移动荷载(包括冲击系数)取值的简单说明

移动荷载(包括冲击系数)取值的简单说明
移动荷载(包括冲击系数)取值的简单说明

移动荷载(包括冲击系数)取值的说明一、模型建立,车道荷载的施加

说明:模型为2m简支梁。包括3个节点,2个单元。施加一个车道荷载

二、分析查看反力:

反力计算说明:

F=270*1.2+10.5=334.5,为什么乘以1.2,请各位工程师自己思考!!

二、考虑冲击系数后分析查看反力:

说明:结构的冲击系数是根据基频的大小来定义的。

此时反力结果为485kN:

485计算过程:

334.5*1.45=485

基本组合的荷载分项系数

1.永久荷载的分项系数: 1)当其效应对结构不利时 —对由可变荷载效应控制的组合,应取1.2; —对由永久荷载效应控制的组合,应取1.35; 2)当其效应对结构有利时 —一般情况下应取1.0; 2 .可变荷载的分项系数: —一般情况下应取1.4; —对标准值大于4KN/m2 的工业房屋楼面结构的活荷载应取1.3。 3 .对结构的倾覆、滑移或漂浮验算,荷载的分项系数应按有关设计规范的规定采用。 恒荷载系数取值1.35和1.2怎么区分? 恒荷载系数取值1.35和1.2怎么区分?以恒荷荷载效应组合为主取1.35,以可变荷载效应组合为主取1.2,恒荷与可变比例多少时,才算恒荷荷载效应组合为主(怎么区分)?: 曾经见过一篇文章说,恒载是活载2倍以上时用1.35; 规范理解与应用>上说SQK(可变荷载效应组合设计值)/SGK(按永久荷载标准值计算都荷载效应值)>0.376时由可变荷载控制,其他情况由永久荷载控制;这只是经验数值,有局限性; 一般高层住宅好象都是恒荷起控制作用 一般的。我在多层里分项系数1.2,1.4;高层里分项系数1.35,1.4。 具体点说,一般只有一种活载时,(当恒载取1.35时,活载前面要乘以0.7的组合系数) 对由可变荷载效应控制的组合:1.2q+1.4p 由永久荷载效应控制的组合:1.35q+1.4px0.7,其中q——恒载,p——活载S 所以,并不一定是由永久荷载效应控制的组合>由可变荷载效应控制的组合,我认为应是哪个大就取哪一个。 .荷载组合详解 荷载规范里的荷载组合中提到的荷载“基本组合”、“频遇组合”和“准永久组合”分别表示什么?分别用在什么情况下? 1)基本组合是属于承载力极限状态设计的荷载效应组合,它包括以永久荷载效应控制组合和可变荷载效应控制组合,荷载效应设计值取两者的大者。两者中的分项系数取值不同,这是新规范不同老规范的地方,它更加全面地考虑了不同荷载水平下构件地可靠度问题。 在承载力极限状态设计中,除了基本组合外,还针对于排架、框架等结构,又给出了简化组合。 2)标准组合、频遇组合和准永久组合是属于正常使用极限状态设计的荷载效应组合。 标准组合在某种意义上与过去的短期效应组合相同,主要用来验算一般情况下构件的挠度、裂缝等使用极限状态问题。在组合中,可变荷载采用标准值,即超越概率为5%的上分位值,荷载分项系数取为1.0.可变荷载的组合值系数由《荷载规范》给出。

