矩阵相似的性质及应用开题报告

矩阵相似的性质及应用开题报告
矩阵相似的性质及应用开题报告

山西师范大学现代文理学院

毕业论文(毕业设计)开题报告

论文题目:相似矩阵的性质及应用

系别:数计系

专业:数学与应用数学

班级: 1102

姓名:郑丽鹏

学号: 1190110204 指导教师:陈翠芳

二〇一四年九月十一日

【VIP专享】矩阵变换及应用开题报告

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号:30 指导教师:裴银淑 2013年12月26日

一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson 联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。 2 、本人对以上综述的评价:

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L 1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλL )?(12,,,m βββL )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??;r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>?L L 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

矩阵相似性质与应用研究报告

矩阵相似的性质与应用的研究 1引言 矩阵相似的理论是数学分析的重要概念之一,同时也是教案中的难点之一,特别是矩阵相似与可对角化矩阵问题,在各个版本的数学类图书中,往往将这两个问题紧凑的联系在一起。矩阵相似的概念是为深入研究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。 由于矩阵相似的应用范围相当广泛。本文主要是从矩阵相似定义以及各种性质的理论基础上直接引入矩阵在微分方程、自动控制理论基础等领域应用的实例并由此进行研究,也使这部分内容能够相互融合起来,更有利于学习者的掌握和应用。 2矩阵相似的定义与基本性质 2.1矩阵相似的定义 令I二I为非奇异矩阵,考察矩阵 1^1的线性变换 令线性变换的特征值为,对应的特征向量为R,即 将式——1代入上式,即有 -------------- 1或 ---------- 1 令一或—:,则式------------------ 1 可以写作 比较― 和亠两式可知,矩阵A和一1具有相同的特征值,并且矩阵B的特征向量是矩阵的特征向量的线性变换,即二刃。由于 矩阵和—I的特征值相同,特征向量存在线性变换的关系,所以称这

两个矩阵“相似”。于是: 设、都是阶方阵,若有可逆方阵,使______ I ,则称是的相似矩阵。或者说矩阵与相似。对进行运算—称为对进行相似变换。可逆矩阵称为把变成的相似变换阵。 2.2矩阵相似的一些基本性质: 自反性:。 对称性:三则二。 传递性:3及丄可得:二11 如果阶矩阵,相似,则它们有相同的特征值。但逆命题不成立。 相似矩阵另外的一些特性: 1>相似矩阵有相同的秩。 2>相似矩阵的行列式相等。 3>相似矩阵或都可逆,或都不可逆。当它们可逆时,它们的逆也相似。 4>y 贝y 亠,亠、?亠I 、亠I <若,均可逆)、 」从而,有相同的特征值。 3相似对角矩阵的有关性质 3.1矩阵可相似对角化的引入与定义 设是复数域上的维线性空间,是的一个线性变换。又―I 与______ 是的两组基,从第一组基到第二组基的过渡矩阵是。则线性变换在这两组基下的矩阵与相似,即 我们自然会问:矩阵可否相似与一个对角形矩阵?换言之,是否可以适当的选取第二组基__________________ ,使得线性变换在这组基下的矩阵是个对角矩阵

分块矩阵的性质及其应用【开题报告】

阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的. 根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式. 二、研究的基本内容, 拟解决的主要问题: 研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用. 解决的主要问题: 1.了解分块矩阵的基本概念. 2.探讨分块对角化的性质. 3.研究分块矩阵的应用. 三、研究步骤、方法及措施: 研究步骤: 1.查阅相关资料, 做好笔记; 2.仔细阅读研究文献资料; 3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告; 4.翻译英文资料; 5.撰写毕业论文; 6.上交论文初稿; 7.反复修改论文, 修改英文翻译, 撰写文献综述; 8.论文定稿.

