LTE网规网优基础知识问答

LTE网规网优基础知识问答
LTE网规网优基础知识问答

一、基本概念篇

1、为什么要从3G向LTE演进?

LTE(Long Term Evolution)是指3GPP组织推行的蜂窝技术在无线接入方面的最新演进,对应核心网的演进就是SAE(System Architecture Evolution)。之所以需要从3G演进到LTE,是由于近年来移动用户对高速率数据业务的要求,同时新型无线宽带接入系统的快

速发展,如WiMax的出现,给3G系统设备商和运营商造成了很大的压力。在LTE系统设计

之初,其目标和需求就非常明确:降低时延、提高用户传输数据速率、提高系统容量和覆

盖范围、降低运营成本:

?显著的提高峰值传输数据速率,例如下行链路达到100Mb/s,上行链路达到50Mb/s;

?在保持目前基站位置不变的情况下,提高小区边缘比特速率;

?显著的提高频谱效率,例如达到3GPP R6版本的2~4倍;

?无线接入网的时延低于10ms;

?显著的降低控制面时延(从空闲态跃迁到激活态时延小于100ms(不包括寻呼时间));

?支持灵活的系统带宽配置,支持

1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz带宽,支持成对和非成对频

谱;

?支持现有3G系统和非3G系统与LTE系统网络间的互连互通;

?更好的支持增强型MBMS;

?系统不仅能为低速移动终端提供最优服务,并且也应支持高速移动终端,能为速度>350km/h的用户提供100kbps的接入服务;

?实现合理的终端复杂度、成本、功耗;

?取消CS域,CS域业务在PS域实现,如VOIP;

2、LTE扁平网络架构是什么?

●LTE的接入网E-UTRAN由eNodeB组成,提供用户面和控制面;

●LTE的核心网EPC(Evolved Packet Core)由MME,S-GW和P-GW组成;

●eNodeB间通过X2接口相互连接,支持数据和信令的直接传输;

●S1接口连接eNodeB与核心网EPC。其中,S1-MME是eNodeB连接MME的控制

面接口,S1-U是eNodeB连接S-GW 的用户面接口;

3、相对3G来说,LTE采用了哪些先进技术?

●采用OFDM技术

?OFDM (Orthogonal Frequency Division Multiplexing)属于调制复用技术,它把系统带宽分成多个的相互正交的子载波,在多个子载波上并行

数据传输;

?各个子载波的正交性是由基带IFFT(Inverse Fast Fourier Transform)实现的。由于子载波带宽较小(15kHz),多径时延将导致符号间干扰ISI,

破坏子载波之间的正交性。为此,在OFDM符号间插入保护间隔,通常

采用循环前缀CP来实现;

?下行多址接入技术OFDMA,上行多址接入技术SC-FDMA(Single Carrier-FDMA);

●采用MIMO(Multiple-Input Multiple Output)技术

?LTE下行支持MIMO技术进行空间维度的复用。空间复用支持单用户SU-MIMO(Single-User-MIMO)模式或者多用户MU-MIMO (Multiple-User-MI

MO)模式。SU-MIMO和MU-MIMO都支持通过Pre-coding的方法来降低或

者控制空间复用数据流之间的干扰,从而改善MIMO技术的性能。SU-MI

MO中,空间复用的数据流调度给一个单独的用户,提升该用户的传输速

率和频谱效率。MU-MIMO中,空间复用的数据流调度给多个用户,多个

用户通过空分方式共享同一时频资源,系统可以通过空间维度的多用户

调度获得额外的多用户分集增益。

?受限于终端的成本和功耗,实现单个终端上行多路射频发射和功放的难度较大。因此,LTE正研究在上行采用多个单天线用户联合进行MIMO传

输的方法,称为Virtual-MIMO。调度器将相同的时频资源调度给若干个

不同的用户,每个用户都采用单天线方式发送数据,系统采用一定的

MIMO解调方法进行数据分离。采用Virtual-MIMO方式能同时获得MIMO

增益以及功率增益(相同的时频资源允许更高的功率发送),而且调度

器可以控制多用户数据之间的干扰。同时,通过用户选择可以获得多用

户分集增益。

●调度和链路自适应

?LTE支持时间和频率两个维度的链路自适应,根据时频域信道质量信息对不同的时频资源选择不同的调制编码方式。

?功率控制在CDMA系统中是一项重要的链路自适应技术,可以避免远近效应带来的多址干扰。在LTE系统中,上下行均采用正交的OFDM技术对

多用户进行复用。因此,功控主要用来降低对邻小区上行的干扰,补偿

链路损耗,也是一种慢速的链路自适应机制。

●小区干扰控制

?LTE系统中,系统中各小区采用相同的频率进行发送和接收。与CDMA 系统不同的是,LTE系统并不能通过合并不同小区的信号来降低邻小区信

号的影响。因此必将在小区间产生干扰,小区边缘干扰尤为严重。

?为了改善小区边缘的性能,系统上下行都需要采用一定的方法进行小区干扰控制。目前正在研究方法有:

?干扰随机化:被动的干扰控制方法。目的是使系统在时频域受到的干扰尽可能平均,可通过加扰,交织,跳频等方法实现;

?干扰对消:终端解调邻小区信息,对消邻小区信息后再解调本小区信息;或利用交织多址IDMA进行多小区信息联合解调;

?干扰抑制:通过终端多个天线对空间有色干扰特性进行估计和抑制,可以分为空间维度和频率维度进行抑制。系统复杂度较大,可通过

上下行的干扰抑制合并IRC实现;

?干扰协调:主动的干扰控制技术。对小区边缘可用的时频资源做一定的限制。这是一种比较常见的小区干扰抑制方法;

4、OFDM的基本原理

OFDM也是一种频分复用的多载波传输方式,只是复用的各路信号(各路载波)是正交的。OFDM技术也是通过串/并转换将高速的数据流变成多路并行的低速数据流,再将它们分配到若干个不同频率的子载波上的子信道中传输。不同的是OFDM技术利用了相互正交的子载波,从而子载波的频谱是重叠的,而传统的FDM多载波调制系统中子载波间需要保护间隔,从而OFDM技术大大的提高了频谱利用率。

●OFDM系统优点:

?通过把高速率数据流进行串并转换,使得每个子载波上的数据符号持续长度相对增加,从而有效地减少由于无线信道时间弥散所带来地ISI,进而减少了

接收机内均衡器地复杂度,有时甚至可以不采用均衡器,而仅仅通过插入循

环前缀地方法消除ISI的不利影响。

?OFDM技术可用有效的抑制无线多径信道的频率选择性衰落。因为OFDM的子载波间隔比较小,一般的都会小于多径信道的相关带宽,这样在一个子载

波内,衰落是平坦的。进一步,通过合理的子载波分配方案,可以将衰落特

性不同的子载波分配给同一个用户,这样可以获取频率分集增益,从而有效

的克服了频率选择性衰落。

?传统的频分多路传输方法是将频带分为若干个不相交的子频带来并行传输数据流,各个子信道之间要保留足够的保护频带。而OFDM系统由于各个子载

波之间存在正交性,允许子信道的频谱相互重叠,因此于常规的频分复用系

统相比,OFDM系统可以最大限度的利用频谱资源。

?各个子信道的正交调制和解调可以分别通过采用IDFT(Inverse Discrete Fourier Transform)和DFT实现,在子载波数很大的系统中,可以通过采用

IFFT(Inverse Fast Fourier Transform)和FFT实现,随着大规模集成电路技术

和DSP技术的发展,IFFT和FFT都是非常容易实现的。

?无线数据业务一般存在非对称性,即下行链路中的数据传输量大于上行链路中的数据传输量,这就要求物理层支持非对称的高速率数据传输,OFDM系

统可以通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率。

●OFDM系统缺点:

?易受频率偏差的影响。由于子信道的频谱相互覆盖,这就对他们之间的正交性提出了严格的要求,无线信道的时变性在传输过程中造成了无线信号频谱

偏移,或发射机与接收机本地振荡器之间存在频率偏差,都会使OFDM系统

子载波之间的正交性遭到破坏,导致子信道间干扰(ICI,Inter-Channel

Interference),这种对频率偏差的敏感性是OFDM系统的主要缺点之一。

?存在较高的峰值平均功率比。多载波系统的输出是多个子信道信号的叠加,因此如果多个信号的相位一致时,所得到的叠加信号的瞬时功率就会远远高

于信号的平均功率,导致较大的峰值平均功率比(PAPR,Peak-to-Average

power Ratio),这就对发射机内放大器的线性度提出了很高的要求,因此可

能带来信号畸变,使信号的频谱发生变化,从而导致各个子信道间的正交性

遭到破坏,产生干扰,使系统的性能恶化。

5、单用户MIMO和多用户MIMO的区别

单用户MIMO:占用相同时频资源的多个并行的数据流发给同一个用户或从同一个用户发给基站称为单用户MIMO;如下图所示:

多用户MIMO:占用相同时频资源的多个并行的数据流发给不同用户或不同用户采用相同时频资源发送数据给基站,称为多用户MIMO,也称虚拟MIMO。如下图所示:

当前LTE 考虑终端的实现复杂性,因此上行只支持多用户MIMO,也就是虚拟MIMO。

6、LTE上行为什么要采用SC-FDMA技术?

