变形监测概述76883-完整版

变形监测的概述及分析

变形监测的概述及分析 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形 体变形性态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小、及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。 变形监测的内容,应根据变形体的性质和地基情况决定。对水利工程建筑物主要观测水平位移、垂直位移、渗透及裂缝观测,这些内容称为外部观测。为了了解建筑物(如大坝)内部结构的情况,还应对混凝土应力、钢筋应力、温度等进行观测,这些内容常称为内部观测,在进行变形监测数据处理时,特别是对变形原因做物理解释时,必须将内、外观测资料结合起来进行分析。 变形监测的首要目的是要掌握水工建筑物的实际性状,科学、准确、及时的分析和预报水利工程建筑物的变形状况,对水利工程建筑物的施工和运营管理极为重要。变形监测涉及工程测量、工程地质、水文、结构力学、地球物理、计算机科学等诸多 学科的知识,它是一项跨学科的研究,并正向边缘学科的方向发展。 变形监测工作的意义主要表现在两个方面:首先是掌握水利工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。 建筑物变形监测内容一般有沉降监测、水平位移监测和倾斜变形监测等。由于高层建筑物变 形主要表现在沉降变形上,即垂直变形,所以本文中主要针对沉降监测进行研究,给出了楼房变形监测方法和步骤,以及注意的问题。 2、沉降监测方法 2.1点位布置 在适当位置选择三个参考基准点构成本次沉降观测工作的起算基准系统。基准点的稳定 是沉降观测工作中最重要的因素。在沉降观测之前和过程中应对三个基准点进行联测。三个基准点相互验证,选择最稳定的点作为沉降观测起始点。 根据规范规定,沉降观测点(所谓沉降观测点是指为了反映出建筑物的准确沉降情况, 沉降观测点设置在最能反应沉降特征且便于观测的位置,在建筑物上纵横向对称,且相邻点之 间间距以15 ~30 m为宜,均匀分布在建筑物的周围。沉降观测点要符合各施工阶段的观测 要求,特别要考虑装饰阶段因施工破坏或掩盖沉降观测点,不能连续观测而失去观测意义。另外在沉降观测点上方设置保护设施,避免重物砸到发生变形而得不到准确的沉降量。高层建筑物的沉降观测。 沉降观测依据以下原则布设:(1)参照设计图纸;(2)建筑物的极大转角处;(3)高低 层建筑物、纵横墙的交接处两侧;(4)建筑物沉降缝两侧、基础埋深相差悬殊处。)应选 择在建筑物的四周和重要的承重部位,沉降缝、后浇带两侧。根据《建筑变形测量规范》的规定,并结合设计要求,重点考虑该地区的地质条件等,选取沉降观测点。工程中一般每楼分别布设沉降观测点4个,具体位置现场定。实际安装时,位置可进行调整,最终资料以调整后的为准; 2.2观测方案 在建筑物沉降区外,埋设沉降观测参考基准点三个,基准点应牢固、稳定。

变形监测实习总结

变形监测测量实习总结 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小、及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。 变形监测工作的意义主要表现在两个方面:首先是掌握各种工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。 我们本次变形监测共进行了三项内容:位移观测、倾斜观测和沉降观测。 《变形监测》是工程测量专业重要的课程内容之一,按照培养目标和教学大纲的要求,我们进行了为期一周的课程实习。旨在通过本次课程实习来加深对变形监测的的基础理论、测量原理及方法的理解和掌握程度,切实提高我们的实践技能,初步掌握位移监测、倾斜监测和沉降监测的基本方法,熟练使用作业各工序的仪器设备及作业过程等。

对于本次实习,老师和同学们都非常的重视,在第一天的实习动员会上,李老师就本次实习的意义、实习中的注意事项等方面做了明确的阐述,同时,也就本次实习内容和实习步骤做了详细的说明,并给同学们准备了相关的规范和资料,使同学们能够更好的完成本次实习任务。在其后的实习过程中,同学们实习目的明确、积极主动、不怕吃苦、勇于承担重担,在老师的指导下,顺利的完成了大坝位移监测、土木系实训楼倾斜监测和八号实验楼沉降监测等实习内容。通过本次实习,不仅使我们的理论知识得到巩固、操作能力得到加强,同时也使我们运用所学知识的解决实际问题的能力得到了提高。 对于大坝的位移监测,我们首先在面板堆石坝模型的坝体上选择了三个观测点,然后在其旁边的坚固水泥地上定了两个钢钉作为观测点,通过多次量距后,我们选择了假设坐标作为本次观测的已知数据,对坝体上的三个观测点进行了三天的前方交会法位移监测,并采用全圆观测法每次观测各六个测回,期间严格按照规范的相关要求,力求数据的精确、实用。经观测,大坝的位移量极小,非常稳固,可以安心使用。 对于土木系实训大楼的倾斜监测,我们选择了大楼的东南角,并在其南边和东边各1.5倍楼高的地方选择了坚固地面上的钢钉作为观测点,采用的是垂直投影的观测方