线性方程组的求解与应用开题报告

设计题目线性方程组理论及其应用 学生姓名陈彦语学号1111124123 专 业 数学与应用数 学(师范类) 一、课题的目的意义: 高等代数教材中只给出了运用克拉默法则(Cramer's Rule)和利用增广矩阵进行初等行变换求解线性方程组的方法,本文将更加系统的阐述求解线性方程组的几类方法,并进一步讨论线性方程组在许多领域中的应用。 线性代数是代数学的一个重要组成部分,广泛应用于现代科学的许多分支,其核心问题之一就是线性方程组的求解问题。线性方程组的求解是数值计算领域十分活跃的研究课题之一,大量的科学技术问题,最终往往归结为解线性方程组。因为计算机只能“线性”地求解问题,所以所有问题在计算机处理前都要线性化。可以说,线性方程组的求解在现代科学领域占有重要地位。 二、近几年来研究现状: 目前关于线性方程组的数值解法一般有两大类,一类是直接方法,另一类是迭代方法。直接方法最基本的是高斯消元法及其变形,这种方法是解低阶稠密矩阵方程组的有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展。迭代法就是用某种迭代过程去逐步逼近线性方程组的精确解,迭代法具有的优点是:需要计算机的存储单位较少、程序设计简单、原始系数矩阵在计算过程中始终不变,但存在收敛性和收敛速度的问题。迭代法是解大型稀疏矩阵方程组的重要方法,当前对迭代算法的研究已经较为成熟,但如何使之适合新体系模型,以获得更好的性能加速还有待进一步研究。 。三、设计方案的可行性分析和预期目标: 可行性分析:本文主要以查找资料,在现有知识水平上,对求解线性方程组的一般方法进行总结归纳,并根据对数学软件的学习,在借鉴前人对计算机编程科学性研究的基础上,给出利用matlab软件求解几类常见线性方程组的方法。通过广泛收集线性方程组应用方向的文献和书籍,并多次向导师请教,最终以具体实例来说明线性方程组在许多领域的应用,并实现线性方程组的求解过程。 预期目标:通过撰写论文,能让我从一个更高的角度来审视高等代数,对其中的线性方程组部分有一个更加深刻的理解和认识,锻炼自己的发散性思维和缜密的思考能力,培养自己利用所学知识解决实际问题的能力,从而达到对所学知识的融会贯通。

相似矩阵的性质及应用

华北水利水电大学相似矩阵的性质及应用 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2013年11月6 日

摘要:若矩阵P可逆,则矩阵P-1AP与A称为相似。矩阵相似的概念是为深入研 究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。相似矩阵有很多应用。例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。本文将讨论相似矩阵的有关性质及其应用。 关键词:相似矩阵;对角化;Jordan标准型;特征向量;特征值 英文题目:The properties and application of similar matrix Abstract:There are a lot of applications about similar matrix. Matrix for further research is the concept of similarity matrix characteristics, and that part of the problem can be converted into similar problems with a diagonalization matrix to simplify the problem study, while others matrix cannot be similar to a diagonal matrix, so this kind of problem can only use a definition or if and when the standard to solve.For example, we can discuss the integrality of the method by using the properties of similar matrices to confirm unknown elements and characteristic subspaces of similar matrices belong to the same characteristic value are isomorphism. Also we may discuss the equivalent conditions for similar matrices and their characteristic polynomial and their corresponding results, especially, applications of digitalization matrices in advanced algebra theory and other subjects are probed into.In this paper I will give out some corresponding properties of similar matrices and show their appliance. Key words:similar matrices; diagonal matrix; Jordan’s normal form; characteristic value; characteristic vector

矩阵的开题报告doc

矩阵的开题报告 篇一:矩阵变换及应用开题报告 鞍山师范学院 数学系 13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号: 30 指导教师:裴银淑 XX年 12月 26日 一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种 十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到 非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解 决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义:

矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式 识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着 不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内 外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词, 他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩 阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的 研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容, 在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在 第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金 斯大学的RogerA.Horn和威廉姆和玛丽学院的

CharlesR.Johnson联合编著的《矩 阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外 关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出 了巨大贡献。 2 、本人对以上综述的评价: 矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础, 近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也 极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学 家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到 更多的领域中去。 三、论文提纲 前言 (一)、矩阵初等变换及应用 1、矩阵初等变换的基本概念 2、初等变换在方程组中的应用 3、初等变换在向量组中的应用