考虑到多载波带来的高PAPR会影响终端的射频成本和电池寿命。最终3GPP决定在上行采用单载波频分复用技术SC-FDMA中的频域实现方式DFT-S-OFDM。可以看出与OFDM不同的是在调制之前先进行了DFT的转换,这样最终发射的时域信号会大大减小PAPR。这种处理的缺点就是增加了射频调制的复杂度。实际上DFT-S-OFDM可以认为是一种特殊的多载波复用方式,其输出的信息同样具有多载波特性,但是由于其有别于OFDM的特殊处理,使其具有单载波复用相对较低的PAPR特性。

7、为什么说OFDM技术容易和MIMO技术结合?

MIMO技术的关键是有效避免天线之间的干扰,以区分多个并行数据流。众所周知,在水平衰落信道中可以实现更简单的MIMO接收。而在频率选择性信道中,由于天线间干扰和符号间干扰混合在一起,很难将MIMO接收和信道均衡分开处理。如果采用将MIMO接收和信道均衡混合处理的MIMO接收均衡的技术,则接收机会比较复杂。

因此,由于每个OFDM子载波内的信道(带宽只有15KHz)可看作水平衰落信道,MIMO 系统带来的额外复杂度可以控制在较低的水平(随天线数量呈线性增加)。相对而言,单载波MIMO系统的复杂度与天线数量和多径数量的乘积的幂成正比,很不利于MIMO技术的应用。

8、LTE FDD和TDD的帧结构是什么?

●LTE FDD的帧结构如下图所示,帧长10ms,包括20个时隙(slot)和10个子帧(subframe)。每个子帧包括2个时隙。LTE的TTI为1个子帧1ms。

●LTE TDD的帧结构如下图所示,帧长10ms,分为两个长为5ms的半帧,每个半帧包含8个长为0.5ms的时隙和3个特殊时隙(域):DwPTS(Downlink Pilot TimeSlot)、GP(Guard Period)和UpPTS(Uplink Pilot TimeSlot)。DwPTS和UpPTS的长度是可配置的,但是DwPTS、UpPTS和GP的总长度为1ms。子帧1和6包含DwPTS,GP和UpPTS;

子帧0和子帧5只能用于下行传输。支持灵活的上下行配置,支持5ms和10ms的切换点周期。

9、LTE中RB、RE和子载波的概念

子载波:LTE采用的是OFDM技术,不同于WCDMA采用的扩频技术,每个symbol占

用的带宽都是3.84M,通过扩频增益来对抗干扰。OFDM则是每个Symbol都对应一个正交

的子载波,通过载波间的正交性来对抗干扰。协议规定,通常情况下子载波间隔

15khz,Normal CP(Cyclic Prefix)情况下,每个子载波一个slot有7个symbol;Extend CP 情况下,每个子载波一个slot有6个symbol。下图给出的是常规CP情况下的时频结构,从

竖的的来看,每一个方格对应就是频率上一个子载波。

RB(Resource Block):频率上连续12个子载波,时域上一个slot,称为1个RB。如下图左侧橙色框内就是一个RB。根据一个子载波带宽是15k可以得出1个RB的带宽为

180kHz。

RE(Resource Element):频率上一个子载波及时域上一个symbol,称为一个RE,如下图右下角橙色小方框所示。

10、LTE中CP的概念和作用

CP(Cyclic Prefix)中文可译为循环前缀,它包含的是OFDM符号的尾部重复,如下面第一个图的红圈内所示。CP主要用来对抗实际环境中的多径干扰,不加CP的话由于多径导致的时延扩展会影响子载波之间的正交性,造成符号间干扰。

下图分别给出了LOS、多径时延扩展小于CP长度以及多径时延扩展大于CP长度的情况,可以看出在如果多径时延扩展大于CP长度时,同样会造成符号间串扰。协议中规定的

CP长度已经根据实际情况进行考虑,可以满足绝大多数情况。其它情况会采用扩展CP来容忍更大的时延扩展。

11、LTE中支持的带宽及表示方式

LTE的工作带宽最小可以工作在1.4M,最大工作带宽可以是20M。协议和实际产品的配置都是通过RB个数来对带宽进行配置的。对应关系如下表所示:大家可能觉得RB个数乘以180k和实际带宽还是有些差距,这个主要由于OFDM信号旁瓣衰落较慢,通常需要留10%的保护带。和WCDMA占用5M带宽但实际信号带宽只有3.84M的原因是类似的。

如下图所示,假设20M带宽情况下,则配置带宽为100RB,对应18M,但信道带宽是20M

12、衡量LTE覆盖和信号质量基本测量量是什么?

下面这几个是LTE中最基本的几个测量量,是日常测试中关注最多的。

RSRP(Reference Signal Received Power)主要用来衡量下行参考信号的功率,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定

RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别;

RSRQ (Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICH Ec/Io作用类似。二者的定义也类似,RSRQ = RSRP * RB Number/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的。

RSSI(Received Signal Strength Indicator)指的是手机接收到的总功率,包括有用信号、干扰和底噪,和UMTS中的RSSI概念是一致的;

SINR(Signal-to-Interference plus Noise Ratio)也就是信号干扰噪声比,顾名思义就是信号能量除以干扰加噪声的能量;

从上面的定义很容易看出对于RSRQ和SINR来说,二者的差别就在于分母一个包含自身、干扰信号及底噪,另外一个只包括干扰和噪声。

二、物理层篇

1、LTE有哪些上行和下行物理信道及物理信道和物理信号

的区别

物理信道:对应于一系列RE的集合,需要承载来自高层的信息称为物理信道;如PDCCH、PDSCH等。

物理信号:对应于物理层使用的一系列RE,但这些RE不传递任何来自高层的信息,如参

考信号(RS),同步信号。

下行物理信道:

●PDSCH: Physical Downlink Shared Channel(物理下行共享信道) 。主要用于传输业务数据,也可以传输信令。UE之间通过频分进行调度,

●PDCCH: Physical Downlink Control Channel(物理下行控制信道)。承载导呼和用户数据的资源分配信息,以及与用户数据相关的HARQ信息。

●PBCH: Physical Broadcast Channel(物理广播信道)。承载小区ID等系统信息,用于小区搜索过程。

●PHICH: Physical Hybrid ARQ Indicator Channel(物理HARP指示信道) ,用于承载HARP的ACK/NACK反馈。

●PCFICH:Physical control Format Indicator Channel(物理控制格式指示信道),用于承载控制信息所在的OFDM符号的位置信息。

●PMCH: Physical Multicast channel(物理多播信道),用于承载多播信息

下行物理信号:

●RS(Reference Signal):参考信号,通常也称为导频信号;

●SCH(PSCH,SSCH):同步信号,分为主同步信号和辅同步信号;

上行物理信道:

●PRACH: Physical Random Access Channel(物理随机接入信道) 承载随机接入前导●PUSCH: Physical Uplink Shared Channel(物理上行共享信道) 承载上行用户数据。

●PUCCH:Physical Uplink Control Channel(物理上行共享信道) 承载HARQ的ACK/NACK,调度请求,信道质量指示等信息。

上行物理信号:

●RS:参考信号;

2、LTE中同步信号的作用及结构是什么?