需要系数法确定计算负荷

需要系数法确定计算负荷: 建筑电气图中:Pe,Pj,Ij,Kx,cosφ各代表什么 建筑电气图中:Pe设备容量,Pjs计算容量,Ijs计算电流,Kx需要系数,cosφ功率因数Pjs=Kx*Pe. Ijs=Pjs/(1.732*Ue*cosφ) , ue=380v -------------------------------------------- 关于:Pjs=Pe*Kx (单相)Ijs=Pjs/0.22CosΦ = (Pjs * 4.5454)/ CosΦ (三相)Ijs=Pjs/0.38*1.732*CosΦ(1.732为3开根号)=( Pjs*1.5193)/CosΦ 上面式中:Pe----负荷总功率;Kx----需用系数;CosΦ---功率因数。 另外也可以根据我提供的符合计算程序进行计算; --------------------------------------------- 负荷计算的目的是为了合理地选择导线截面,确保电气线路和设备经济、安全地运行。常用计算负荷的方法中有“需要系数”法,该法较简单、 精确度较高,且是实用的工程计算方法,因而得到广泛的应用。 一、电器负荷的计算 确定了各用电设备容量之后,将各用电设备分类,即将感性负荷与纯阻性负荷分类。现在民宅中的感性负荷主要有洗衣机、空调器、电冰箱、电风扇、荧光灯中的电感性镇流器;纯阻性负荷主要有电饭(火)锅、电热水器、电热取暖器、白炽灯、加热器等。要进行分类计算。 有功计算负荷等于同类用电设备的容量总和乘以一个需要系数,即 Pjs=Kx?∑Pe 式中Pjs——有功计算负荷(kW) ∑Pe——同类设备的总容量(kW) Kx——设备的需要系数,它表示不同性质的民宅对电器负荷的需要和同时使用的一个系数,与用电设备的工作性质、使用效率、数量等因素有关。附表是推荐值,仅供参考。 二、工作电流的计算 由于各类用电设备的功率因素不完全相同,又存在感性负荷和纯阻性负荷,因此应分开计算。 1.计算电流 Ijs=Pjs/Ucos∮ ------------------------------- 电气负荷计算方法与公式 负荷计算的目的是为了合理地选择导线截面,确保电气线路和设备经济、安全地运行。常用计算负荷的方法中有“需要系数”法,该法较简单、精确度较高,且是实用的工程计算方法,因而得到广泛的应用。 一、电器负荷的计算 确定了各用电设备容量之后,将各用电设备分类,即将感性负荷与纯阻性负荷分类。现在民宅中的感性负荷主要有洗衣机、空调器、电冰箱、电风扇、荧光灯中的电感性镇流器;纯阻性负荷主要有电饭(火)锅、电热水器、电热取暖器、白炽灯、加热器等。要进行分类计算。 有功计算负荷等于同类用电设备的容量总和乘以一个需要系数,即 Pjs=Kx?∑Pe 式中Pjs——有功计算负荷(kW)

连续梁桥汽车冲击系数试验及数值研究

——————————————— 本文为江西省自然科学基金资助。作者简介:张期星(1983-),男,山东人,硕士研究生,从事桥梁结构工程研究(E-mail:zh_q_x123@https://www.360docs.net/doc/2c11455338.html,);陈水生 连续梁桥汽车冲击系数试验及数值研究 张期星1 ,陈水生2 (1.2华东交通大学土木建筑学院 江西南昌330013) 摘 要:本文主要分析三跨连续梁桥,应用达朗贝尔原理,推导了三轴半车模型下的车桥耦合振动方程,比较了在不同车速和不同跨径作用下的汽车冲击系数,并且对多个连续梁桥汽车冲击系数的实测结果进行了分析。文中采用有限元法离散,将无限自由度系统转化为有限自由度系统,使用Ansys 软件进行了三跨连续梁桥的模态分析,提取出前10阶模态分量和振型频率,利用模态叠加的方法对车桥耦合振动方程进行解耦,并且利用Matlab 软件编程进行了数值模拟,分析了三跨连续梁桥车桥耦合振动特性。在仅仅考虑竖向位移的情况下,主要采用了Newmark 方法,编程得出了不同车速和不同跨径对三跨连续梁桥汽车冲击系数的影响规律:汽车冲击系数随着车速的提高而增加,车速较低时(一般在20km/h-40km/h)冲击系数变化缓慢,当车速大于50km/h 后,冲击系数变化较大;汽车冲击系数随着跨径的增大而降低,跨径越大,其值越接近于1.0。 关键词:三跨连续梁桥;汽车冲击系数;车桥耦合模型 Experimental and numerical study on Impact coefficient of continuous girder bridge under vehicle Zhang Qixing 1 Chen Shuisheng 2 (Institute of Civil construction,East China Jiaotong University,nanchang,Jiangxi330013,China) Abstract :This paper mainly analyses three-span continuous girder bridge. The coupled vibration functions of vehicle and bridge with five degree of freedom vehicle model are derived using the D’Alembert’s principle. The impact coefficient of vehicle are analysed under condition of various span length and speeds of moving vehicle, and the measured results of several continuous girder bridge are analysed. The studies adopt the method of finite element discrete to turn the system of infinite degree of freedom into the system of finite degree of freedom, and analyse the mode of three-span continuous girder bridge under the use of the Ansys software to exact the mode components and frequencies. Then the coupled vibration functions of vehicle and bridge are decoupled with the method of modal superposition, and the coupled vibration characteristics of vehicle and bridge are analysed by the numerical simulation of Matlab software. On the condition of only considering the vertical displacement, it programs by the method of Newmark to conclude the influence law of impact coefficient of vehicle for three-span continuous girder bridge under condition of various span length and speeds of moving vehicle: impact coefficient of vehicle would rise with the rise of speed of vehicle,when the speed of vehicle is relative lower(approximately 20km/h- 40km/h),the value would change slowly,but the speed surpasses 50km/h,it would change obviously; impact coefficient of vehicle would decrease with the rise of span length,and the more large is the span length,the more close to 1.0 is the value. Key word :three-span continuous girder bridge;impact coefficient of vehicle;vechicle-bridge coupled model 0 引言 目前,车辆对桥梁的冲击作用我们通常采用汽车冲击系数μ或者动力增量φ来描述,即在考虑桥梁静载作用下的响应乘以一个相应的动力系数。由于冲击系数关系到桥梁结构设计的安全与经济性能,所以其取值的大小对于桥梁结构在车辆荷载作用下的安全举足轻重。各国旧规范的冲击系数都是采用跨径或加载长度的递减函数来计算的[1],但是影响车辆与桥梁相互作用的因素很多,比如车辆与桥梁整体系统的刚度、质量、阻尼、桥面的不平整度、加载车辆数目、车辆 间距、加载车道、车辆相向行驶、以及车速与跨径的影响等等[2],它是一个非常复杂的问题,所以单纯的考虑桥梁跨径或者加载长度对于汽车冲击系数来讲是很不严密的。因此04规范给出了与桥梁结构基频的关系。 1 三轴半车模型的建立及求解 如图1所示,为三轴半车模型,假定连续梁桥每跨具有相同的跨长、质量和刚度。由达朗贝尔原理得到车辆振动方程 1f 1f 1f 1f c 11c 111f 1c 11c 111f 111z c z k k l z k z )k k (c l z c z )c c (z m +=+?+++?++θθ (1) 2f 2f 2f 2f c 22c 222f 2c 22c 222f 222z c z k k l z k z )k k (c l z c z )c c (z m +=??+++?++θθ(2)