矩阵相似的性质:矩阵相似例题

1 矩阵的相似 1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】) 矩阵的相似及其应用1 矩阵的相似 定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质 (1)反身性A∽A;这是因为A?E?1AE. (2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。 (3)传递性如果A∽B,B∽C,那么A∽C。已知有X,Y使B?X?1AX, C?Y?1BY。令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。 3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);

Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A) =秩(PA)=秩(AQ) 证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩 ?1 (B)=秩(B?CAC)=秩(AC)=秩(A) (2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即 P?1AP?B?P?1f(A)P?f(B) 证明设f(x)?anx?an?1x nn n?1

a1x?a0 a1A?a0E a1B?a0E 于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1B n?1 kk 由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得 Bk?X?1AkX, ?1?1 anAn?an?1An?1?因此Xf?A?X?X ?a1A?a0E?X

矩阵特征值、特征向量的研究【开题报告】

毕业论文开题报告 数学与应用数学 矩阵特征值、特征向量的研究 一、选题的背景、意义 (1)选题的背景、意义 “矩阵(Matrix)”术语是由西尔维斯特创用并由凯莱首先明确其概念的。19世纪50年代,西尔维斯特引入“矩阵”一词来表示“一项由几行H列元素组成的矩形阵列”或“各种行列式组”,凯莱作为矩阵理论的创立者,首先为简化记法引进矩阵,然后系统地阐述了矩阵的理论体系。随后,弗罗伯纽斯等人发展完善了矩阵的理论体系形成了矩阵的现代理论。然而,矩阵思想的萌芽由来已久,早在公元前l世纪中国的《九章算术》就已经用到类似于矩阵的名词。但那时矩阵仅是用来作为一种矩形阵列解决实际问题,并没有建立起独立完善的矩阵理论。18世纪末到19世纪中叶,这种排列形式在线性方程组和行列式计算中应用日益广泛,行列式等理论的发展提供了矩阵发展的条件,矩阵概念由此产生,矩阵理论得到系统的发展。20世纪初,无限矩阵理论得到进一步发展[]1。 线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中[]2。 由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量

空间的过渡矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今[]3[]4。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 (2)国内外研究现状和发展趋势 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)[]5。 ①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位; ②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; ③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的; ④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如

矩阵相似的性质

1 矩阵的相似 1.1 定义 1.2性质 1.3定理(证明) 1.4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵 相似矩阵与矩阵的对角化 相似矩阵在微分方程中的应用 【1 】) 矩阵的相似及其应用 1.1 矩阵的相似 定义 1.1:设,A B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得1B X AX -=,就说A 相似于B 记作A B ∽ 1.2 相似的性质 (1)反身性A A ∽:;这是因为1A E AE -=. (2)对称性:如果A B ∽,那么B A ∽;如果A B ∽,那么有X ,使1B X AX -=,令1Y X -=,就有11A XBX Y BY --==,所以B A ∽。 (3)传递性:如果A B ∽,B C ∽,那么A C ∽。已知有,X Y 使1B X AX -=, C 1Y BY -=。令Z XY =,就有111C Y X AXY Z AZ ---==,因此,A C ∽。 1.3 相似矩阵的性质 若,n n A B C ?∈,A B ∽,则: (1)()()r A r B =; 引理:A 是一个s n ?矩阵,如果P 是一个s s ?可逆矩阵,Q 是n n ?可逆矩阵, 那么秩(A )=秩(PA )=秩(AQ ) 证明:设,A B 相似,即存在数域P 上的可逆矩阵C ,使得1B C AC -=,由引理2可知,秩 (B )=秩(1 B C AC -=)=秩(AC )=秩(A ) (2)设A 相似于B ,()f x 是任意多项式,则()f A 相似于()f B ,即 11()()P AP B P f A P f B --=?= 证明:设1110()n n n n f x a x a x a x a --=+++ 于是,1 110()n n n n f A a A a A a A a E --=+++ 1 110()n n n n f B a B a B a B a E --=++ + 由于A 相似于B ,则k A 相似与k B ,(k 为任意正整数),即存在可逆矩阵X ,使得