●LTE同步信号由主同步信号(P-SCH)和辅同步信号(S-SCH)组成。其中主同步信号用于小区组内ID侦测,符号timing对准,频率同步;辅同步信号用于小区组ID侦测,帧timing对准,CP长度侦测。因此捕获了主同步信号和辅同步信号就可以获知物理层小区ID信息,同时得到系统的定时同步和频率同步信息。

●在频域上占用中间的6个RB,共72个子载波。

●P-SCH在时域上占用0号和5号子帧第一个slot的最后一个Symbol,S-SCH占用0号和5号子帧第一个slot的倒数第二个Symbol。

同步信号结构如下:

3、下行参考信号RS的基本概念

下行RS(Reference Signal)参考信号,通常也称为导频信号。和3G中导频信号的作用是一样的,主要包括:

1.下行信道质量测量;

2.下行信道估计,用于UE端的相干检测和解调;

3.小区搜索;

参考信号有三种类型:

小区特定参考信号,一般不特别说明,参考信号指的都是小区特定参考信号。

MBSFN(Multimedia Broadcast Single Frequency Network)参考信号,与MBSFN传输关联MBSFN参考信号仅在分配给MBSFN传输的子帧传输。MBSFN导频序列仅用于扩展CP 的情况。

UE特殊参考信号。顾名思义,这类参考信号只针对特定UE有效。

下图给出了单天线、两天线及四天线在常规CP配置情况下的RS信号分布示意图。从单天线的情况可以看出,RS是时域频域错开分布,这样更有利于进行精确信道估计。对于

双天线和四天线来说,每个天线上的参考信号图案都不相同,但各个天线占用的RE都不能用于数据传输。例如双天线情况下,第一个天线的某些RE正好对应第二个天线的RS

图案,那么这些RE在实际中必须空在那里,不能用来传输数据,反之亦然。

4、物理广播信道PBCH的基本概念

PBCH: Physical Broadcast Channel(物理广播信道)。承载小区ID等系统信息,用于小区搜索过程。BCH的传输时间间隔(TTI)为40ms,即每个广播信道传输块为40ms;并且PBCH中包含了下行天线配置信息。在时频上占用0号子帧符号7、8、9、10中间的6个RB(即0号子帧1号时隙的前4个符号的6个RB)。如下图所示

5、LTE中RGE和CCE的概念

REG是Resource Element Group的缩写,一个REG包括4个连续未被占用的RE。REG主要针对PCFICH和PHICH速率很小的控制信道资源分配,提高资源的利用效率和分配灵活性。如下图左边两列所示,除了RS信号外,不同颜色表示的就是REG。

CCE是Control Channel Element的缩写,每个CCE由9个REG组成,之所以定义相对于REG较大的CCE,是为了用于数据量相对较大的PDCCH的资源分配。每个用户的PDCCH只能占用1,2,4,8个CCE,称为聚合级别。如下图所示:

6、物理控制格式指示信道PCFICH的概念

PCFICH: Physical control Format Indicator Channel(物理控制格式指示信道),用于动态的指示在一个子帧中有几个OFDM符号(取值范围1,2,3)用于PDCCH信道传输。PCFICH 信息放置在第一个OFDM符号,为了对抗干扰,这些符号被分散到整个系统带宽进行传输,在每一个子帧的第一个符号上的4个REG (Resource Element Group)中传输。具体REG位置与PCI(物理小区ID)、系统带宽相关。PCFICH的4个REG是均匀的分布在小区的带宽内的。下图是一个PCFICH占用资源的例子。

PCFICH映射后的资源图

7、物理下行控制信道PDCCH的基本概念

PDCCH:Physical Downlink Control Channel(物理下行控制信道)。主要用于承载下行控制信息(DCI: Downlink Control Information)。DCI主要有以下几种:Format 0:用于传输PUSCH调度授权信息;

Format 1:用于传输PDSCH 单码字调度授权信息;

Format 1A:是Format 1的压缩模式;

Format 1B:包含预编码信息的Format 1压缩模式;

Format 1C:是Format 1的紧凑压缩(Very Compact)模式;

Format 1D:包含预编码信息和功率偏置信息的Format 1压缩模式;

Format 2:闭环空分复用模式UE调度;

Format 2A:开环空分复用模式UE调度;

Format 3:用于传输多用户TPC命令,针对PUSCH或PUCCH,每个用户2bit,多用户联合编码。

Format 3A:用于传输多用户TPC命令,针对PUSCH或PUCCH,每个用户1bit,多用户联合编码。

一个物理控制信道在一个或多个连续的控制信道单元(CCEs)上传输。LTE协议定义了4中PDCCH格式,每种格式PDCCH使用的CCE数目不同,传输的比特数也不相同,使用何种PDCCH格式由高层配置。

PDCCH的映射遵循先时域再频域的映射原则,如下图所示(里面数字是REG的编号):

8、物理下行共享信道PDSCH的基本概念

PDSCH: Physical Downlink Shared Channel(物理下行共享信道) 。主要用于传输业务数据,也可以传输信令。UE在接收PDSCH之前要在每个子帧监控PDCCH信道,并根据PDCCH信道的DCI格式解析资源分配域来获得PDSCH 的实际资源分配情况。每一条PDCCH信道的资源分配域包括两部分:类型域(type field)和实际资源分配信息。由于PDCCH存在三种资源分配类型:Type0,Type1和Type2。所以PDSCH资源分配方式包括Type0、Type1和Type2三种方式。

Type0的资源分配方式:UE的资源分配以RBG(Resource Block Group)为单位,使用Bitmap指示分配给被调度UE的资源组。组的大小与系统带宽有关,如下表所示:

分配示例如下图所示:

Type1的资源分配方式:使用Bitmap指示一个资源块集合中分配给被调度UE的物理资源块,该资源块为P个资源块中的一个,其中P与系统带宽有关,取值如上表所示:

下图是Type1资源分配的一个示例。

Type2的资源分配方式:根据在相应的PDCCH上带有的1bit标志,决定虚拟资源块与物理资源块之间的映射关系。物理资源块的分配可以在一个资源块组到整个系统带宽之间变化。包括LVRB(Localized Virtual Resource Block)连续分配RB和DVRB(Distributed VRB)跳频分配RB两种分配方式。

下图是一个分配示例。

9、物理HARQ指示信道PHICH的基本概念

PHICH: Physical Hybrid ARQ Indicator Channel(物理HARQ指示信道) ,用于承载HARQ的ACK/NACK反馈。多个PHICH复用映射到同样的RE资源上,组成一个PHICH组。组内PHICH之间通过不同的正交序列区分。一个PHICH

信道可以用索引来唯一识别,其中是PHICH组序号,

是组内的正交序列索号。PHICH的反馈时序为N+4,上行的PUSCH

是否被正确接收在接收后的第四个子帧的PHICH信道中反馈给UE。每个PHICH组占用3个REG,下图是一个PHICH资源分配的例子。

10、LTE下行信道处理一般需要经过哪些过程

信道处理需要经过加扰、调制、层映射、预编码、RE映射、生成OFDM符号等几个步骤,见如下图所示:

●加扰-编码bit的加扰,加扰将不改变bit速率

●调制-将加扰bit调制为复值符号(BPSK、QPSK、16QAM或64QAM将数据流)●层映射-将复值调制符号映射到若干传输层。调制后的符号可以经过一层或多层传输,多层传输包括多层复用传输和多层分集传输,分别对应不同的处理方式

●预编码-对传输层的复值符号预编码到天线口。对单天线,多天线复用、多天线分集进行不同的处理,决定每天线的符号量,预编码是多天线系统中特有的自适应技术

●RE映射-映射到具体的物理资源单元。对每个RE{k,l}按照先递增k,后递增l的方式映射,被其他信息占用的RE均不能映射。

●生成OFDM符号-生成每个天线口的OFDM符号

11、LTE随机接入信道(PRACH)的基本概念

由于终端的移动使得终端和网络之间的距离是不确定的,所以如果终端需要发送消息

到网络,则必须实时进行上行同步的维持管理。PRACH的目的就是为达到上行同步,建立

和网络上行同步关系以及请求网络分配给终端专用资源,进行正常的业务传输。

LTE物理层在随机接入信道(PRACH)上发送接入前导序列Preamble,Preamble由长

度为的CP循环前缀和长度为的序列部分组成,如下图所示。参数和的取值取决于帧结构和随机接入的配置。

LTE中支持5种Preamble格式,每种Preamble格式对应的CP长度和接入序列长度不同,如下表所示:

不同前导格式对应的小区接入半径不同,其中格式4只适用于TDD模式。

在时域中,随机接入的Preamble为子帧的整数倍;在频域上,接入Preamble占据了6个RB的带宽,共1.08MHz。

12、物理上行共享信道PUSCH的基本概念

PUSCH:Physical Uplink Shared Channel(物理上行共享信道)。主要用于承载上层数据信息。

PUSCH处理过程包括加扰、调制比特数据映射、DFT变换处理、映射复数据到分配的时频域资源、IFFT变换处理生成时域信号等过程,见下图所示:

下图给出上行各信道的时频结构图。

13、上行控制信道(PUCCH)的基本概念

PUCCH: Physical Uplink Control Channel(物理上行共享信道) 。用于承载HARQ的

ACK/NACK,调度请求,信道质量指示等信息。PUCCH信道的频率资源位于带宽的两端见下表时频结构图中两端的蓝色区域),并在两个时隙间跳频。

根据应用场景及调制方式的不同,PUCCH信道分为6种格式,见下表所示:

14、上行导频信号RS的简介

在LTE系统中二进制数据比特一般以PSK或者QAM 等调制方式调制到相应的子载波上,为了在接收端进行数据恢复,需要获得调制值的参考相位和幅度才能进行正确的解调。在实际系统中,由于载波频率偏移、定时偏差以及信道的频率选择性衰落等的影响,信号会受到破坏,导致相位偏移和幅度变化等。为了准确恢复信号,接收端需要对接收信号进行相干检测。根据相干检测的基本原理首先利用一组导频序列(参考序列)获得无线系统的信道估计,然后通过信道估计得到LTE 系统中OFDM 符号子载波的参考相位和幅度。上行的导频信号就是用于E-UTRAN与UE的同步和上行信道估计。

上行参考信号分为两类:

解调参考信号DMRS(Demodulation Reference Signal):PUSCH和PUCCH传输时的导频信号。由于上行采用SC-FDMA,每个UE只占用系统带宽

的一部分,DMRS只在相应的PUSCH和PUCCH分配的带宽中传输。DMRS在

时隙中的位置根据伴随的PUSCH和PUCCH的不同格式有所差异。

无线网络优化入门

无线网络优化 GSM无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。 简介 近几年,随着移动用户的迅猛增长,用户对网络通信质量的要求越来越高,移动运营商也都大规模开展了以提高用户感知度为目标的网络优化工作,并提出了对各项主要指标的考核标准。2003年,伴随着CDMA网络的扩容建设,联通关于GSM的建设思想已经由大规模的网络建设转为以网络的优化、挖潜作为主要目标,满足全网用户的快速增长。对于带宽本来就极其有限的GSM网络,这其实是对网络优化提出了更严格的要求。 流程 GSM无线网络优化是一个闭环的处理流程,循环往复,不断提高。随着近两年优化工作的不断深入,各分公司的优化工作实际上已进入一个较深层次的分析优化阶段。即在保证充分利用现有网络资源的基础上,采取种种措施,解决网络存在的局部缺陷,最终达到无线覆盖全面无缝隙、接通率高、通话持续、话音清晰且不失真,保证网络容量满足用户高速发展的要求,让用户感到真正满意。 GSM无线网络优化的常规方法 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和

CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法: 1.话务统计分析法 OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。 2.DT (驱车测试) 在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度 是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有小岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。 3.CQT

无线网规网优基本知识概述

无线网规网优基本知识概述: 1、了解第一代、第二代以及第三代移动通信系统的特点以及代表制式。 2、第一代、第二代、第三代移动通信系统分别采用了哪种多址方式? 一代:FDMA二代:FDMA+TDMA 三代:CDMA+TDMA+FDMA 3、典型的2, 2.5, 2.75 代移动通信系统有哪些? 2G----IS95A/GSM 2.5G----IS95B/GPRS 2.75G----CDMA1X/EDGE 4、第三代移动通信系统有哪些制式? WCDMA CDMA2000 TD-SCDMA 5、解释双工技术和多址技术,并说明有哪些多址技术和哪些双工技术。 双工技术:用于区分上下行。分为:FDD、TDD 多址技术:用于区分用户。分为:FDMA、TDMA、CDMA 6、移动通信网络包括哪几个部分? MS BSS NSS 7、移动通信网络的建设包括哪几个过程? 移动通信网络的建设过程是围绕建网目标进行网络规划、工程实施、网络优化的循环过程。 8、移动网络建设过程当中有哪几个关注点?它们之间的关系是什么? 以3C1Q为关注点。覆盖(Coverage)、成本(Cost)、质量(Quality)、容量(Capacity)

9、网络规划的定义是什么? 根据建网目标和演进的需要,结合成本,选择合适的网元设备进行规划。输出网元数目,网元结构,网元配置,确定网元之间的连接方式。 10、华为无线网络规划理念是什么? 综合建网成本最小、盈利业务覆盖最佳、有限资源容量最大、核心业务质量最优 11、什么是网络优化? 是指对即将或已经投入运行的网络,进行有针对性的参数采集、数据分析、找出影响网络运行质量的原因,并且通过工程参数的优化等技术手段,使网络性能达到最佳允许状态,使现有网络资源获得最佳效益,同时对今后的网络维护及规划提出合理建议。 12、无线网络优化的时机有哪些? ①网络正式投入运行后或者网络扩容后。 ②网络质量明显下降或用户投诉较多时 ③发生突发事件并对网络质量造成重大影响 ④当用户群改变并对网络质量造成很大影响 CDMA通信原理: 1、 CDMA的载波带宽是多少?码片速率是多少? 1.25MHz 1.2288Mcps 2、简述CDMA系统的发展历程及各阶段的特点。 IS95-A IS95-B CDMA1X CDMA2000 3X 3、画出CDMA系统的网络结构,简述接入网各网元的功能,以及各个主要的接口。 4、什么是扩频?它与CDMA是什么关系? 扩频:将信号扩展至一很宽的频带后进行传输的通信系统。CDMA采用DSSS 5、什么是正交? 当两信号的相关系数为零时,这两信号是正交的。 6、不同用户的信号如何通过不同的码来进行区分?这些码要符合什么要求? 对于前向信道,用WALSH码区分用户,反向用42位的扰码来区分用户。

华为LTE网优基础整理-切换篇

本文档只代表个人看法,如有疑惑或者误导部分,请严明指正,多谢! 切换事件分为频内切换和异系统切换,其中A1是停止异频/异系统测量,A2是启动异频/异系统测量,A3 A4 A5都是启动异频切换的事件,B1 B2都是启动异系统切换的事件,现在我们就分别来说说这几个事件是怎么触发,是在什么情况下触发。 A1事件:Ms- Hys>A1_Thresh,停止异频测量 故名思议就是当本小区信号很好未低于门限时,启动该事件,由于在东莞这边都是A3 A4事件切换,所以看切换类型事件要分别看切往哪个事件的。 Ms:服务小区的测量结果 Hys:异频A1A2幅度迟滞(InterFreqHoA1A2Hyst) A1_Thresh:异频A1 RSRP触发门限(InterFreqHoA1ThdRsrp) 例:东莞汀山创科路F-HLH-1切往东莞汀山创科路D-HLH-1,这时我们先看该服务小区对D 频37900的切换事件是用的A3还是A4,从而用LST INTERFREQHOGROUP查出门限值A1_Thresh,如图:

现在已经知道东莞汀山创科路F-HLH-1切往东莞汀山创科路D-HLH-1是用的A4事件,那就可以用LST INTERFREQHOGROUP查出基于D频切换的门限(INTERFREQHOA1THDRSRP)和迟滞 Hys,如图 代入公式Ms- Hys>A1_Thresh 得出MS-2*0.5>-89 等于 MS>-88 结果:当小区的测量报告MS>-88时,小区不会启动对D频邻区的测量。 A2事件:Ms+ Hys

网优基本理论常识

移动通信基础知识 一、 GSM工作频段 1.标准GSM:上行:890-915M;下行:935-960M;25M带宽;双工间隔45M; 信道带宽200K;载频信道号为0-124,实际使用124个。 2.我国的GSM900使用的频段为: 上行频率905-915MHz 下行频率950-960MHz 频道号为76-124,共计10M带宽。 其中,移动公司:905-909(上行);950-954(下行)。 共计4M带宽,20个频道(76-95) 但移动的TACS网的压频为其G网留出更大空间。 联通公司:909-915(上行);954-960MHz(下行)。 共计6M带宽,29个频道(96-124)。 其余的15M带宽归于模拟TACS网, 其低7.5M分配给A网—Motorola设备 高7.5M分配给B网—Ericsson设备 3.频道间隔: 相邻两个频点间隔为200kHz,每个频点采用TDMA方式,分为8个时隙,即8个信道(全速率),如GSM采用半速率话音编码后,每个频点可容纳16个半速率信道,可使系统容量扩大一倍,但其代价必然是导致语音质量的降低。 4.频道配置 绝对频点号n和频道标称中心频率的关系为: GSM900MHz:上行:fL=890+0.2n 下行: fH=935+0.2n=fl+45MHz(1=

