偏微分方程讲义

偏微分方程讲义
偏微分方程讲义

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解论文

目录 引言 (3) 物理背景 (3) 网格剖分 (4) 向前Euler格式建立 (4) 差分格式的求解 (6) 收敛性与稳定性 (6) 数值例子 (9) 紧差分格式建立 (12) 差分格式求解 (14) 数值例子 (15) 总结 (19) 参考文献 (20) 附录 (21)

1 引言 本文考虑的一维非齐次热传导方程的定解问题: 22(,),0,0,u u a f x t x l t T t x ??-=<<<≤?? (,0)(),0,u x x x l φ=≤≤ (0,)(), (1,)(), 0.u t t u t t t T αβ==<≤ 其中a 为正常数,(,),(),(),()f x t x t t ?αβ为已知函数,(0)(0),(1)(0).?α?β== 目前常用的求解热传导方程的差分格式有前向Euler 差分格式、向后Euler 差分格式、Crank-Nicolson 格式、Richardson 格式[1,2,3].本文将给出前向Euler 格式和紧差分格式,并给出其截断误差和数值例子. 2 物理背景 热传导是由于物体内部温度分布不均匀,热量要从物体内温度较高的点流向温度较低的点处.以函数(),,,u x y z t 表示物体在t 时刻,(),M M x y =处的温度,并假设 (),,u x y z 关于,,x y z 具有二阶连续偏导数,关于t 具有一阶连续偏导数.() ,,k k x y z =是物体在(),,M x y z 处的热传导系数,取正值.设物体的比热容为(),,c c x y z =,密度为 (),,x y z ρ.根据Fourier 热传导定律,热量守恒定律以及Gauss 公式得 ,u u u u c kx k k t x x y y z z ρ ????????????? =++ ? ? ???????????? ??

偏微分方程数值解

偏微分方程数值解 偏微分方程地构建科学、工程学和其他领域的数学模型的主要手段。一般情况下,这些模型都需要用数值方法去求解。本书提供了标准数值技术的简明介绍。借助抛物线型、双曲线型和椭圆型方程的一些简单例子介绍了常用的有限差分方法、有限元方法、有限体方法、修正方程分析、辛积分格式、对流扩散问题、多重网络、共轭梯度法。利用极大值原理、能量法和离散傅里叶分析清晰严格地处理了稳定性问题。本书全面讨论了这些方法的性质,并附有典型的图像结果,提供了不同难度的例子和练习。 本书可作为数学、工程学及计算机科学专业本科教材,也可供工程技术人员和应用工作者参考。 偏微分方程数值解---学习总结(2) 关于SobolveSobolve空间的几个重要定理 迹定理 : ΩΩ是 RdRd 的一个有界开子集,具有李普希茨连续边界?Ω?Ω, s>12s>12, 则 a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v ∣∣?Ω,?v∈Hs(Ω)∩C0(Ωˉˉˉˉ), b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω).(1)(2)(1)a.存在唯一的连续线性映射γ0:Hs(Ω)→Hs?12(?Ω),满足γ0v=v|?Ω,?v∈

Hs(Ω)∩C0(Ωˉ),(2)b.存在唯一的连续映射R0:Hs?12(?Ω)→Hs(Ω),满足γ0°R0°φ=φ,?φ∈Hs?12(?Ω). 迹定理把区域内部与边界联系起来. 上面定理中边界?Ω?Ω当被它的一个子集ΣΣ代替时,结论依然成立. S=1时, γ0:H1(Ω)→H12(?Ω)?L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||?v||0).γ0:H1(Ω)→H12(?Ω)? L2(?Ω)||γ0v||0,?Ω≤||γ0v||2,?Ω≤C||v||1=C(||v||0+||? v||0). 注意几个范数 ||?||k||?||0||?||1||??||0=||?||k,2=||?||L2=||?||1,2=(||?||20+||??||20)12=|?|1.(3)(4)(5)(6)(3)||?||k=||?||k,2(4)||? ||0=||?||L2(5)||?||1=||?||1,2=(||?||02+||??||02)12(6)||?? ||0=|?|1. 庞加莱不等式(Poincare inequality): 假设ΩΩ是 RdRd 的一个有界联通开子集,ΣΣ是边界?Ω?Ω的一个非空的李普希茨连续子集. 则存在一个常数 CΩ>0CΩ>0满足 ∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈H1Σ(Ω),其中H1Σ(Ω)={v ∈H1(Ω),γΣv=v∣∣Σ=0}.∫Ωv2(x)dx≤CΩ∫Ω|?v(x)|2dx,?v∈HΣ1(Ω),其中HΣ1(Ω)={v∈H1(Ω),γΣv=v|Σ=0}.