线性方程组的求解方法及应用开题报告

开题报告 线性方程组的求解方法及应用开题报告 一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势) 线性方程组求解在中国历史久矣。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。在科学计算中的许多问题,例如,电学中的网络问题,船体放样中的样条函数计算,实验数据的曲线拟合以及微分方程的差分方法或有限元方法求解等问题,最终都归结为求解线性代数方程组。现行高等代数教材只用行初等变换来解线性方程组,存在一定的局限性。本文主要讨论了解线性方程组的直接法中的Gauss消元法,以及行初等变换、克莱姆法则、标准上三角形求解法等。 对于不同类型的问题,线性方程组的求解方法不尽相同。同时方程组存在解的个数的问题及线性方程组是否存在零解,如在实践中遇到的线性方程组,它的方程个数未必等于未知量个数,即使方程个数等于未知量个数,也未必有唯一解,有可能无解或有无穷多解。这就需要我们去根据相关问题去探究。 马克思曾经说过“一门科学只有成功地应用数学时,才算达到了完善的地步”。随着科学技术的进步,数学已迅速渗透到各门学科之中,因而能强烈感受到数学的重要性。而应用数学中很多用到了线性代数的相关知识,而本选题涉及的线性方程组知识尤为重要,在实际生活的数学应用中,对所需目标进行确定,接着进一步明确一些决策中的关键因素,即而确立线性方程组,进而对此方程求解。因

而求线性方程组解是线性代数中的精髓部分,恰当地使用方法,可以使计算过程比较简洁,避免了迂回复杂的计算。 二、研究的基本内容与拟解决的主要问题 也许会觉得解线性方程组会很容易,但事实上想要彻彻底底的完整得出方程组的解是非常不容易的。若要正确完整得出方程解,首先要具备一定的线性代数的知识,其次要分析对于什么样类型,采用什么样的方法去解决更便捷、更有效。对于不同类型的问题,线性方程组解法的适用就至关重要。同时方程组存在解的个数的问题及线性方程组是否存在零解,如在实践中遇到的线性方程组,它的方程个数未必等于未知量个数,即使方程个数等于未知量个数,也未必有唯一解,有可能无解或有无穷多解。这就需要我们去根据相关问题去探究。 本报告主要涉及到一些方程求解的方法,比如初等行变换、回代法、高斯消元法、标准上三角形法等。同时还介绍了线性方程组在以下几方面的应用,在几何方面求点到平面的方程,空间中向量相关性的判别方法。 2.1线性方程组的一些性质线性方程组即一次方程组。线性方程组有一般形式、矩阵形式、向量形式。 含个方程,个未知量的线性方程组的一般形式为:表示未知量,称系数项,称常数项。将方程组的系数组成矩阵来计算方程的解称为系数矩阵,在系数矩阵的右边添上一列,这一列是线性方程组的等号右边的值形成了增广矩阵。线性方程组也可以用矩阵表示。型线性方程组可表示为,称为线性方程组的系数矩阵;为线性方程组的增广矩阵;方程组的解是使矩阵等式成立的维向量。在矩阵形式下,对增广矩阵作初等变换不改变方程组的解。如矩阵和是行初等变换下等价的矩阵,即存在可逆矩阵,使,则线性方程组是等价的线性方程组。线性方程组也可以用向