桥梁工程变形监测方案

桥梁工程变形监测方案内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

桥梁工程变形监测方案 一、概述 大型桥梁,如斜拉桥、悬索桥自20世纪90年代初期以来在我国如雨后春笋般的发展。这种桥梁的结构特点是跨度大、塔柱高,主跨段具有柔性特性。在这类桥梁的施工测量中,人们已针对动态施工测量作了一些研究并取得了一些经验。在竣工通车运营期间,如何针对它们的柔性结构与动态特性进行监测也是人们十分关心的另一问题。尽管目前有些桥梁已建立了了解结构内部物理量的变化的“桥梁健康系统”,它对于了解桥梁结构内力的变化、分析变形原因无疑有着十分重要的作用。然而,要真正达到桥梁安全监测之目的,了解桥梁的变化情况,还必须及时测定它们几何量的变化及大小。因此,在建立“桥梁健康系统”的同时,研究采用大地测量原理和各种专用的工程测量仪器和方法建立大跨度桥梁的监测系统也是十分必要的。 二、变形监测内容 根据我国最新颁发的“公路技术养护规范”中的有关规定和要求,以及大跨度桥梁塔柱高、跨度大和主跨梁段为柔性梁的特点,桥梁工程变形监观测的主要内容包括: 1) 桥梁墩台沉陷观测、桥面线形与挠度观测、主梁横向水平位移观测、高塔柱摆动观测; 2) 为了进行上述各项目的测量,还必须建立相应的水平位移基准网与沉陷基准网观测。 三、系统布置 1)桥墩沉陷与桥面线形观测点的布置

桥墩(台)沉陷观测点一般布置在与墩(台)顶面对应的桥面上;桥面线形与挠度观测点布置在主梁上。对于大跨度的斜拉段,线形观测点还与斜拉索锚固着力点位置对应;桥面水平位移观测点与桥轴线一侧的桥面沉陷和线形观测点共点。 2)塔柱摆动观测点布置 塔柱摆动观测点布置在主塔上塔柱的顶部、上横梁顶面以上约m的上塔柱侧壁上,每柱设2点。 3)水平位移监测基准点布置 水平位移观测基准网应结合桥梁两岸地形地质条件和其他建筑物分布、水平位移观测点的布置与观测方法,以及基准网的观测方法等因素确定,一般分两级布设,基准网布设在岸上稳定的地方并埋设深埋钻孔桩标志;在桥面用桥墩水平位移观测点作为工作基点,用它们测定桥面观测点的水平位移。 4)垂直位移监测基准网布置 为了便于观测和使用方便,一般将岸上的平面基准网点纳入垂直位移基准网中,同时还应在较稳定的地方增加深埋水准点作为水准基点,它们是大桥垂直位移监测的基准;为统一两岸的高程系统,在两岸的基准点之间应布置了一条过江水准线路。 四、方法与成果精度 1)GPS定位系统测量平面基准网 为了满足变形观测的技术要求,考虑到基准网边长相差悬殊,对基准网边长相对精度应达到不低于1/120000和边长误差小于±5mm的双控精度指标;由于工作基点多位于大桥桥面,它们与基准点之间难以全部通视,可采用GPS定位系统施测。为了在观测期间不中断交通,且避开车辆通行引起仪器的抖动和干扰GPS接收机的信号接收,对设置在桥面工作基点的观测时段应安排在夜间作业,尽可能使其

2. 沉降变形观测工作总结报告

新建九景衢铁路 I I标段一分部 沉降变形观测工作总结报告 (DK264+909.71~DK165+187.50段) 中铁四局集团九景衢铁路II标段一工区 2015年9月

线下工程沉降变形观测工作报告 (DK264+909.71~DK265+187.50段) 一、工程概况 九景衢铁路II标段一分部承建的九景衢铁路DK264+909.71~DK265+187.50段,全长0.277公里,位于浙江省衢州市常山县,管段主要工程项目为桥梁1座、路基277m、涵洞1座。 二.程地质及水文地质概况 1、地形地貌:本路基段地势为多山,中间为沟壑地形。 2、地层岩性: (1):粉质粘土,褐黄色,硬塑,厚0.5~3.1m,σ0=180kPa,III; (2)-1:角砾凝灰熔岩,全风化,褐灰色,厚0.5~3.2m,σ0=200kPa,III; (2)-2:角砾凝灰熔岩,强风化,灰褐色,节理裂隙发育,岩体破碎,厚7.5~13.3m,σ0=500kPa,Ⅳ (2)-3:较砾凝灰熔岩,强风化,褐灰色,节理裂隙发育,岩体破碎,厚>5.0m,σ0=800kPa,Ⅴ。 3、水文地质条件:地下水为空隙潜水及基岩裂隙水,不发育,测时水位深0~3.3m。 4、物理地质:地震动峰值加速度为0.05g。 三.设计依据 1、路段稳定安全系数:考虑列车荷载时Kmin≥1.25,预压荷载条件下Kmin≥1.15,架桥荷载条件下Kmin≥1.15。 2、路基工后沉降标准:工后沉降一般不应超过15mm;路桥交界处的差异沉降不应大于5mm。 3、敬沉降计算分析,桥头工后沉降不满足控制标准,采用预压处理。计算分析采用指标:填土:γ=20kN/m3,Cu=10kPa,Φu=30° (1)层:ω=25.8%,γ=17.5kN/ m3,e=0.97,Cu=74.25kPa,ΦCu=11.45°,Es=8.56MPa,Ps=2.02MPa; (2)-1层:Es=15.0MPa。 4、路堤边坡高小于3m时,边坡采用混凝土空心砖内培土撒草籽、种灌木防护;路堤边坡搞大于等于3m时,采用M7.5浆砌片石拱型截水骨架,内培土撒草籽、种灌木防护,并在填筑过程中边坡3.0m宽度范围内铺设一层双向土工格栅,层间距0.5m。