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

北京理工大学数学专业偏微分方程期末试题2014级A卷(MTH17178)

课程编号:MTH17178 北京理工大学2016-2017学年第一学期 2014级偏微分方程期终考试(A ) 1.(10分)利用特征线方法求解一阶波动方程初值问题:()22,,0,0,t x x u u u x t u x e x -+=∈>???=∈?? 。 2.(10分)利用Fourier 变换方法求解:()() (),,,0,0,t x u bu cu f x t x t u x x x ?--=∈>???=∈?? 。 3.(10分)利用行波法求解:()()()()0,,,0,,0 tt xx u u t x u x x x x u x x x x ?ψ?-=>?-=?。 给出适当的相容性条件。如果?在(],0a -上给定,ψ在[)0,b 上给定,给出其决定区域。 4.(15分)求解初边值问题:()()()20,01,00,0,1,0,0,0,01 t xx x x u a u u x t u t u t t u x A x ?-+=<<>?==>??=<?==∈??=+=≥? 推导边界条件齐次化的公式(不需要解方程)。 6.(13分)对于有界区域()(],0,T Q a b T =?上的热方程()2 ,0t xx u a u c x t u -+=,其中(),c x t 下有界,证明如果(),u x t 在抛物边界上非正,则(),u x t 在T Q 上非正。 7.(15分)考虑波动方程初边值问题[]()()()()[]()()()20,0,,0,0,,0,0,0,0,,,0,0 tt xx t x x u a u x L t u x x u x x x L u t u L t u L t t ?ψσ?-=∈>?==∈??=+=≥?,其中 0σ>,令t 时刻的能量()()()22222011,22 L t x E t u a u dx a u L t σ=++?,证明()E t 守恒,并由此证明相应的一般非齐次方程非齐次初边值问题的解的唯一性。 8.(20分)设() ()1,02,1T T u C Q C Q ∈ 且满足初边值问题()()()()[]()()[] ,,,,0,0,0,,0,0,t xx T x u u f x t x t Q u x x x L u t u L t t T ??-=∈?=∈??==∈?,证明:[]()()()()22220000000,sup ,,,L T L L T L x t T u x t dx dt u x t dx M x dx dt f x t dx ?∈??+≤+??????????,其中M 仅依赖于T 。 提示:Gronwall 不等式:设(][]1 0,0,G C T C T ∈ ,()00G =,且对于任意的[]0,t T ∈,有()()()G t CG t F t '≤+,其中C>0,F 非负单调递增,则有 ()()()()()11,Ct Ct G t C e F t G t e F t -'≤-≤。

微分方程论文

常微分方程的积分因子 每一个微分方程转化为恰当方程之后,可以运用恰当方程的公式进行求解,因此转化成恰当方程是求解微分方程的重要步骤,转化成恰当方程需要求解出积分因子,因此积分因子的求解变得非常重要。课本中只介绍了仅关于x 或仅关于y 的积分因子,这还远远不够。此论文主要研究几类微分方程积分因子的求法,从而使微分方程的求解变得较简便。 积分因子的定义:若对于一阶微分方程()(),,0 M x y dx N x y dy += 其中 (),M x y ,(),N x y 在矩形域内是,x y 的连续函数,且有连续的一阶偏导数.若 存在连续可微的函数 (),0 x y μ≠,使得 ()()()(),,,,0 x y M x y dx x y N x y dy μμ+≡, 为一恰当方程,即存在函数V ,使 Mdx Ndy dV μμ+=. 则称 () ,x y μ为方程(1)的积分因子. 通过计算可得,函数 () ,x y μ为0Mdx Ndy +=积分因子的充要条件为: ()()M N x y μμ??=??, 即 M N N M x y y x μμμ??????-=- ??????? 1.1、定义1 若方程 0),(),(=+dy y x N dx y x M (1) 的左端恰好是某个二元函数),(y x u 的全微分,则称(1)式为恰当微分方程. 1.2、定义2 如果存在连续可微的函数μ=0),(≠y x μ,使得 ),(y x μdx y x M ),(+ ),(y x μdy y x N ),(=0 为一恰当微分方程,即存在函数v ,使dv Ndy Mdx ≡+μμ, 则称),(y x μ为方程(1)的积分因子.