相似矩阵的性质及应用毕业论文

相似矩阵的性质及应用毕业论文 一.相似矩阵的定义 定义:设A 、B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得B=1-X AX ,就说A 相似于B ,记做B A ~. 二.相似矩阵的重要性质 性质1 数域P 上的n 阶方阵的相似关系是一个等价关系. 证明:1〉(反身性) 由于单位矩阵E 是可逆矩阵,且A=1-E AE ,故任何方阵A 与A 相似. 2〉(对称性) 设A 与B 相似,即存在数域P 上的可逆方阵C ,使得B=1-C AC ,由此可得A=CB 1-C =11)(--C B 1-C ,显然可逆,所以B 与A 相似. 3〉(传递性)设A 与B 相似,B 与C 相似,即存在数域P 上的n 阶可逆方阵P 、Q ,使B=1-P AP ,C=1-Q BQ ,则 C=BQ=1-Q 1-P APQ=1)(-PQ A (PQ ),从而A 与C 相似. 〈证毕〉 性质2 相似矩阵有相同的行列式. 证明:设A 与B 相似,即存在数域P 上的可逆矩阵C ,使得B=1-C AC ,两边取行列式得:|B |=|1-C AC |=|1-C ||A ||C |=|A ||1-C C |=|A |. 从而相似矩阵有相同的行列式. 〈证毕〉 下面先介绍两个引理 引理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上m ×s 矩阵,于是 秩(AB )≤min[秩(A ),秩(B )] (1) 即乘积的秩不超过各因子的秩. 证明:为了证明(1),只需要证明秩(AB )≤秩(A ),同时,秩(AB )≤秩(B ).

现在来分别证明这两个不等式. 设A=??????? ??nm n n m m a a a a a a a a a 2 1 22221 11211,B=?? ? ? ? ? ? ??ms m m s s b b b b b b b b b 21222 21112 11 令1B ,2B ,…,m B 表示B 的行向量,1C ,2C ,…n C ,表示AB 行向量.由计算可知,i C 的第j 个分量和m im i i B a B a B a +++ 2211的第j 个分量都等于kj m k ik b a ∑=1 ,因 而i C =m im i i B a B a B a +++ 2111 (i=1,2,…n ). 即矩阵AB 的行向量组n C C C ,,,21 可经B 的行向量组线性表出.所以AB 的秩不能超过B 的秩,也即, 秩(AB )≤秩(B ). 同样,令m A A A ,,21 表示A 的列向量,s D D D ,,21表示AB 的列向量,由计算可知 i D =11A b i +22A b i +…+m mi A b (i=1,2,…,s ). 这个式子表明,矩阵AB 的列向量可以经矩阵A 的列向量组表出,前者的秩不可能超 过后者的秩,这就是说,秩(AB )≤秩(A ). <证毕> 引理2:A 是一个s ×n 矩阵,如果P 是个s ×s 可逆矩阵,Q 是n ×n 可逆矩阵,那么 秩(A )=秩(PA )=秩(AQ ). 证明:令 B=PA,由引理1知秩(B )≤秩(A ); 但是由 A=1-P B, 又由 秩(A )≤秩(B ), 所以

分块矩阵的初等变换及其应用开题报告 [开题报告]

毕业论文开题报告 信息与计算科学 分块矩阵的初等变换及其应用 一、选题的背景、意义 1.选题的背景 在数学的矩阵理论中,一个分块矩阵或是分段矩阵就是将矩阵分割出较小的矩形矩阵,这些较小的矩阵就称为区块。换个方式来说,就是以较小的矩阵组合成一个矩阵。分块矩阵的分割原则是以水平线和垂直线进行划分。分块矩阵中,位在同一行(列)的每一个子矩阵,都拥有相同的列数(行数)。 通过将大的矩阵通过分块的方式划分,并将每个分块看做另一个矩阵的元素,这样之后再参与运算,通常可以让计算变得清晰甚至得以大幅简化。例如,有的大矩阵可以通过分块变为对角矩阵或者是三角矩阵等特殊形式的矩阵。 2.选题的意义 矩阵的分块是处理较高阶矩阵时常用的方法,用一些贯穿于矩阵的纵线和横线将矩阵分成若干子块,使得阶数较高的矩阵化为阶数较低的分块矩阵。在运算中,我们有时把这些子块当作元素一样来处理,从而简化了表示,便于计算。分块矩阵初等变换是线性代数中重要而基本的运算,它在研究矩阵行列式、特征值、秩等各种性质及求矩阵的逆、解线性代数方程中有着广泛的应用。因此,如何直接对分块矩阵实行初等变换显得非常重要,本文的目的就是讨论分块矩阵的初等变换及其应用[1]。 二、研究的基本内容与拟解决的主要问题 2.1 分块矩阵及其初等变换 2.1.1 分块矩阵的定义: 将一个分块矩阵A用若干条纵线和横线分成许多块的低阶矩阵,每一块低阶矩阵称为A 的子块。以子块为元素的矩阵A称为分块矩阵。 我们将单位矩阵E分块:

??? ? ? ??=s r r E E E 0 00 001O ,其中E r 是r i 阶单位矩阵(1

一类矩阵的若干性质及其在考研数学中的应用(原创)

矩阵T αβ的若干性质及其在考研数学中的应用 设向量βα,均为n 维非零列向量,记T αβA =。通过对历年考研试题的研究发现,线性代数部分比较重视对矩阵A 性质的考查,而课本和相关考研辅导书对这些性质没有做系统的研究,从而导致考研学生在遇到相关题目时不知所措。本文将研究矩阵A 的性质,并借助考研数学真题来说明这些性质的应用,进而强调掌握好这些性质的重要性。 1 矩阵),(00≠≠=βααβA T 的性质 性质1 矩阵),(00≠≠=βααβA T 的秩为1。 证明:令()0αT ≠=n a a a ,,,21 ,()0βT ≠=n b b b ,,,21 ,不妨设0≠i a ,则 ????????? ???????→????????????????→????????????????=00000021212112111212112111 n n n n n n n n n n n n i i i n b b b b a b a b a b b b b a b a b a b a b a b a b a b a b a b a b a b a A ????????????? ???→00 000000021 n b b b ,于是A 的秩为1。 性质2 A αβA n 1T )(-=n 。注意,αβT 就是A 的迹。 该性质利用矩阵乘法的结合律即可证明。由于秩为1的矩阵总可以表示为矩阵A 的形式[1] ,因此上述性质也可推广到以下结论: 推论1 秩为1的矩阵的n 次方等于该矩阵迹的n —1次方乘以这个矩阵本身。 性质3 当0≠=βα即T ααA =时,A 的全部特征值分别为0002,,,, α,其中唯一非零特征值对应的线性无关的特征向量为α。 证明:因为矩阵A 是实对称矩阵,所以它一定相似于一个对角阵 ????????????=n 21λλλ Λ 其中n λλ,,1 为A 的n 个特征值。由性质1,1)(=A r ,又因为相似矩阵有相同的秩,故

相似矩阵的性质及应用 论文

相似矩阵的性质及应用论文 相似矩阵的性质及应用 学院:电力学院专业:电子科学与技术小组人员:韩燕军 201009931 高向红201009929 高亚伟 201009930 靳佳奇 201009932 一定义 -1设A,B为n阶矩阵,如果存在一个可逆矩阵P,使得PAP=B,则称矩阵A 和B相似,记为A~B 。 211,111,,,,,,例:设A=,B=,P= ,,,,,,,,,,,,01,12,10,,,,,, 211,1,,,,1,1,,,,,,-1,,,,因为PAP=-1 ,,,12,10,,,,,,,12,, 100111,,,,,, =,,==B ,,,,,,,,,,1101,11,,,,,, 所以A~B 二矩阵的相似关系具有的性质 -11 自反性 A~A 因为A=EAE 2对称性如果A~B,则B~A -1-1如果设A~B,则有可逆矩阵P,使B=PAP,令C=P, -1- 1 -1-1因为A=(P)B P=CBC,则B~A 3传递性如果A~B,B~C,则A~C -1-1如果设A~B,B~C,则存在可逆矩阵M,N,使B= MAM,C= NAN, -1-1-1故C= N M AMN= (MN) A(MN),所以A~C 三. 矩阵的其它性质 1.若A~B,则A与B的行列式相等 2. 若A~B,则A可逆的充要条件是B可逆 3. 若A~B,且A可逆,则A与B的逆矩阵也相似 4. 若A~B,则A与B有相同的特征多项式,但特征多项式相等的矩阵并不一定相似