二、时分多址技术(TDMA) 1、概念:实现多址的方法基本有三种,即FDMA、TDMA、CDMA。 GSM的多址方式为TDMA和FDMA相结合并采用跳频的方式,其载波间隔为 200K,每个载频一个TDMA帧,每帧有8个时隙,即8个基本的物理信 道。它的一个时隙的长度为0.577ms,每个时隙的间隔包含156.25比特。 GSM的调制方式为GMSK,调制速率为270.833kbit/s。——泛欧的非线性 连续相位调制技术GMSK〈使用丙类功放〉在设计难度和成本上都比日美 的线性调制技术QPSK低,但频谱利用率稍低——其目的是将邻道干扰降 低到最低限度。 2、信道的定义 A.物理信道 一个载频上的TDMA帧的一个时隙称为一个物理信道。每个用户通过一系列频率的一个信道接入系统。因此,GSM中每个载频有8个物理信道,即 信道0_7(时隙0_7)。在一个TS中发出的信息称为一个突发脉冲序列。 B.逻辑信道 大量的信息传递于Um接口上,根据所传递信道的不同种类,我们定义了不同的逻辑信道。逻辑信道在传输过程中要放在某个物理信道上。逻辑信道可分为两类:即业务信道和控制信道。 业务信道:即TCH,用于传送编码后的话音或用户数据。 控制信道:即CCH,用于传递信令或同步数据。控制信道分三种:广播、公共和专用控制信道。 BCH包括BCCH、FCCH和SCH信道——因为它们携带的信息目标是小区(而非基站)内的所有手机,所以它们均属于单向的下行信道,为 点对多点的传播方式。它们一般用在每个小区的TS0上作为标频。为了

网络优化基本知识

无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。 二GSM无线网络优化的常规方法 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法: 1.话务统计分析法:OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。 2.DT (驱车测试):在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有小岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。

LTE网规网优基础知识问答

一、基本概念篇 1、为什么要从3G向LTE演进? LTE(Long Term Evolution)是指3GPP组织推行的蜂窝技术在无线接入方面的最新演进,对应核心网的演进就是SAE(System Architecture Evolution)。之所以需要从3G演进到LTE,是由于近年来移动用户对高速率数据业务的要求,同时新型无线宽带接入系统的快 速发展,如WiMax的出现,给3G系统设备商和运营商造成了很大的压力。在LTE系统设计 之初,其目标和需求就非常明确:降低时延、提高用户传输数据速率、提高系统容量和覆 盖范围、降低运营成本: ?显著的提高峰值传输数据速率,例如下行链路达到100Mb/s,上行链路达到50Mb/s; ?在保持目前基站位置不变的情况下,提高小区边缘比特速率; ?显著的提高频谱效率,例如达到3GPP R6版本的2~4倍; ?无线接入网的时延低于10ms; ?显著的降低控制面时延(从空闲态跃迁到激活态时延小于100ms(不包括寻呼时间)); ?支持灵活的系统带宽配置,支持 1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz带宽,支持成对和非成对频 谱; ?支持现有3G系统和非3G系统与LTE系统网络间的互连互通; ?更好的支持增强型MBMS; ?系统不仅能为低速移动终端提供最优服务,并且也应支持高速移动终端,能为速度>350km/h的用户提供100kbps的接入服务; ?实现合理的终端复杂度、成本、功耗; ?取消CS域,CS域业务在PS域实现,如VOIP; 2、LTE扁平网络架构是什么? ●LTE的接入网E-UTRAN由eNodeB组成,提供用户面和控制面; ●LTE的核心网EPC(Evolved Packet Core)由MME,S-GW和P-GW组成; ●eNodeB间通过X2接口相互连接,支持数据和信令的直接传输;

无线网规网优专业试题

无线网规网优专业试题 一、填空题 1.由于下行干扰引起切换的优先顺序,一般是先进行小区内切换后 进行小区间切换。② 2.非连续发送参数设置为ON,主要作用是减少干扰。② 3.DMAX参数的设置只对呼叫建立过程有作用,对切换没有作用。 ③ 4.当CCCH与SDCCH不共用一个物理信道时,接入允许保留块数 AG的取值范围是0~2。④ 5.位置更新分为两种,一种是网络规定手机周期性进行位置更新, 一种是手机发现其所在位置已发生变化(LAC不同)而进行位置更新。③ 6.修改允许最小接入电平,对基站服务区有影响,对基站覆盖区无 影响。④ 7.无线链路超时(RLT)参数的设置范围是4~64,以4 为步长,设 置大小会影响网络掉话率和无线资源利用率。③ 8.对于小区重选滞后参数HYS,当某地区业务量很大时,常出现信 令过载,属于不同LAC相邻小区的HYS应增大(增大、减小); 若属于不同位置区的相邻小区,其重叠覆盖范围较大,HYS应增大(增大、减小);若属于不同LAC的相邻小区在邻接处覆盖较大出现覆盖“缝隙”,则HYS应减小(增大、减小)。⑤ 9.邻小区切换允许最小接入电平应比小区允许接入最小电平高(高、

低)。④ 10.NPS/X上在选择同一区域的情况下,可以通过增加地图精度来增 加地图显示面积。③ 11.在服务器上登录省移动公司服务器的命令为TELNET K370。 12.在NPS/X上要分别显示TCH和BCCH频率组,每个站要建6个 扇区(3扇区/站点)。② 13.ATHREIN天线中型号为739622的天线增益为15.5DBI,水平波 瓣为65度,垂直波瓣为120度,是双极化天线。② 14.GSM900中相邻的频率间隔为200KHZ,DCS1800中相邻的频率 间隔为200KHZ。③ 15.进行无线容量预规划时计算载频数所用的经验公式为用户数/ (7.5*18)③ 16.GSM900频率在空中的传播损耗公式为L(DB)=32.44+20lgd(m)。 ④ 17.手机收到不同两个站的同BCCH频率时,用BSIC来区分不同的 基站。② 18.DMAX参数中,它的取值范围是0—255,其中每单位表示 550米。② 19.DR的全称为下行接收电平功率控制上限,取值范围-110---- -47dbm。③ 20.CELL的neighb最多可以做到32个。① 21.一个TDMA帧的时长为4.615ms。④

LTE网规网优基础知识问答汇总(全集)-华为

问题描述: 为什么要从3G向LTE演进? 问题答复: LTE(Long Term Evolution)是指3GPP组织推行的蜂窝技术在无线接入方面的最新演进,对应核心网的演进就是SAE(System Architecture Evolution)。之所以需要从3G演进到LTE,是由于近年来移动用户对高速率数据业务的要求,同时新型无线宽带接入系统的快速发展,如WiMax的出现,给3G系统设备商和运营商造成了很大的压力。在LTE系统设计之初,其目标和需求就非常明确:降低时延、提高用户传输数据速率、提高系统容量和覆盖围、降低运营成本: 显著的提高峰值传输数据速率,例如下行链路达到100Mb/s,上行链路达到 50Mb/s; 在保持目前基站位置不变的情况下,提高小区边缘比特速率; 显著的提高频谱效率,例如达到3GPP R6版本的2~4倍; 无线接入网的时延低于10ms; 显著的降低控制面时延(从空闲态跃迁到激活态时延小于100ms(不包括寻呼 时间)); 支持灵活的系统带宽配置,支持1.4MHz、3MHz、5MHz、10MHz、15MHz、 20MHz带宽,支持成对和非成对频谱; 支持现有3G系统和非3G系统与LTE系统网络间的互连互通; 更好的支持增强型MBMS; 系统不仅能为低速移动终端提供最优服务,并且也应支持高速移动终端,能为 速度>350km/h的用户提供100kbps的接入服务; 实现合理的终端复杂度、成本、功耗; 取消CS域,CS域业务在PS域实现,如VOIP; 问题描述: LTE扁平网络架构是什么? 问题答复: LTE的接入网E-UTRAN由eNodeB组成,提供用户面和控制面; LTE的核心网EPC(Evolved Packet Core)由MME,S-GW和P-GW组成; eNodeB间通过X2接口相互连接,支持数据和信令的直接传输;