现代变形监测重点内容与思考题答案

第1章变形监测概述 一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。 分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测 五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。(二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。

变形监测实习报告

变形监测实习报告 变形监测实习报告_20xx301610245_王宏达 变形监测实习报告 王宏达20xx301610245 一、各监测点本期沉降量 1第1次0第2次1.2第3次0.5第4次0.3第5次-1.4第6次0.3第7次-0.3第8次-0.6第9次0.6第10次-0.9第11次-0.3第12次-0.3第13次-0.5第14次 -0.3 23003.2 4.4 -1.2-2.90 0 -1.8-0.40.8 0.5 -0.9-1.30.9 0.9 -1.4-0.71.3 0.7 -0.4-0.2-0.8-0.4-0.5-0.40.1 -0.3 45003.26-3-3.40-1.30.7 -0.2 -0.10.1-0.4-10.8 1.3 -0.3-0.80 0.5

-0.5-0.6-1.9-1.80.40.70.2 3.7 67000.50.5-0.10.41.60.2 -0.4-1.1-0.7-1 0.7-0.6-0.31.2 0.3-0.3-0.90.1 -0.9-0.4-0.9-1.31.40.5 -0.6 -3.1801.10.10.4 0-0.6 -0.40.5 -1.20.8 -0.6-0.90 -3.8 二、各期的平均累积沉降量 第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次第11 101.20.50.3-1.40.3-0.3-0.60.6-0.9-0.3 20304050 600.5-0.11.6-0.4-0.70.7-0.30.3-0.9-0.9 7080 平均02.5125-1.20.15-0.575-0.0875-0.5250.5875-0.4750.2-0.487 3.24.4-1.20-1.8 -2.90-0.4 3.26-30 -3.4-1.3 0.51.10.40.10.20.4-1.1-1-0.6 0-0.6-0.4 0.7-0.2-0.1-0.4 0.1-1 0.80.5-0.9

变形监测技术要求

针对目前变形监测项目应符合以下规范要求 基坑开挖对临近轻轨高架结构的影响主要集中在以下方面:一是坑外土体的位移;二是既有高架桥与基坑相对位置的关系;三是轻轨高架上下部的结构关系;四是轻轨高架的结构基础和埋深情况。五是轻轨高架自身的结构自重和轻轨高架中动载荷的控制与变化情况等。基坑周边轻轨高架在基坑开挖中的变形情况是复杂的,变形的原因是多元的,变形的效果是动态的。在实践工程中,基坑开挖将要造成土体的不均匀沉降和水平方向的位移,不仅要做好岩土工程计算,制定可行性基坑开挖方案,同时还要做好变形监测工作,防止各种因素对轻轨高架桥产生的影响。对于建筑基坑施工对周边轻轨高架的变形影响,高程和平面控制可参考规范二级要求。 变形监测应设置平面和高程基准点,要求设置在变形区域以外,位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的情况而定,在建筑基坑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。 1、沉降观测的高程基准点不应少于3个,应与工作基点形成闭合环或附合线路。高程基准点和工作基点布设应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀或破坏的地方,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍。当使用静力水准测量方法测量沉降时,用于联测观测点的工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助

点传递高程。实际工作中采用精度不低于1mm级水准仪配合铟瓦尺或条码尺进行水准测量,观测方式其中高程控制测量、工作基点联测及首次观测值应采用往返测或单程双测站法,其他各次沉降观测点可采用单程观测或单程双测站法。起始点高程宜采用测区原有高程系统。较小规模的监测项目可假定高程系统,较大规模的项目宜与国家水准网联测。二级水准视线长度应≤50m,前后视距差≤2.0m,前后视距差累积≤3.0m,视线高度(下丝)≥0.3m。用数字水准仪观测时最短视线长度不宜小于3m,最低水平视线高度不应低于0.6m。限差要求往返较差及附合或环线闭合差≤1.0√n(mm),单程双测站所测高差较差≤0.7√n(mm),检测已测段高差之差≤1.5√n(mm)。n为测站数。用于运营阶段的结构、轨道和道床的垂直沉降监测点高程中误差±0.5mm,相邻监测点高程中误差±0.3mm。同一项目在不同周期进行变形监测应采用相同的观测路线和观测方法,使用相同的仪器和设备,并应固定观测人员。首次观测应独立观测2次取平均值作为初始值。监测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大沉降时可加密监测频率;连续一个月沉降趋势趋于稳定状态(无沉降差,纯属仪器误差)的情况下,可要求减少监测频率。在项目开始前和结束后应对使用的水准仪、水准标尺进行检验,二级水准观测仪器i角不得大于15”。水准仪i角的测定办法,如图所示:

变形测量技术总结

变形测量技术设计书

第一部分、测量项目概述 一、任务来源 为了保证黄河水利职业技术学院的建筑物安全,小组接到了对10、11宿舍楼建筑物垂直度监测的任务。 该几栋楼建筑地基为中密卵石土,属中压缩土,地基设计等级为乙级,建筑物变形测量的级别按《建筑变形测量规范》JGJ 8-2007第3.0.4条的规定为二级,沉降观测精度指标为“观测点测站高差中误差为±0.5mm”。 测区概况 河南省开封市东京大道西段(黄河水利职业技术学院新校区); (4)测区内地势平坦,地形并不复杂,但杂草较多。 (5)黄河水院内设有小卖部食堂开水房洗浴中心理发店住宿区,基本符合一般城市生活标准。 测量现有2011年生产的1:500数字化地形图,其坐标北京坐标系,高程为1985年国家高程基准。经现场踏勘,该地形图内测区现有地形基本没改变,可作高程基准点点位设计用。 二、测量项目内容 按照委托方要求,测量项目内容为: 10#、11#楼施工期、使用期头三年的建筑物沉降测量: 沉降测量周期为两天,每两天观测一次,工期为一周共测量测量2次。 三、测量项目所执行的技术标准 建筑物沉降测量依据《建筑变形测量规范》JGJ 8-2007执行;

建筑物垂直度测量依据《工程测量规范》GB50026—2007中8.3.11相关内容执行。 第二部分设计方案 一、高程基准点的布设与测量设计 1、高程基准点应距建筑物施工场地有一定距离,又能保证用较短的水准路线连测到高程工作基点,更重要的是要稳固和安全。根据现场踏勘,建筑物施工场地东面为宿舍区,人员较复杂,很难保证点位稳固和安全,水准路线增长,宿舍区内人员较复杂,点位安全难以保障,因此,我们将高程基准点选择在西面的环路边,且满足《建筑变形测量规范》JGJ 8-2007 “高程基准点点位与邻近建筑物基础最大宽度的2倍”的要求。 2、高程控制网测量方案及点位埋设要求 闭合的水准路线组成高程控制网,为什么我们要布似乎多于的宿舍楼高程基准点呢?一是宿舍楼东面无可靠的布点位置,二是多一组高程基准点能使基准点更安全,不致于发生被破坏后无法实施沉降观测的情况,三是便于对基准点的稳定性进行检验。因此,高程控制网测量时,环路高程基准点为起点,先设站测量两个基点的高差后,再以该站测向工作基点, 高程控制系统采用1985国家高程基准,起算数据从施工控制网引测。 高程基准点的布设及高程控制网测量路线见《工程平面位置图及基准点分布图》 根据《建筑变形测量规范》4.4.1第2、3条的规定,高程控制网水准支线应进行往返测,水准测量作业的基本方法应符合国家标准《国家一、二等水准测量规范》GB/T12897—2006相应规定。

变形监测工作总结

变形监测工作总结 篇一:变形监测实习总结 变 班级:测量1102班 形监测实习总结 第四组 组长:杨震 组员:刘江,纪为栋,任福磊,方子哥,陈斌,程瑜,陈斌,李久民 变形监测测量实习总结 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变体形的形状、大小、及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。 变形监测工作的意义主要表现在两个方面:首先是掌握各种工程建筑物的稳定性,为安全运行诊断提供必要的信息,一遍及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。 我们本次变形监测共进行两项内容:水平位移监测、

垂直位移监测即沉降观测。 《变形监测》是工程测量专业重要的课程内容之一,按照培养目标和教学大纲的要求,我们进行了为期一周的课程实习。旨在通过本 次课程实习来加深对变形监测的基础理论、测量原理及方法的理解和掌握程度,切实提高我们的实践技能,初步掌握位移监测、沉降监测的基本方法,熟练使用作业各工序的仪器设备及作业过程等。 测量过程中,大家都能熟练的操作仪器,并针对不同的实习内容的特点、具体情况等采用不同的观测方法及观测顺序,对实施过程中出现的问题能够会分析原因并正确的运用误差理论进行平差计算,做到按时、快速、精确地完成每次观测任务。各阶段的观测,都定时进行,不等漏测和补测。观测中严格遵循“五定”原则,即:通常所说的观测依据的基准点、工作基点和被观测物上的沉降观测点,点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测时的环境条件基本一致;观测路线、镜位、程序和方法要固定。通过以上措施,在客观上尽量减少了观测误差的不定性,使所测的结果具有统一的趋向性,保证各次复测结果与首次观测的结果可比性更一致,使观测沉降量和水平位移量更真实。 实习时间总是短暂而充实的,但通过实习,总能让我们学到新的知识,新的感悟。俗话说,实践是检验真理的惟

变形监测技术总结

目录 一、监测项目各测点的平面布置图 (1) 二、观测结果及分析 (2) 2.1水平位移 (3) 2.2变化速率 (4) 2.3水平位移监测成果表 (5) 2.3.1基坑监测点水平位移成果表(一) (6) 2.3.2基坑监测点水平位移变化速率成果表(二) (1) 三、结论 (2)