最新偏微分方程期末复习笔记

《偏微分方程》期末考试复习 一、波动方程(双曲型方程)U tt -a 2U xx 二f (x,t) (一)初值问题(柯西问题) < 2 U tt —a U xx = f(x,t) 1、一维情形 Ut t^a (x) (1) 解法(传播波法): 由叠加原理,原初值问题的解可表示为下述初值问题的解之 和, * 2 * 2 U tt —a U xx =o U tt —a U xx = f (x,t) (i) J U t^=

②决定区域:区间[x1,X2】的决定区域为:{(x,t)|捲? at込x込X2-at}

常微分方程论文

常微分方程论文 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

《关于常微分方程解法的探究》 班级:数学与应用数学131 学号: 姓名:丁延辉 日期:2016年5月25号 摘要 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具。并且常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中。因此,由实际问题列出微分方程后,其解法非常关键,微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 关键词:微分方程 降阶法 变量代换法 齐次型 一阶线性 1 一阶微分方程 变量可分离的微分方程 形如 ()()dy f x y dx ?=(1)

的方程,称为变量分离方程,()f x ,()y ?分别是x ,y 的连续函数.这是一类最简单的一阶函数.如果()0y ?≠,我们可将(1)改写成 这样变量就分离开来了.两边积分,得到 c 为任意常数.由该式所确定的函数关系式(,)y y x c =就是常微分方程的解. 例1:求解 2dy xy dx =的通解。 解:12dy xdx y =→12dy xdx y =??→21ln y x c =+→通解:221x c x y e ce +=±= 齐次型微分方程 (变量代换的思想) 一阶微分方程可以化成 dy y f dx x ??= ???的形式。 求解:dy y f dx x ??= ??? y u x =→y ux =, dy du x u dx dx =+→()du x u f u dx +=→()11du dx f u u x =-(可分离变量)→通解 例2:解方程22dy dy y x xy dx dx += 一阶线性微分方程 若 称为一阶齐次线性微分方程。 若 ()()dy p x y q x dx +=(()0q x ≠) 称为一阶非齐次线性微分方程。 一阶非齐次微分方程的通解等于对应的齐次方程的通解与非齐次方程的一个特解之和。 解 的通解如下:可分离变量的一阶微分方程

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

偏微分方程期末试题A卷

安徽大学20 08 —20 09 学年第 二 学期 《 偏微分方程 》考试试卷(A 卷) (闭卷 时间120分钟) 院/系 年级 专业 姓名 学号 一、填空题(每小题3分,共15分) 1.对常系数方程x y z u au bu cu du f ?++++=作未知函数的变换 可以将所有一阶微商消失. 2.设:R R Φ→是光滑凸函数,(,)u x t 是热传导放程0t u u -?=的解,则()u Φ是热传导方程 的 (下解;上解;解). 3.上半平面的Green 函数G(x,y)为 ,其中12(,)y y y =为上半平面中某固定点. 4.设函数u 在以曲面Γ为边界的区域Ω内调和,在ΩΓ 上有连续的一阶偏导数,则u dS n Γ ????= ,其中n 是Γ的外法方向. 5.热传导方程2()0t xx yy u a u u -+=的特征曲面为 .

二、计算题(每小题10分,共40分) 1.求解初值问题 0,(,)(0,)(,0),,t x u bu cu x t R u x g x R ++=∈?∞??=∈? 其中,,b c R ∈都是常数. 2.试用延拓法求解半有界直线上的热传导方程的边值问题: 200 0,0,0,|(), |0.t xx t x u a u x t u x u ?==?-=>>? =??=?

3.试求解 2 2 008(), |,|.tt xx yy zz t t t u u u u t u xy u z ==?-++=??==?? 4.写出定解问题: 200 (),0,0,|0,|0, |().t xx x x l t u a u f x x l t u u u g x ===?-=<<>? ==??=? 解的一般形式.