热门-网优个人工作总结

网优个人工作总结 网优个人工作总结(精选3篇) 从20xx年开始进入电信东营分公司从事无线网优中心工作学习,一直从事通信工作。对无线基站维护、无线室分维护、室分建设及相关工作有一个系统的学习。熟悉维护操作流程,对故障处理有较快较好的判断方式。能够迅速准确处理好故障!有真实现场的操作经验和从后台判定故障经验。也很希望后续有机会继续发挥这方面的优势。 从20xx年10月至今,一直从事移动河口项目,对本工作算是认知清楚,对工作流程熟悉,能有效沟通移动计划建设部、移动市公司监理、县区网络部、县区现场监理、移动县区代维、施工单位及相关人员。 现场管理人员应具备对施工成本、工程质量、工程进度有序的把控,能够有效的沟通相关人员,共同解决困难。有起到承上启下的作用! 工作规划:继续有效完成移动河口项目工作!争取早日完成此项工作!虽然走完全部流程可能需要一年时间!仍会坚持不解,不放松干好剩余工作!争取让移动对咱们公司有一个好的评价,为日后进入移动工程打下一个良好的基础。在这剩余一年的时间里不能仅仅干好剩余的本职工作。在工作之余不断了解移动和河口通信相关行业及咱们公司可以进入的行业,找寻商机。争取为公司争取到一定机会!为公司创造利润!

一、工作总结 xxxx年主要负责区域1(1-12月)和区域2(1-9月) 的网络优化、投诉处理和网络规划等日常工作。除此之外,xxxx年所做重点工作和专项工作包括: 1、区域1边界漫游专项优化工作 继上一年区域1边界漫游问题的测试工作,今年年初对 测试过程中,出现的弱覆盖、信号质量差、掉话和边界漫游等问题集中进行了梳理分析,对边界3G/2G基站进行了优化调整,根据边界农村各具特色的无线环境,我们选择了不同的调整方案和参数设置。经过几周的优化调整,边界弱覆盖和质差问题得到了显著地改善,边界漫游情况也得到了有效地解决。 2、区域2热点投诉区域测试工作 对热点投诉区域附近住宅区进行了多次现场勘测和测试。根据投诉地点情况结合测试结果,提出五个点规划五个基站对这五个住宅小区进行有效覆盖,以解决该热点投诉区域覆盖问题。 3、区域2大面积干扰排查工作 针对3月16日起,区域2七个基站W网上行出现RTWP 低噪过高的情况,我们多次在此区域进行现场干扰排查,最终将干扰源地点锁定为区域2胶管有限公司厂房内。在分公司及无线电委员会人员的共同配合下,与该公司人员多次协商,将其厂房内的信号屏蔽设备关闭,周边基站指标恢复正常,用户体验得到了有效改善。

大唐移动5G网规网优系统应用指导书2020

大唐移动5G网规网优系统应用指导书 2020-05 目录 1使用前准备工作 (1) 1.1前台部署 (1) 1.1.1前台包(Tomcat)解压 (1) 1.1.2war包(版本)解压(rar包同理) (3) 1.1.3kernel包解压 (4) 1.1.4相关配置文件修改 (5) 1.2地图数据部署................................................................................. 错误!未定义书签。 1.3后台版本部署 (10) 1.4TotalProgram配置 (12) 1.5启动Radar后前台 (12) 1.5.1启动后台 (12) 1.5.2启动前台 (13) 1.5.3MR FTP服务器的连接配置 (14) 2登录平台介绍 (15) 3数据导入 (17) 3.1地图解析grid_prase (17) 3.1.1五米精度地图预处理(kernel_grid_parse的前置工作) (17) 3.1.2运行radartools生成altitude和Projection (18) 3.2路测数据导入 (23) 3.3天线数据导入 (24) 3.4扫频数据导入 (25) 3.5告警数据 (26) 3.5.1导入告警库 (26)

3.5.2导入告警信息 (31) 3.6其他数据导入 (31) 3.6.1建筑数据导入 (31) 3.6.2区域图层导入 (32) 3.6.3栅格数据导入 (33) 4计算区域的规划 (34) 4.1区域县界的导入 (34) 4.2手动划分计算区域的操作: (35) 5覆盖仿真任务 (39) 5.1任务创建 (39) 5.1.1传播模型校正 (40) 5.1.2场强计算 (41) 5.1.3全部统计 (41) 5.1.4渲染图生成 (42) 5.1.5生成3D图 (42) 5.1.6计划任务.单站仿真 (44) 5.1.6.1导入单站仿真数据 (44) 5.1.6.2解析单站仿真数据 (45) 5.2仿真结果查看 (45) 5.2.1覆盖图查看 (45) 5.2.2覆盖统计结果查看 (49) 5.3其他 (55) 5.3.1分段颜色渲染 (55) 附录 (56) 27.1 Radar升级的基本操作 (56) 27.1.1 Radar版本(war包)的升级 (56) 27.1.2 TP版本升级(TotalProgram.exe) (56) 27.1.3 后台jar升级(radar-trans.jar) (56) 27.2 ......................................................................................................... 错误!未定义书签。 27.3 工参数据列定义 (56)

网优新手之路

个人起手准备技能: 计算机:计算机技能在现在这个时代的重要性无需说明,同样身为IT职业之一的通信行业,基本也属于离开了计算机就一无所能的状态噢。有时候,要照顾好自己的计算机(至少要熟悉并且保养好工作用的计算机,关键时刻卡机的情况绝对不要出现噢,也不要去上乱七八糟的网站和装很多游戏,估计你入行较深以后也没空玩)。另外要补充一点,搞一个好一点的鼠标,个别OMCR客户端上的操作命令行按钮,删除和修改是上下行,就是说只差5cm左右,镇定些,别手软别点错。 英语:英语倒是不强求,国内的设备商主要指华为,中兴等界面都已换成是中文界面了。但是,要知道,先进的软件和国外的操作界面可都是英文的噢。想要国际先进技术接轨的话,英文很重要。有些专业英语,深奥难懂,长期接触以后才会熟悉,但是有的则一般英语4级就足以应付,具体不懂的时候可以查字典。但是有时候没有那么多空闲学习,总的来说,记在头脑里或者笔记上比后查实用。另外,用个英语测试软件啥的别惊讶,别心虚,熟悉以后其实不是很难。 个人理论知识准备: 现在是3G时代,可以考虑参加单位的培训,但是我个人觉得2G的知识并不落伍噢,就好象虽然电脑已经进化到双核时代却仍逃不出冯诺依曼结构一样。具体知识应学习哪些,正规的公司培训里都有,设备商的培训比较有针对性,基本上是针对自己公司的设备的。外包商则要看为哪家设备商提供服务,原理都是一样的,国际标准定的,但是在各家设备商的具体设置中,有细微的区别,这些东西需要实践经验补足。补充一点,刚培训的时候,有些东西可能是没有具体概念的,暂时无法体会,可以先收藏好或者记录好,具体工作中遇到,可以拿出来对比,这样可以加深印象和学会灵活运用。灵活运用和学习这个东西,其实是看悟性的,知识就是那些,工作十多年,那么经历过的事情自然就多,但是知识到实践的应用是需要一段时间的。现在是2G全面转向3G的交替时代,应该说一个全新的起点,基本同一起跑线,就算领先也领先不多,对自己有信心的同志们,时机来临了噢。 具体要看哪些书:通信基础知识,信令接口,空中接口,数据库,专向设备原理和应用类。 补充:没有经过实践和时间检验的理论知识其实很脆弱。 网优上手基础-路测投诉勘站: A.看似简单的路测:

中国电信网优工程师应具备的技能和知识点

中国电信网优工程师应具备的技能和知识点 一、各等级网优工程师技能要求 1.初级网优工程师能力目标 ☆通讯、计算机或相关专业; ☆具备省级或者本地网级C网优化经验; ☆精通DT/CQT测试、熟悉中国电信DT/CQT测试技术规范,能根据不同测试目标和目的,制定测试路线,确保测试数据的科学性、准确性和完备性,能对路测数据进行详细分析和报告制作; ☆能根据路测现场情况对基站或天馈鼓掌进行简单的问题定位; ☆具备无线语音覆盖和质量基础(导频污染、接入、切换和保持性能)优化能力,能够根据路测数据作出合理RF调整方案、邻区优化等; ☆能熟练试用频谱仪,天馈测试仪表等设备进行扫频和天馈故障排查等工作; ☆能够及时处理现场投诉,具备基本的技术解答能力; ☆具备基本沟通能力。 2.中级网优工程师(日常优化工程师)能力目标 ☆3年以上省级或者本地网级C网优化经验,熟练掌握至少一种主流设备维护和优化,熟练使用各种网优测试仪表; ☆熟悉日常优化处理、网管话统,能够根据路测、网管话统等数据,依托一定的平台和工具,对系统侧提供合理优化建议; ☆具备一定设计网路设计能力,有能力使用规划软件对天馈和功率参数的调整先做模拟效果,减少调整带来的网络风险;能够提出后期建设和规划建议。 3.高级优化工程师(专项及系统优化工程师)能力目标 ☆5年以上省级网络或者大本地网级C网优化经验,精通至少一种主流设备维护和优化,熟练试用各种网优路测仪表; ☆精通DT/CQT测试、路测数据分析、报表制作; ☆精通日常优化处理、网管话统,能够根据路测、网管话统等数据,依托一定的平台和工具,对系统侧体统合理化优先建议;

☆具有丰富的专项、专题优化经验;如住宅小区、高铁、海域、边界、室内分布、EV-DO 数据,网络RF优化等; ☆具有网络疑难问题解决能力和综合分析能力;对网络核心网、无线网的无线参数、RNC/BSC/LAC/RAC等网元参数设置进行全方位评估,结合规划,对网络的整体优缺点进行分析和总结,并提出后期建设和维护建议; ☆有较强的理论水平和沟通能力,能够对电信网优员工进行培训。培训包括优化方法和技术、CDMA规范和信令、无线和核心网设备维护、优化工具试用、优化实施案例等培训;☆具备一定的项目管理能力,能配合省、地市公司制定优化作业流程,协助各级公司有效地开展优化工作,建立、整理网优案例数据库; ☆具备一定网络设计能力,能试用规划软件对天馈和功率参数的调整进行模拟实验,减少网络调整带来的网络风险;能够提出后期建设和规划建议; ☆高级分析能力和新技术专项研究。 二、各等级工程师应具备的知识点 第一节:初级网优工程师知识点 第一部分:移动通信基础知识 1.移动通信基本概念(如:爱尔兰、阻塞率、GOS、频率及小区、调制、编码、移动通信系统构成、编号、多址接入、漫游、切换等) 2.移动通信电波传播特性 ☆无线电波传播方式 ☆无线电波衰落 ☆多经效应、阴影效应、多普勒频移 3.移动通信抗干扰、抗衰落技术 ☆邻频干扰、同频干扰、互调干扰

网优工程师职责和规划

网规网优的工作内容大致如下: 一、网络测试 能熟练使用常见路测工具; 掌握常见的测试手段; 熟悉运营商网络测试规范; 能熟练分析测试数据,总结测试结果,分析和解决测试中存在的问题。 二、规划服务 能独立完成预规划; 能独立完成基站勘查; 能独立完成参数规划; 能独立完成频率规划,掌握自动分频原理; 具有网络结构规划相关知识,能在别人指导下完成。 三、网络优化 制定优化计划; 执行优化工作任务; 通过各种优化手段改善指标,达到并超过目标值; 完成优化工作总结报告,并给客户展示优化成果。 四、客户关系 清楚服务流程,服务标准,服务界面,并按照标准流程提供服务; 明确网络优化服务是以客户为导向的服务,能有效应对客户的各种要求; 在工作和生活中和客户保持良好的关系。 行业中有人归纳: 网规-》转型售前-》转型市场-》挣大钱 网优-》转型维护-》转到运营商-》安心养家 网络的规划是各项网络工作开展的前提与基础,从根本上影响着网络向用户提供的通信服务的质量以及网络对业务需求的响应能力。同时,合理的网络规划是保证网络安全的基石,是网络质量改善的先决条件,是拓展网络规模、提升网络承载能力的重要环节。此外,

网络规划阶段是运营商资本投入的主要阶段,合理的规划可以使运营商用更少的资本建设出更大容量的网络,大幅提高运营资本效率。 网优的具体工作是: 1、网络覆盖优化 对网络的总体覆盖情况进行测试分析,查找孤岛效应、越区覆盖、盲区、小区主控覆盖不明显等网络覆盖问题,理顺网络的覆盖状况。 2、频率配置优化 分析网络的同邻频干扰情况,网络的频率规划方法,根据路测信令统计及仿真结果,结合地理信息,对干扰情况进行评估,并给出频率配置和调整方案。 3、网络容量和话务模型分析 了解现网的网络容量、已有用户数量和发展预测,地区业务特性和话务模型情况,进行各小区的话务均衡,提高设备的利用率,减少最坏小区的比例。 4、双频网络优化 分析现有网络结构、双频组网原则、双频网络的参数设置方法、宏蜂窝与微蜂窝的组网策略及切换关系等,根据网络情况对网络结构进行有效调整。 5、位置区优化 根据信令流程的分析,统计位置更新的次数和成功率,对位置更新的定时器设置和参数设置进行合理调整,对位置区进行合理的重规划,减小位置更新的信令负荷,提高位置更新的成功率。 6、信道配置优化 根据信令流量和话务量情况,对信令信道和话音信道进行合理配置,排除设备问题,减小信道拥塞率,并充分保证信道的利用。 7、设备告警优化 根据操作维护和现场的设备勘察,分析设备的告警信息,查证设备硬件问题及传输链路的完好性,解决设备和网络的物理问题。 8、接入性能优化根据路测和OMC统计数据,分析网络的接入性能,提出改善的方向、可能性与目标,以提高接入的成功率。 9、切换性能优化切换类型中占了主要部分的是质量原因、电平原因及功率预算(PBGT)原因引起的切换。一般说来,PBGT原因占70%~80%的网络配置比较合理的。根据路测和OMC统计数据,分析网络的切换性能,包括MSC间的切换和MSC内的切换,改善网络的切换分布,形成合理的切换带。

LTE网规网优试题1207-答案

LTE试题 姓名:工号: 一、填空题(共计15分,每题1分) 1、LTE的调制方式有 BPSK 、 QPSK 、 16QAM 、 64QAM 2、LTE系统中,RRC 状态有__空闲态___和__连接态____。 3、SCH分为主同步信道和辅同步信道,在TDD-LTE中,其中PSS位于DwPTS的第_3_个 符号。 4、LTE测量分为3类:同频测量、__异频测量__、_异系统测量__。 5、一个RB采用正常CP时在时域上占__7__个OFDM符号,频域上占__12____个子载波。 6、S1-MME、S1-U 7、TD-LTE路测指标中的掉线率= 掉线次数 /成功完成连接建立次数。 8、Event___A2___ (Serving becomes worse than threshold):表示服务小区信号质 量低于一定门限,满足此条件的事件被上报时,eNodeB启动异频/异系统测量。 9、S1、X2。 10、LTE的物理层上行采用 SC-FDMA 技术,下行采用 OFDMA 技术。 11、下行控制/业务公共信道/信号有 PCFICH 、PHICH 、 PDCCH 、 PDSCH 、 PSS/SSS 和CRS/DRS。 12、室外测试中,邻区PCI (20)与测试小区PCI(71)模 3冲突,同时两个小区在 测试点的RSRP接近,这将导致测试点___RS__干扰较强,__SINR___产生突降。 13、eNB通过下行的___RRC Connection Reconfiguration____(信令)消息将测量配置 信息发送给UE,包括UE需要测量的对象、事件参数、测量标识等。 14、在SAE架构中,与eNB连接的控制面实体叫 MME ,用户面实体叫 SGW 。 15、LTE下行传输模式TM3主要应用于信道质量高且空间独立性强的场景 二、判断题(共计10分,每题0.5分) 1、 X2接口是E-NodeB之间的接口(对) 2、一个时隙中,频域上连续的宽度为150kHz的物理资源称为一个资源块(错) 3、 LTE网络是全IP网络。(对) 4、 LTE小区搜索基于主同步信号和辅同步信号(对) 5、如果采用TD-LTE系统组网,必须采用8天线规模建网,2天线不能独立建网。(错) 6、从整体上来说,LTE系统架构仍然分为两个部分,包括EPC(演进后的核心网)和 E-UTRAN(演进后的接入网)。(对) 7、采用空分复用可以提高用户的峰值速率。(对)