一、监测项目各测点的平面布置图 二、观测结果及分析 自进行第一次观测至进行最后一次观测期间,各监测点的水平位移变化情况见表1,位移变化速率情况见表2。现对此观测过程中基坑变化情况分析如下。 2.1水平位移 2.1.1在观测过程中,5个位移监测点的累计水平位移量在9.6mm~16.2mm 之间。位移变化速率为0.0mm/d~0.6 mm/d,均未达到报警值。 2.1.2随着基坑土方开挖,各监测点的水平位移逐渐增加。在基坑开挖到设计深度时,水平位移累计量最大为16.2mm(SW5监测点),最大速率为0.6mm/d(SW3监测点)。 2.1.3在基坑开挖到设计深度后的监测过程中,各监测点的水平位移变化均呈收敛趋势,在最后几次观测中,各点变化值接近0.0mm,表明工程基坑在基坑土方开挖及地下结构施工过程中处于稳定状态。 2.2变化速率 各监测点的变形速率比较小,且变形速率比较稳定,从表格的变化也可以看出这点。底板完成以后,变形量明显减小,但是我们仍然不能忽视

部分监测点位已经接近报警值这一事实。 2.3水平位移监测成果表 2.3.1 基坑监测点水平位移成果表(一)

2.3.2 基坑监测点水平位移变化速率成果表(二) 表2

三、结论 本次监测工作方法适当,较准确的反映了基坑和周边环境变形情况,所有资料真实准确。基坑的监测工作,可以根据实时的变形位移数据,分析判断预测基坑及周边环境使用过程中的土体位移,采取有效措施,达到保护基坑和周边环境的目的。本次监测项目经过检查监测资料准确、可靠。在监测期间所使用的检测仪器均在有效期内,监测工作按监测方案进行。

监测工作总结

八月份工作总结 地铁工程施工是在地下进行,施工不可避免扰动地层,引起的地层变形会导致地表建筑的破坏。因此,地铁隧道施工要考虑对城市环境的影响。隧道施工引起的地层变形,特别是在地面建筑设施密集、交通繁忙的城市中进行地铁隧道施工,对于地铁掘进过程中对土体的扰动,可以通过施工监测及时预测地层变形的发展,控制地下工程施工对环境的影响程度。 监测的主要范围是:隧道线路及外缘两侧范围内的地面建筑物、地面及道路。每次观测数据相互比较,从而计算其沉降量,为盾构施工设定各参数提供依据。同时也相应的增加检测频率,确保监测结果的及时可靠。 一、地表沉降 基点埋设。首先,基点应埋设在沉降影响范围以外的稳定区域内;必要时应埋设至少两个基点,以便基点互相校核;基点的埋设必须牢固可靠,基点应和附近监测点联测取得原始高程,基点应埋设在视野开阔的地方,以便利于观测。 沉降值计算。监测基点为标准水准点(高程已知),监测时通过测得各监测点的高程差,可得到各监测点的标准高程,然后与上次测得高程进行比较,差值即为该测点的沉降值。 二、建筑物的沉降 在施工过程中,通过对周围建筑物的变形监测,随时了解施工对周围建筑物的影响程度及影响范围,便于及早发现问题、解决问题,

将变形控制在建筑物安全警界值内,保证周围建筑物的安全。 监测点的埋设在建筑物的基础或墙上钻孔,测点基本布设在被测建筑物的角点上,测点的埋设高度应方便观测,同时测点应采取保护措施,避免受到破坏。 三、建筑物的开裂 建筑物的沉降和倾斜必然导致结构物产生裂缝,如发现裂缝,将裂缝进行编号并划出测读位臵,同时密切关注是否有裂缝的产生,并跟踪观测。 施工监测是地铁施工的眼睛,在整个工程中举足轻重,施工安全极为重要。对于本工程而言区间在城市道路下方推进、对周边楼房等重要建筑物有一定影响。因此,须有针对性地对监测重点进行及时观测,及时反馈,充分发挥其作用。

高层建筑变形监测开题报告

山东建筑大学毕业论文开题报告表 专业:测绘工程班级:测绘071 姓名:陶俊辉 论文题目高层建筑物变形监测的方法研究 一.选题背景和意义 随着经济发展和城市化进程的加快,城市中出现了越来越多的高层建筑物,从几十层到上百层的楼房。根据能量守恒定律,楼房质量对所在地表的压力会使地面发生变形,直接影响楼房的受力情况。如果地表受力不均匀,就会发生楼房倾斜甚至倒塌等灾害,直接影响到居民的生命和财产安全。为了确保这些楼房的安全使用,需要对其进行长期的精密变形观测,以确定其变形状态。 高层建筑变形监测高层建筑变形监测的直接目的之一就是对高层建筑的运营 状态进行安全监控、评价和预报。从20世纪90年代以来,高层建筑变形监测手段的硬件和软件迅速发展,监测范围不断扩大,监测自动化系统、数据处理和资料分析系统、安全预报及分析评价系统也在不断的完善。工程设计采用新的可靠度设计理论与方法以来,变形监测成为提供设计依据、优化设计和可靠度评价不可缺少的手段,成为工程设计和施工质量控制的重要手段。 由于工程自身的特殊性和复杂性,在一般情况下,直接采用变形监测原始数据对高层建筑安全稳定状态进行评估和反馈是困难的。因此,为了实现高层建筑安全运营的设计目的,一般需要结合具体的工程和变形监测不同时段的不同特点和要求分别 选用不同的手段和方法,认真做好监测数据和资料的整理分析工作,对高层建筑的安全稳定状态进行评估、预测和预报,并为改进建筑工程设计、施工方法和运营管理提供科学的依据。 高层建筑变形观测简便、精度高,能直观地、及时地掌握高层建筑性态的变化,许多高层建筑在出现危险之前都常常发生较大的变形。因而,分析高层建筑变形规律、对高层建筑的变化趋势进行有效预测对高层建筑安全监控、确保高层建筑安全运营具有重要意义。