5. 若A~B,则r(A)= r(B) TT 例:证明若A~B,则A~B -1T-1TTT-1T-1T 证:因为B=PA P,所以B=(PAP)=PA(P)=CAC T-1TT 其中P= C ,于是A~B 四求下列矩阵的特征值和特征向量: (1); 解故A的特征值为1(三重) 对于特征值1 由 T得方程(AE)x0的基础解系p1(1 1 1) 向量p1就是对应于特征值1的特征值向量. (2); 解 故A的特征值为10 21 39 对于特征值10 由

矩阵相似的若干判别法及应用讲解

本科生毕业论文 矩阵相似的若干判别法及应用 学号: 2011562010 姓名:邵坷 年级: 2011级本科班 系别:数学系 专业:数学与应用数学 指导教师:由金玲 完成日期: 2015 年4月30日

承诺书 我承诺所呈交的毕业论文(设计)是本人在指导教师指导下进行研究工作所取得的研究成果.据我查证,除了文中特别加以标注的地方外,论文中不包含他人已经发表或撰写过的研究成果.若本论文(设计)及资料与以上承诺内容不符,本人愿意承担一切责任. 毕业论文(设计)作者签名: 日期:年月日

目录 摘要 ..................................................................................................................................... I Abstract .................................................................................................................................... II 前言 (1) 第一章基本概念 (2) 1.1 矩阵 (2) 1.1.1 矩阵的概念 (2) 1.1.2 矩阵的性质 (2) 1.2 矩阵相似 (3) 1.2.1矩阵相似的概念 (3) 1.2.2 矩阵相似的性质 (4) 第二章矩阵相似的判别 (5) 2.1 特征值与特征向量法判定 (5) 2.1.1 特征值和特征向量的定义及求法 .................................. 错误!未定义书签。 2.1.2 特征值和特征向量的基本性质与矩阵相似的判定 (5) 2.2用初等变法换判定 (8) 2.3 应用分块矩阵相似判定 (10) 第三章矩阵相似的应用 (13) 3.1 利用相似变换把方阵对角化 (13) 3.2 矩阵相似性质的简单应用 (13) 3.3 矩阵相似在实际生活中的应用 (14) 结论 (16) 参考文献 (17) 致谢 (18)

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用 0 引言 幂等矩阵是一类性质特殊的矩阵,不仅在高等代数中有着重要的应用,在其它课程中,如计量经济学、统计学课程中也有着重要应用。在代数学中,线性变换的许多问题都可以转化为幂等矩阵来解决。但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的。因此本文对幂等矩阵的性质做出相关讨论。本文主要给出幂等矩阵特征值、特征子空间和Jordan标准型的基本性质,同时给出了一些相关的应用。 1 主要结果 首先给出幂等矩阵的定义和基本性质。 定义1:若n阶方阵A满足A2=A,则称A为幂等矩阵。 下面给出关于幂等矩阵的一些简单的性质。 定理1:幂等矩阵A的特征值只能是0或者1。 证明:设A为任意一个幂等矩阵。 由A2=A,可得 λ2=λ 其中λ为A的特征值。于是有 λ=1或0, 命题得证。 推论:可逆的幂等矩阵的特征值均为1。 证明:设A为一可逆的幂等矩阵。由A2=A可得 A2A-1=AA-1 即 A=E。 此时有 λE-E=0 即 λ=1 其中,λ为A的特征值。命题得证。 定理2:任意的幂等矩阵A都相似于对角阵,即存在可逆阵P,使得: P-1AP=E■ 00 0, 其中r=R(A)。 证明:A为任意幂等矩阵,J为其Jordan标准型,即存在可逆矩阵P,使得P-1AP=J=■, 其中Ji=■。 由此可得J 2=J。于是有,Ji 2=Ji。 此时,Ji只能为数量矩阵λ■E。 又因为A2=A,所以λ■=0或1,且r=R(A)。命题得证。 定理3:幂等矩阵的特征值为1的特征子空间为其值域,特征值为0的特征子空间为其零(核)空间。 证明:(i)A为一n阶幂等矩阵。?琢为其特征值1对应的特征向量。 则有,A?琢=?琢。由此可得?琢属于A的值域。