偏微分方程论文:偏微分方程孤立子解Lie变换群

偏微分方程论文:偏微分方程孤立子解 Lie变换群 【中文摘要】本文取得的主要结果属于理论性的,可概括如下:首先利用推广的Tanh-函数法以及在此基础上的拓展和形变映射法,获得了BBM方程的许多显式精确行波解,包括孤子解、复线孤子解、周期波解、Jacobi椭圆函数解、维尔斯特拉斯椭圆函数解等。其次介绍如何利用Lie变换群作用下偏微分方程的不变性来构造它的解。与常微分方程的情形相似,我们将看到,确定一个给定PDE所拥有的Lie点变换群的无穷小生成元,其算法可由它的不变性无穷小准则直接导出。利用Lie对称群的不变曲面可得到相似解,这样的解是通过求解约化方程得到的。约化方程所含未知变量个数比原方程少。本节就是用古典无穷小算法导出了由轴对称波方程的任意元和无穷小生成子的系数构成的超定线性偏微分方程组,即确定方程DE。其次借助符号计算机软件maple解方程组,求出了轴对称波方程的一些无穷小生成元,然后根据Lie第一基本定理求出了相对应的单参数Lie变换群.最后将所求得的无穷小生成元代入不变曲面条件,分别利用不变形式法和直接代入法求出轴对称波方程的群不变解。最后讨论如何利用Lie点变换群作用下的不变性求解PDEs的边值问题。如果PDE所拥有的单参数Lie点对称群同时也使边值问题的边界条件和领域不变,那么此边值问题的解也是不变解。因此,边值问题也可被构造性地约化为含更少的自变量的PDEs的边值问题。对于线性PDE,限制条件可放宽,不必要求边界条件不变。对应于同一特征函数展开的不变解

进行叠加。可得边值问题的解,其中特征值是利用一个齐次线性PDE 在其自变量的标度下的不变性得到的。另外,也将讨论多参数Lie点变换群作用下边值问题的不变性。我们利用上面给出的方法求出了Green函数的边值问题的不变解。 【英文摘要】First tanh-function method is extended then used to solve BBM equation. we also used deformation mapping method to obtain solutions of BBM equation. With both methods we can obtain abundant explicit and exact traving wave solutions. Which coation Soliton solutions, Plural line soliton solutions, periodic wave solutions, Jacobi elliptic fuction solutions,Weierstrass elliptic function solutions and other exact solutions.Second we apply infinitesimal transformations to the construction of solutions of partial differential equations. As for ODE’s we will show that the infinitesimal criterion for invariance of PDE’s leads directly to an algorithm to determine infinitesimal generators X admitted by given PDE’s . Invariant surfaces of the corresponding Lie group of point transformations lead to similarity solutions. These solutions are obtained by solving PDE’s with fewer independent variables than the given PDE’s. Now we obtain the set of determining equations is an overdermined system of PDE’s which is composed of the arbitrary

偏微分方程期末考试试题(06)

课程名称:偏微分方程数值解法 课程编号:24014110 适用专业(班级):数学 共1页 命题人:潘晓丽 教研室主任: 第1页 一、(15分)写出三类典型泛定方程并分别说明其名称和特点. 二、(10分)求一维波动方程()()()()()22 222 ,,0,0,,0t u u a x t t x u x x u x x ?ψ???=-∞<<+∞>?????==? 的通解. 三、(15分)写出达朗贝尔公式并利用公式求解 ()()()2,0,,0sin ,0cos tt xx t u a u t x u x x u x x ?=>-∞<<+∞? =?? =? 四、(10分)计算积分()32x J x dx -?. 五、(15分)设1,1≥≥n m ,证明 ()()()dx x p x m dx x p x n m n m n m ??--=++1 111 1 六、(15分)用分离变量法求解 ()()()()()20,0,0,00,,00,0,,0 tt xx t u a u x l t u x u x x u t u l t ?-=<<>? ==?? ==? 七、(10分)解固有值问题()()()''0,''0 y y l x l y l y l λ+=-<

课程名称:偏微分方程数值解法 课程编号:24014110 适用专业(班级):数学 共1页 命题人:潘晓丽 教研室主任: 第1页 一、解:波动方程:()22 2,u a u f t x t ?=?+? 热传导方程: ()2,u a u f t x t ?=?+? 位势方程:()u f x ?= ……………………….5分 其中()12,,,n x x x x = ,a 为常数,(),f t x 及()f x 为已知函数,在波动方程及 热传导方程中,未知函数u 是时间变量t 和空间坐标变量()12,,,n x x x x = 的函数,在位势方程中,未知函数u 是空间坐标变量()12,,,n x x x x = 的函数,而与时间t 无关,三类典型方程均为二阶线性偏微分方程。……………………….15分 二、解:首先判别方程的类型, 20a ?=> ………………………2分 即此方程在整个全平面上都是双曲型的。 特征方程为:()()2 2 20dx a dt -= () ()2 2 200dx a dt dx adt -=?= 特征曲线为1 2 x at c x at c -=??+=? ………………………6分 做变量替换,令x at x at ξη=-??=+?, 由链式法则得 0u ξη= 通解()()()()u f g f x at g x at ξη=+=-++ ……………………….10分