变形监测技术在桥梁监测中的应用

测绘第35卷第1期2012年2月 13 变形监测技术在桥梁监测中的应用 董学智1 李胜1 李爱民2 (1.四川省第三测绘工程院,四川 成都 610500 ;2.广州博瑞测绘技术有限公司,广东 广州 510430) [摘要] 变形监测是工程测量的重要研究内容,它可以分析和评价建筑物或工程设施的安全状态,研究变形规 律及预报变形,是一种重要的测量监测手段。本文通过对某高速公路的桥梁沉降监测和承台水平位移监测,探 究了在桥梁监测中变形监测的实施方法及数据分析与处理模式,分析了桥梁变形的规律,为桥梁养护提供准确 的监测意见及报告。 [关键词] 变形监测;桥梁监测;数据处理 [中图分类号] P258 [文献标识码] A [文章编号] 1674-5019(2012)01-0013-03 Deformation Monitoring on the Application of Bridge Monitor DONG Xue-zhi1 LI Sheng1 LI Ai-min2 Abstract: Deformation monitoring is an important content of project surveying. It can analysis and evaluate the safe status of buildings or engineering facilities, and find the deformation law for the forecast, which is an important measurement for monitoring. This article through monitoring the subsidence and horizontal displacement of bridges along the other Expressway, to explore the method of deformation monitoring, data analysis with special model, analysis the deformation law of bridges, for bridge maintenance based on the accurate monitoring reports. Key words: Deformation monitoring; Bridge monitor; Data processing 1 引言 近年来,随着我国桥梁建设事业的迅猛发展,桥梁结构和形势日趋复杂,规模也越来越大,桥梁的施工正朝着超大化的方向发展,对其进行变形监测也就显得尤为重要。 变形监测是对被监测的对象或物体进行测量,以确定其空间位置及内部形态随时间的变化特征。其主要意义是分析和评价建筑物的安全状态、验证设计参数、反馈设计施工质量、研究正常的变形规律和预报变形[1]。桥梁的变形监测是对桥梁整体性能的监测,其基于工程测量的原理、技术和精密测量仪器,对桥梁在垂直方向和水平方向的位移变形进行定期或实时监测,并通过绘制相应的位移变形影响线或影响面来监测桥梁各部位位移的变形状态,预测其变形规律,为桥梁的维修、养护和管理决策提供依据和指导。 本应用研究通过对广深高速公路的桥梁沉降和水平位移监测,探讨变形监测理论在实际工程问题中的应用,通过合适的数据处理方法,分析和总结桥梁变形的规律,为桥梁的养护、管理和决策提供依据和指导。 2 桥梁变形监测实施原理 变形监测的主要目的是确切地反映建筑物、构筑物的实际变形程度或变形趋势,并以此作为确定作业方法和检验成果质量的基本要求。在桥梁变形监测中,主要包括桥梁沉降监测及承台水平位移监测。地面沉降是一种普遍而又日趋显著的地质现象,是区域性地面高程下降的一种环境地质变化[2],反映在桥梁监测中主要是桥梁沉降监测。同时,还需要考虑承台在水平方向上的位移,以此来整体把握桥梁的变形方向及程度。 根据不同的测量要求和规范,桥梁变形测量的等级及精度要求也各不相同。在实际的工程监测中,需要根据不同的规范要求实施监测。 2.1 桥面沉降监测 桥面沉降监测主要是监测桥梁在垂直方向上的变形。在沉降观测中,需要始终遵循“五定原则”,即基准点、工作基点、观测点点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测环境条件要一致;观测路线、镜位、程序和方法要固定[3]。 桥面沉降监测的主要内容包括:沉降观测点布设及网的测量、沉降监测、跨河桥沉降观测等。沉降观测网一般采用闭合水准路线或附合水准路线,用高精度数字水准以进行观测。而对于跨河桥沉降观测,由于桥墩在河中时,观测采用闭合水准测量。