空调用冷水机组部分负荷性能与空调系统的匹配分析

空调用冷水机组部分负荷性能与空调系统的匹配分析 龚毅 摘要:本文分析研究了反映空调用冷水机组在部分负荷运行时的综合性能相关参数,讨论了不同部分负荷性能冷水机组的能耗评价方法和节能潜力,划分了冷水机组在不同负荷段的部分负荷性能与全负荷性能的关系,指出美国空调与制冷学会标准(ARI-550/590-98)中提出的综合部分负荷性能系数IPLV的技术意义及其变化,提示了制冷系统的设计与运行能耗与空调动态负荷的相关性,给出了空调用冷水机组部分负荷性能与空调系统匹配的基本思路。 关键词:冷水机组部分负荷性能空调系统匹配 在空调工程中,制冷系统的设计、安装和运行对整个空调系统的能耗影响很大。随着我国经济的快速发展,空调的使用日趋广泛,空调面积数量大幅度上升,各类风冷式、水冷式甚至蒸发式的冷水机组已经成为空调用冷源的主力军,冷水机组的能耗也越来越大,采用合理、科学和经济的设计、选型和运行方案,就成为降低冷水机组消耗的关键问题。 空调用冷水机组的全年运行能耗与冷水机组的性能有关,而冷水机组的性能主要包括全负荷性能和部分负荷性能,两者在选择和匹配冷水机组时均起着重要的作用。由于空调系统的冷负荷总是随室外气象参数扰动和室内状态的改变而变化的,在供冷期间空调系统在部分负荷下运行的时间较多,所以冷水机组的实际运行过程中大部分时间都是处于部分负荷运行状态,因此冷水机组部分负荷时的性能对其运行能耗的影响是很大的。研究冷水机组、空调系统的部分负荷特性及其相互之间的匹配关系,对于挖掘空调制冷总能系统的节能潜力无疑是十分重要的。 1冷水机组部分负荷综合性能参数 在规定的名义工况条件下,冷水机组的制冷量与能耗之比称为冷水机组的能效比EER(Energy Efficiency Ratio),它是标志冷水机组能耗的重要指标。在上个世纪的八十年代,节能研究的重点一直集中在如何提高冷水机组的EER。但是,EER所表示的仅仅是名义工况条件下的能耗。随着系统负荷的减少,它会大幅度的下降。例如某机组,在100%负荷(满负荷)时,它的EER是3.0左右的话,当系统调节为40%附近的负荷率时,EER已经降为1.4了。事实上,系统负荷与冷水机组的制冷量完全匹配的情况几乎是没有的。为此,必须考虑冷水机组在各种负荷下综合能耗。季节能效比 SEER(Seasonal Energy Efficiency Rate)和由美国空调与制冷学会标准(ARI—550/590–98)中提出的综合部分负荷性能系数IPLV(Integrate Partial Load Value)来评价不同类型冷水机组在整个空调季节中的综合性能,可以更准确的反映冷水机组的能耗。这里重点分析综合部分负荷性能系数IPLV。 冷水机组的部分负荷性能一般是以名义工况输入功率百分数和名义工况制冷量的百分数来表示。一般来说,冷水机组的部分负荷性能大致可以有在整个负荷段冷水机组的全负荷性能好于、差于部分负荷性能和部分负荷段好于、部分负荷段差于部分负荷性能这三种情况。由于冷水机组的实际运行情况(串、并联台数;负荷调节方法;地理位置和建筑特点;室内外参数条件和机组运行方案)是有较大差异的,难以准确作出冷水机组的负荷特性曲线,需要寻求一个能描述不同类型冷水机组共同的部分负荷性能评价指标。综合部分负荷性能系数的概念是最早于1986年首先提出来的,后来经过多次修改完善,形成了美国空调与制冷学会ARI550-92《离心式和回转式螺杆式冷水机组》以及ARI590-92《容积式冷水机组》两个标准中规定的综合部分负荷性能系数IPLV(Integrate Partial Load Value),在部分负荷下求得制冷性能系数,再按加权系数公式计算出冷水机组部分负荷性能值,主要反映冷水机组的部分负荷调节功能。这一方程是对于提供冷水机组平均负荷性能的一种进展,使得这一指标能够准确地描述在一个标准年周期内冷水机组运转的实际过程,这样就可以通过扩展的计算机数据分析