偏微分方程论文

偏微分方程数值解法 [摘要]偏微分方程课程主要介绍了求一阶拟线性偏微分方程、波动方程、热传导方程及位势方程的解析解。本文受此启发,并结合所学数值计算方法知识,介绍几种偏微分方程的数值解法。 1.背景 现实世界中,许多实际问题可归结为微分方程的定解问题。很多情况下,人们无法或不方便求出这些问题的解析解,从而要求它们的数值解。因此,需要了解偏微分方程的数值解法。 2.内容 (一)双曲型方程 ∞≤≤∞-=x x x u ),()0,(?初值条件 将x-t 平面分割成矩形网格 ,2,1,0,,2,1,0,0=+==±±===j j t t t k kh x x j k τ 用(k,j)表示网格节点(x k ,t j ),网格节点上的函数值为u(k,j) 用差商表示导数 ),~(2 ),(),1()~,(2),()1,(,,j x u h h j k u j k u x u t k u j k u j k u t u x j k t j k ''--+=??''--+=??ττ ),~(62),1(),1()~,(6 2)1,()1,(2,2 ,j x u h h j k u j k u x u t k u j k u j k u t u x j k t j k '''---+=??'''---+=??ττ 方程变为 0),(),(),1(),()1,(1=--++-+ττh R h j k u j k u a j k u j k u 略去误差项,得到差分方程 0,,1,1,=-+-h u u a u u j k j k j k j k ++τ 加上初始条件,构成差分格式 k k j k j k j k j k u u u ar u u ?=--=0,,,1,1,) (++ 0=??+??=x u a t u Lu

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

偏微分方程期末考试试题(06)

黑龙江科技学院考试试题 课程名称:偏微分方程数值解法 课程编号:24014110适用专业(班级):数学 命题人:潘晓丽 教研室主任: 、(15分)写出三类典型泛定方程并分别说明其名称和特点 2 2 U 2 U 一、(10分)求一维波动方程 t 2 x 2 ,t 0 的通解 x u x,0 x , u t x,0 三、(15 分) 写出达朗贝尔公式并利用公式求解 u tt a 2 u xx , t 0, x u x,0 sinx U t x,0 cosx 四、(10分)计算积分 x 3 J 2 x dx . 五、(15分)设m 1,n 1,证明 六、(15分)用分离变量法求解 2 u tt a U xx 0, 0 x l,t 0 u x,0 0,u t x,0 x u 0,t 0,u l,t 0 八、(10分)叙述斯图模-刘维尔定理. 黑龙江科技学院考试试题答案 七、(10分)解固有值问题 y'' y 0, y' l y' l 第一套 共1页 第1页 n 1 0x m p n xdx 1 m 1 , m 0 x p n 1 x dx

2 一、解:波动方程:一a2u f t,x t - 热传导方程:汁a2 u f t,x 位势方程:u f x (5) 其中x X j,x2,L ,x n,a为常数,f t,x及f x为已知函数,在波动方程及热传导方程中,未知函数u是时间变量t和空间坐标变量x x1,x2,L ,x n的函数,在位势方程中,未知函数u是空间坐标变量x 为必,L ,人的函数,而与时间t无关,三类典型方程均为二阶线性偏微分方程。 (15) 二、解:首先判别方程的类型, a20 ............. 2 分 即此方程在整个全平面上都是双曲型的。 特征方程为:dx $ a2 dt $ 0 2 2 2 dx a dt 0 dx madt 0 x at 特征曲线为G x at C2 做变量替换,令 x at x at 由链式法则得u 0 通解u f g f x at g x at ....................... .10 ................................ 分

偏微分方程理论学习中国科学技术大学

偏微分方程理论学习 一. 偏微分方程发展简介 1. 常微分方程 十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了性的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。 2. 偏微分方程 偏微分方程的研究要晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert )(1717-1783)、L.欧拉(Euler )(1707-1783)、D.伯努利(Bernoulli )(1700-1782)、J.拉格朗日(Lagrange )(1736-1813)、P.拉普拉斯(Laplace )(1749-1827)、S.泊松(Poisson )(1781-1840)、J.傅里叶(Fourier )(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程 其中k 是一个参数,其值依赖于物体的质料。傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程 ??? ????<<=>==??=??,0),()0,(,0,0),(,0),0(T T 222l x x f x T t t l T t T x k x , 其中后面两项分别是边界条件和初始条件。傅里叶为解这个方程用了分离变量法,他得到满足方程和边界条件的级数解为 为了满足初始条件,必须有

相关文档
最新文档