变形监测心得

自动化变形监测系统培训心得 沈阳分公司 测量应用与系统集成部工程师 左文博南下的列车,带着舒缓的音乐,穿越在青山绿水间,就这样我和杜立辉满怀信心开启了广州培训之旅。此次去广州培训是沈阳南方经理王刚本着分公司未来发展趋势,迎合市场需求,拓展新业务领域所做的安排。 此次培训以自动化变形监测的概念和意义为基础明确学习内容、以变形监测的特点和周期为基础明确学习方法,以变形监测技术发展为基础明确学习方向。 自动化变形监测系统是利用测量机器人和变形监测方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变体形的形状、大小、及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。变形监测工作的意义主要表现在两个方面:首先是掌握各种工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。 变形监测与常规测量工作相比较,它们既有相同点,又有各自不同的特点和要求。具体来说变形监测具有周期性重复观测、精度要求高、多种观测技术的综合应用和监测网着重于研究点位的变化等特点。 变形监测的周期指的是在一定的时间内完成一个周期的测量工作。观测周期于工程的大小、测点所在位置的重要性、观测目的以及观测一次所需时间的长短有关。变形监测的周期应以能反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界影响因素确定。对于特级和特一级变形观测,还宜固定观测人员、选择最佳观测时段、在基本相同的环境和条件下观测。 由于变形监测的特殊要求,一般不允许监测系统中断,这就要求安全监测系统能精确、稳定、可靠、长期而又实时地采集数据,所以现在的变形监测工作以自动化监测技术为主流发展方向,包括CT技术、光纤传感检测技术、GPS技术、激光技术、测量机器人技术以及三维激光扫描仪技术等。 此次培训分为室内培训和室外培训。室内培训主要给我们演示测量机器人、水位计、轴

变形监测总结(20200528080747)

第一章 变形的概念:指变形体(根据变形监测区域大小,可将变形监测对象分为三大类:全球性的、区域性的、工程与局部性的,本文统称其为变形体)在各种致变因素 的作用下,其形状、大小及位置在时间域和空间域中的变化。 变形观测的概念:指为了解变形量大小,通过定期测量观测点相对于基准点的变 化量,从历次观测结果比较了解变形随时间与空间的发展情况。这个过程即是变形观测。 产生变形原因:1.自然原因:地震、板块运动、日照、风震 2.人为的原因:(1)地下水的过量抽采(2)地下矿物的开采(3)建筑物的荷载(4)其它因素 变形的危害与控制:变形的危害:1)地面建(构)筑物裂缝、倒塌;2)交通、通讯设施损害管线损害;3)港口设施失效4)桥墩下沉,净空减小,水上交通 受阻5)滨海城市海水侵蚀 6)诱发地震 控制:(1)控制地下水开采;(2)进行地下水回灌,保持地下水位;(3)加固建筑物进行等。 变形观测的目的:确保工程安全运营进行变形分析,建立预报变形的理论和方法 变形观测的主要内容:沉降观测、水平位移观测、裂缝观测、倾斜观测、挠度监 测、滑坡监测等 变形观测的意义:实用上:检查各种工程建筑物及其基础的稳定性,及时掌握变形情况,为安全性诊断提供必要的信息,以便及时发现问题并采取措施 科研上:更好地理解变形机理,验证有关工程设计的理论和地 壳运动假说,进行反馈设计以及建立有效的变形预报模型 变形观测的主要技术方法: 1.常规测量方法 2.GPS的应用3.摄影测量方法 4.特殊测量手段法 5.综合各种技术方法。 变形观测的特点:1.精度要求高 2.重复观测3.数据处理要求高 4.多学科的配合5.责任重大 变形的分类:一般情况,变形可分为静态变形和动态变形两大类。 静态变形主要指变形体随时间的变化而发生的变形,这种变形一般速度较慢,需要较长的时间才能被发觉。 动态变形主要指变形体在外界荷载的作用下发生的变形,这种变形的大小和速度与荷载密切相关,在通常情况下,荷载的作用将使变形即刻发生。 根据变形体的变形特征,变形可分为变形体自身的形变和变形体的刚体位移。 变形体自身形变包括:伸缩、错动、弯曲和扭转四种变形; 刚体位移包含整体平移、整体转动、整体升降和整体倾斜四种变形。 变形观测的精度与观测周期:制定变形监测精度取决于监测目的、允许变形的大小、仪器和方法所能达到的精度。 一般而言,实用目的观测中误差应小于允许变形值的1/10~1/20,科研目的观测中误差应小于允许变形值的1/20~1/100 变形观测的周期:观测周期的概念:相邻两次变形观测的间隔时间 观测周期的确定 基本原则:根据建(构)筑物的特征、变形速率、观测精度要求和工程地质条件 及施工过程等因素综合考虑。 变形观测周期的确定应以能系统反映所测建筑变形的变化过程、且不遗漏其变化时刻为原则,并综合考虑单位时间内变形量的大小、变形特征、观测精度要求及

