彩灯信号机的绿灯电路。此时,将发送空闲信号以引导机车进入间隔。一旦机车驶入区间时,由于机车轴的分流,轨道电路电源的信号电流只有一小部分可以传输到轨道电路接收设备。由于电流不足,接收设备的继电器不能继续激励。前触点将断开,后触点将闭合。此时,信号的红光电路被接通,并且显示禁止信号。轨道电路的这一性能,能够有效防止列车追尾和撞击事故,保障行车安全。轨道电路具有比较高的安全性,如果轨道电路的任何一部分发生故障时,都会导致接收设备的继电器无法励磁,而发出区段占用信息报警。此外,轨道电路对于保障行车和调车作业安全也起着十分重要的作用。利用轨道电路可以监督检查某一固定区段内的线路情况,提前知晓是否有列车运行、调车作业或车辆占用的情况,从而避免发生险情。 2铁路信号轨道电路故障分析 2.1设备故障 目前我国铁路的信号设备出现故障大多出现于轨道电路之中,基本上出现于轨道电路的光带问题。一方面轨道电路之中的白光带大多是因为轨道生锈所带来的道路不通畅或者一些继电器的时间不够充足进而造成轨道电路的接触不良。另一方面轨道电路的红光带故障是因为轨道电路出现了电路的短路或者断路情况,有可能是电源的问题也可能是轨道电路的绝缘体破坏所造成的。简单地举个例子来说:如果轨道电路出现短路的情况,那么电压在其分盘上就会相对较低基本上处于零刻度。另外如果轨道电路出现断路情况时,那么电压在分盘上就会相对过高。所以在进行具体的轨道电路短路与断路的问题排查时可以进行电流的检测,如果有感应电流出现就证明一切正常,没有的话就要具体情况具体分析,此外还要特别注意铁路之中多种绳索的接触不良问题。 2.2信号系统分路不良 铁路信号系统的轨道电路分路不良问题引发因素较多,通过对历年该问题的研究,可以发现分路不良问题的引发因素如下:一是轮对电阻问题。轮对电阻的概念为列车轮对自身电阻和轮对与铁轨电阻之和,在轨道电路分路系统的运行过程中,只有在轮对电阻与设计电阻相同状态下才能够保证整个电路正常稳定运行,当分路电阻过高时,会引发电路分路不良问题。二是轨面生锈问题。轨道电路分路中的一个重要构成部分为铁轨表面,在轨面的运行过程中,会由于一些原因发生生锈问题,铁轨生锈后会导致分路电阻提升,导致轮对电阻升高,产生分路不良问题。三是粉尘污染问题。该问题的原理与轨面生锈问题相似,都会导致分路电阻提升,造成电路分路不良问题。 3铁路信号轨道电路的运行维护策略 3.1加强设备故障诊断 当下,铁路设备检修人员应用最多的是自诊断、故障树分析、压力检测、温度分析与金相检测法。为了确保铁路机电设备正常运行,机电设备必须按照先外后内的顺序进行。检测初期,借助科学安全的检测方式判定故障区域和大小,而不是盲目拆修设备,最好的方式是对症维修。为了杜绝盲目拆修以及试车重装等原始的方式,必须按照先机后电的方式,对相关设备机械故障检测,再对设备电路系统、电气系统进行有效检查。事实上,机械结构很直观,检修期间可以通过观察设备外部,确定设备是否存在打滑、卡死、裂缝等问题,再从细节进行检测;同时结合先干后叶的顺序,清楚设备主次,先对相关设备重要部件进行检测,尤其是接口与零件,再对次要部件进行有效检测。 3.2接车继电器所使用的特别设计 若想要让轨道电路方向得到调整,则可以将接车继电器放在站点当中以使得列车能够快速调整方向,而在此时,列车可以通过利用站点接车继电器特性,来改变列车的运行方向,从而能够让列车方向得到改变,确保接车继电器能正常运行。然而,有一点需要设计人员注意,轨道里的接车继电器在安装的时候也是有条件的,只有当条件满足了时候,才能够进行安装,因此,不能随便转换到站点段里面,而必须要在对站点的联区段里面进行安装,从而能够真正使继电器能发挥作用,能够自由的进行交流转换的,特别是能使轨道电路里的接车继电器正常的得到使用,让列车能顺利将接车继电器吸起来,而上一站的接车继电器则在这个过程中,则能顺利的放下来,避免了上一站的接车继电器再次被列车吸回去,如此,便能够使得列车的方向运行变得更加的平稳,能够在轨道中安全运行。 3.3高压脉冲轨道电路功能实现 高压脉冲轨道电路是由室内高压脉冲轨道电源AC220V送至高压脉冲发码器,通过其内部芯片控制变换生成高压脉冲信号源,再经扼流变压器降压后经由钢轨传输到受电端。受电端则经扼流变压器升压后通过电缆将脉冲信号送回到室内至高压脉冲译码器。译码器将轨面传来的不对称信号转换为两个(头、尾)直流信号驱动二元差动继电器工作。正常情况下,调整状态译码器的输出头、尾波电压大于差动继电器工作电压(头部线圈电压DC27V,尾部线圈电压DC19V)。分路状态时译码器的输出头、尾波电压小于差动继电器的释放电压(头部线圈电压DC13.5V,尾部线圈电压DC9.5V)。当高压脉冲的波头、波尾幅值比例失调畸变或钢轨上的正负脉冲极性相反或钢轨上侵入较强的工频电流

相关文档
最新文档