矩阵相关性质

等价:存在可逆矩阵Q P ,,使B PAQ =,则A 与B 等价; 相似:存在可逆矩阵P ,使B AP P =-1,则A 与B 相似; 合同:存在可逆矩阵C ,使B AC C T =,则A 与B 合同. 一、相似矩阵的定义及性质 定义1 设B A ,都是n 阶矩阵,若有可逆矩阵P ,使B AP P =-1 ,则称B 是A 的相似矩阵, 或说矩阵A 与B 相似,记为B A ~.对A 进行运算AP P 1-称为对A 进行相似变换,可逆矩阵P 称为把A 变成B 的相似变换矩阵. 注 矩阵相似是一种等价关系. (1)反身性:A A ~. (2)对称性:若B A ~,则A B ~. (3)传递性:若B A ~,C B ~,则C A ~. 性质1 若B A ~,则 (1)T T B A ~; (2)11~--B A ; (3)E B E A λλ-=-; (4)B A =; (5))()(B R A R =. 推论 若n 阶矩阵A 与对角矩阵??????? ? ?=Λn λλλ 21相似,则n λλλ,,,21 是A 的n 个特征值. 性质2 若1-=PBP A ,则A 的多项式1)()(-=P B P A φφ. 推论 若A 与对角矩阵Λ相似,则 1211)()()()()(--?????? ? ??=Λ=P P P P A n λφλφλφφφ . 注 (1)与单位矩阵相似的只有它本身;

(2)有相同特征多项式的矩阵不一定相似. 二、矩阵可对角化的条件 对n 阶方阵A ,如果可以找到可逆矩阵P ,使Λ=-AP P 1为对角阵,就称为把方阵A 对角化。 定理1 n 阶矩阵A 可对角化(与对角阵相似)A ?有n 个线性无关的特征向量。 推论 如果n 阶矩阵A 的n 个特征值互不相等,则A 与对角阵相似.(逆命题不成立) 注:(1)若A ~Λ,则Λ的主对角元素即为A 的特征值,如果不计i λ的排列顺序,则Λ唯 一,称之为矩阵A 的相似标准形。 (2)可逆矩阵P 由A 的n 个线性无关的向量构成。 把一个矩阵化为对角阵,不仅可以使矩阵运算简化,而且在理论和应用上都有意义。 可对角化的矩阵主要有以下几种应用: 三、实对称矩阵的相似矩阵 实对称矩阵是一类特殊的矩阵,它们一定可以对角化.即存在可逆矩阵P ,使得Λ=-AP P 1.更可找到正交可逆矩阵T ,使和Λ=-AT T 1 定理2 实对称矩阵的特征值为实数。 定理2的意义:因为对称矩阵A 的特征值1λ为实数,所以齐次线性方程组0)(=-x E A i λ是实系数方程组。又因为0=-E A i λ,可知该齐次线性方程组一定有实的基础解系,从而对应的特征向量可以取实向量。 定理3:实对称矩阵A 的对应于不同特征值的特征向量正交。 定理4:A 为n 阶实对称矩阵,0λ是A 的k 重特征值,则对应于0λ的特征向量中,线性无关的个数为k ,即0)(0=-X E A λ的基础解系所含向量个数为k 。 定理5:(实对称矩阵必可对角化) 对于任一n 阶实对称矩阵A ,一定存在n 阶正交矩阵T ,使得Λ=-AT T 1。其中Λ是以A 的n 个特征值为对角元素的对角阵。 定义2 若二次型Ax x f T =,则对称矩阵A 叫做二次型f 的矩阵,也把f 叫做对称矩阵A 的二次型.对称矩阵A 的秩就叫做二次型f 的秩. 推理 对称矩阵A 为正定的充分必要条件是:A 的特征值全为正. 定理3 对称矩阵A 正定的充分必要条件是:A 的各阶主子式都为正,即

相关文档
最新文档