变形监测试题库

一、名词解释 1.变形:变形是指变形体在各种载荷的作用下,其形状大小及位置在时空域中的变化 2 变形监测:从基准点出发,定期地测量观测点相对于基准点的变化量,从历次观测结果比 较中了解变形随时间发展的情况。 3 测量机器人:是一种能代替人进行自动搜索跟踪辨识和精确照准目标并获取角度距离三维 坐标以及影响等信息的智能型电子全站仪。 4 基坑回弹观测:深埋大型基础在基坑开挖后,由于基坑上面的荷重卸除,基坑底面隆起, 测定基坑开挖后的回弹量。 5 连续变形:当地表移动过程在时间和空间上具有连续渐变的性质,且不出现台阶状大裂缝, 漏斗塌陷坑等突变现象 6 边界角:在主断面上,地表盆地边界点和采区边界的连线与水平线在煤柱一侧所夹的锐角 7 下沉系数:反映充分采动条件下地表最大下沉值与采厚关系的一个量度 8 测点观测:观测点相对工作基点的变形观测 9 变形网:由基点和工作基点组成的网 10 垂直位移:变形体在垂直方向上的变形(沉降沉陷) 11 观测点:在变形体上具有代表性的点。 12 变形分析:对野外观测所得到的数据进行科学的整理分析,找出真正变形信息和规律的 过程。 13 水平位移:变形体在水平面上的位移,是不同时间内平面方向与距离方向,建筑物的 水平位移是指建筑物的整体平面移动。产生水平位移的原因主要是建筑物及其基础受到水平应力的影响而产生的地基的水平移动 14.基点观测:工作基点相对于基点的变形观测。3.基准点:通常埋设在稳固的基岩上或 变形区域以外 15.挠度:建筑物在应力的作用下产生弯曲和扭曲,弯曲变形时横截面形心沿与轴线垂直 方向的线位移称为挠度。 16.变形观测周期:变形监测的时间间隔称为观测周期,即在一定的时间内完成一个 周期的测量工作 17、液体静力水准:利用相互连通的且静力平衡时的液面进行高程传递的测量方法 18、奇异值:与前面变形规律不同,但不一定是错误的观测值,所以接受 19、回归分析:从数理统计的理论出发,对建筑物的变形量与各种作用因素的关系,在进行 了大量的实验和观测后,仍然有可能寻找出它们之间的一定的规律性,这种处理变形监测资料的方法即叫回归分析 三、简答题 1、简述灾害的表现形式有哪些? 全球性的地极移动、地壳的板块运动及区域性的地震、城市地表下沉、矿区采空区的地表沉陷、山体、河岸及矿坑边帮的滑坡、建筑物基础下沉、倾斜、建筑物墙体的裂缝及构件挠曲等都是变形的表现形式。 2、简述变形监测技术的未来方向包括哪几个方面?

桥梁工程变形监测方案

桥梁工程变形监测方案 一、概述 大型桥梁,如斜拉桥、悬索桥自20世纪90年代初期以来在我国如雨后春笋般的发展。这种桥梁的结构特点是跨度大、塔柱高,主跨段具有柔性特性。在这类桥梁的施工测量中,人们已针对动态施工测量作了一些研究并取得了一些经验。在竣工通车运营期间,如何针对它们的柔性结构与动态特性进行监测也是人们十分关心的另一问题。尽管目前有些桥梁已建立了了解结构内部物理量的变化的“桥梁健康系统”,它对于了解桥梁结构内力的变化、分析变形原因无疑有着十分重要的作用。然而,要真正达到桥梁安全监测之目的,了解桥梁的变化情况,还必须及时测定它们几何量的变化及大小。因此,在建立“桥梁健康系统”的同时,研究采用大地测量原理和各种专用的工程测量仪器和方法建立大跨度桥梁的监测系统也是十分必要的。 二、变形监测内容 根据我国最新颁发的“公路技术养护规范”中的有关规定和要求,以及大跨度桥梁塔柱高、跨度大和主跨梁段为柔性梁的特点,桥梁工程变形监观测的主要内容包括: 1) 桥梁墩台沉陷观测、桥面线形与挠度观测、主梁横向水平位移观测、高塔柱摆动观测; 2) 为了进行上述各项目的测量,还必须建立相应的水平位移基准网与沉陷基准网观测。 三、系统布置 1)桥墩沉陷与桥面线形观测点的布置 桥墩(台)沉陷观测点一般布置在与墩(台)顶面对应的桥面上;桥面线形与挠度观测点布置在主梁上。对于大跨度的斜拉段,线形观测点还与斜拉索锚固着力点位置对应;桥面水平位移观测点与桥轴线一侧的桥面沉陷和线形观测点共点。 2)塔柱摆动观测点布置 塔柱摆动观测点布置在主塔上塔柱的顶部、上横梁顶面以上约m的上塔柱侧壁上,每柱设2点。 3)水平位移监测基准点布置 水平位移观测基准网应结合桥梁两岸地形地质条件和其他建筑物分布、水平位移观测点的布置与观测方法,以及基准网的观测方法等因素确定,一般分两级布设,基准网布设在岸上稳定的地方并埋设深埋钻孔桩标志;在桥面用桥墩水平位移观测点作为工作基点,用它们测定桥面观测点的水平位移。 4)垂直位移监测基准网布置 为了便于观测和使用方便,一般将岸上的平面基准网点纳入垂直位移基准网中,同时还应在较稳定的地方增加深埋水准点作为水准基点,它们是大桥垂直位移监测的基准;为统一两岸的高程系

相关文档
最新文档