网优工程师学习知识汇总V.0

网优该学的知识, 网优的基础,熟悉通信原理,各种无线参数的功能和含义,了解路测和BSC的控制,会分析指标。 多看网优报告和学习网优经验总结,刚开始一般是路测,先学好路测软件的使用例如tems和导航软件MapInfo等,学会分析侧路信令,看懂路测里的3层消息, 之后就是分析话统,网络问题的具体处理等。 网优需要在实际工作不断学习,积累经验。 指标方面需要经验的积累: CMCC移动网络考核指标-----系统统计指标 系统掉话率 网络接通率 无线接通率 系统寻呼成功率 PDCH分配成功率 PDP激活成功率 最坏小区比例 话音信道可用率 CMCC移动网络考核指标-----拨打测试和路测指标 覆盖率 接通率 掉话率 MOS值 实际优化过程中无线工程师考虑的网络质量指标-----系统统计指标 TCH掉话率 SDCCH 掉话率 TCH话务掉话比 TCH拥塞率 SDCCH拥塞率 内部/外部切换成功率 随机接入成功率 小区话务分布情况 TCH信道建立成功率 半速率占比 TCH & SDCCH 可用率 位置更新和寻呼情况 SDCCH信道分配情 实际优化过程中无线工程师考虑的网络质量指标-----拨打测试和路测分析

覆盖差路段的原因分析 质量差路段信号原因分析 未接通原因 掉话原因 一位成熟的网规网优工程师需要具备以下几方面能力: 一、网络测试 能熟练使用常见路测工具; 掌握常见的测试手段; 熟悉运营商网络测试规范; 能熟练分析测试数据,总结测试结果,分析和解决测试中存在的问题。 二、规划服务 能独立完成预规划; 能独立完成基站勘查; 能独立完成参数规划; 能独立完成频率规划,掌握自动分频原理; 具有网络结构规划相关知识,能在别人指导下完成。 三、网络优化 制定优化计划; 执行优化工作任务; 通过各种优化手段改善指标,达到并超过目标值; 完成优化工作总结报告,并给客户展示优化成果。 网络的规划是各项网络工作开展的前提与基础,从根本上影响着网络向用户提供的通信服务的质量以及网络对业务需求的响应能力。同时,合理的网络规划是保证网络安全的基石,是网络质量改善的先决条件,是拓展网络规模、提升网络承载能力的重要环节。此外,网络规划阶段是运营商资本投入的主要阶段,合理的规划可以使运营商用更少的资本建设出更大容量的网络,大幅提高运营资本效率。 网优的具体工作是: 1、网络覆盖优化对网络的总体覆盖情况进行测试分析,查找孤岛效应、越区覆盖、盲区、小区主控覆盖不明显等网络覆盖问题,理顺网络的覆盖状况。 2、频率配置优化分析网络的同邻频干扰情况,网络的频率规划方法,根据路测信令统计及仿真结果,结合地理信息,对干扰情况进行评估,并给出频率配置和调整方案。 3、网络容量和话务模型分析了解现网的网络容量、已有用户数量和发展预测,地区业务特性和话务模型情况,进行各小区的话务均衡,提高设备的利用率,减少最坏小区的比例。 4、双频网络优化分析现有网络结构、双频组网原则、双频网络的参数设置方法、宏蜂窝与微蜂窝的组网策略及切换关系等,根据网络情况对网络结构进行有效调整。

LTE网规网优基础知识问答汇总(全集)--华为

LTE网规网优基础知识问答汇总- Made by UNREGISTERED version of Easy CHM

Table of Contents 1. LTE网规网优FAQ_基本概念篇 (4) 1.1 为什么要从3G向LTE演进 (4) 1.2 LTE扁平网络架构是什么 (4) 1.3 相对于3G来说LTE采用了哪些关键技术 (5) 1.4 OFDM基本原理 (7) 1.5 单用户MIMO和多用户MIMO的区别 (8) 1.6 LTE上行为什么要采用SC-FDMA技术 (9) 1.7 为什么说OFDM技术容易和MIMO技术结合 (9) 1.8 LTE FDD和TDD帧结构是什么 (10) 1.9 LTE中RB、RE及子载波概念 (11) 1.10 LTE中CP概念及作用 (11) 1.11 LTE支持的带宽及表示方式 (12) 1.12 衡量LTE覆盖和信号质量基本测量量是什么 (13) 2. LTE网规网优FAQ_物理层篇 (14) 2.1 LTE有哪些上行和下行物理信道及物理信道和物理信号的区别 (14) 2.2 LTE中同步信号的作用及结构是什么 (14) 2.3 下行参考信号RS的基本概念 (15) 2.4 物理广播信道PBCH的基本概念 (16) 2.5 LTE中REG和CCE概念 (16) 2.6 物理控制格式指示信道PCFICH的基本概念 (17) 2.7 物理下行控制信道PDCCH的基本概念 (18) 2.8 物理下行共享信道PDSCH的基本概念 (19) 2.9 物理HARQ指示信道PHICH的基本概念 (20) 2.10 LTE下行信道处理一般需要经过哪些过程 (21) 2.11 LTE随机接入信道(PRACH)的基本概念 (21) 2.12 物理上行共享信道PUSCH的基本概念 (22) 2.13 上行控制信道(PUCCH)的基本概念 (23) 2.14 上行导频信号RS的简介 (24) 2.15 UE上报的RI和PMI及CQI含义 (25) 2.16 LTE物理信道传输信道及逻辑信道映射 (25) 2.17 LTE常用协议及获取方式 (26) 3. LTE网规网优FAQ_工具篇 (27) 3.1 目前LTE规划优化项目中使用配套工具有哪些 (27) 当前Probe可以支持的LTE终端类型有哪些?这些终端各支持的频段有哪些?当前probe可以支持哪些型号scanner? (27) 3.2 LTE工具主打版本及配套资料从哪里获得 (28) LTE规划优化主打工具及配套资料从哪里可以获得? (28) 3.3 LTE工具的License如何获取 (29) 3.4 LTE工具使用过程中出现问题或有新的需求该找谁反馈 (30) 一线在使用过程中遇到工具问题或者对工具有新的需求,该向谁反馈?走电子流么? (30) 3.5 当前Probe可以支持的LTE终端类型有哪些?这些终端各支持的频段有哪些?当前

LTE网规网优基础知识问答汇总(全集)-华为

问题描述: 为什么要从3G向LTE演进 问题答复: LTE(Long Term Evolution)是指3GPP组织推行的蜂窝技术在无线接入方面的最新演进,对应核心网的演进就是SAE(System Architecture Evolution)。之所以需要从3G演进到LTE,是由于近年来移动用户对高速率数据业务的要求,同时新型无线宽带接入系统的快速发展,如WiMax的出现,给3G系统设备商和运营商造成了很大的压力。在LTE系统设计之初,其目标和需求就非常明确:降低时延、提高用户传输数据速率、提高系统容量和覆盖范围、降低运营成本: 显著的提高峰值传输数据速率,例如下行链路达到100Mb/s,上行链路达到50Mb/s; 在保持目前基站位置不变的情况下,提高小区边缘比特速率; 显著的提高频谱效率,例如达到3GPP R6版本的2~4倍; 无线接入网的时延低于10ms; 显著的降低控制面时延(从空闲态跃迁到激活态时延小于100ms(不包括寻呼时间)); 支持灵活的系统带宽配置,支持、3MHz、5MHz、10MHz、15MHz、20MHz带宽,支 持成对和非成对频谱; 支持现有3G系统和非3G系统与LTE系统网络间的互连互通; 更好的支持增强型MBMS; 系统不仅能为低速移动终端提供最优服务,并且也应支持高速移动终端,能为速 度>350km/h的用户提供100kbps的接入服务; 实现合理的终端复杂度、成本、功耗; 取消CS域,CS域业务在PS域实现,如VOIP; 问题描述: LTE扁平网络架构是什么 问题答复: LTE的接入网E-UTRAN由eNodeB组成,提供用户面和控制面; LTE的核心网EPC(Evolved Packet Core)由MME,S-GW和P-GW组成; eNodeB间通过X2接口相互连接,支持数据和信令的直接传输; S1接口连接eNodeB与核心网EPC。其中,S1-MME是eNodeB连接MME的控制面接口, S1-U是eNodeB连接S-GW 的用户面接口;

相关文档
最新文档