分项系数

1 ........................................................................................................................... 一、荷载分项系数 1 ....................................................................... 二、为什么要设荷载分项系数和材料分项系数?2 而恒载对结构有利时取1? ................ ,为什么一般取大于1呢,三、什么叫可变荷载分项系数四、建筑结构可靠度设计中的分项系数是如何计算出来的. (2) (一)荷载分项系数 (2) 1、<<统一标准>>中荷载分项系数的确定 (2) 2.分别在3种荷载效应组合下的荷载分项系数的确定 (4) 3、两个方法比较一下可以得到 (6) (二)、材料分项系数 (6) 1、标准值取值 (6) 2、材料分项系数的计算 (7) (三)、钢管混凝土材料分项系数 (7) 一、荷载分项系数 荷载分项系数是在设计计算中,反映了荷载的不确定性并与结构可靠度概念相关联的一个数值。对永久荷载和可变荷载,规定了不同的分项系数。(1)永久荷载分项系数γG:当永久荷载对结构产生的效应对结构不利时,对由可变荷载效应控制的组合取γG=1.2;对由永久荷载效应控制的组合,取γG=1.35。当产生的效应对结构有利时,—般情况下取γG=1.0;当验算倾覆、滑移或漂浮时,取γG=0.9;对其余某些特殊情况,应按有关规范采用。(2)可变荷载分项系数γQ:—般情况下取γQ=1.4;但对工业房屋的楼面结。3γQ=1.>4kN构,当其活 荷载标准值/㎡时,考虑到活荷载数值已较大,则取二、为什么要设荷载分项系数和材料分项系数? 荷载分项系数是考虑到永久荷载标准值与可变荷载标准值的保证率(保证率是指直接采用标准值进行荷载设计不能保证达到目标可靠性指标要求)不同,故混凝土结构所使用的主要材料是混材料分项系数,他们采用了不同的分项系数。.凝土和钢筋,考虑到两种材料强度值的离散性不同故采用了材料分项系数。为什么一般取什么叫可变荷载分项系数,三、1? 而恒载对结构有利时取1大于呢,都是在荷载效应组合也就是我们求取结构构件(还有一个组合值系数)分项系数所以一般乘以一个大考虑到荷载可能会大于其标准值,最不利内力时才用到的,,所以一般乘以

负荷计算公式

一. 三相用电设备组计算负荷的确定: 1. 单组用电设备负荷计 算: P30=KdPe Q30=P30tanφS30=P30/cosφI30=S30/(1.732UN) 2. 多组用电设备负荷计 算: P30=K∑p∑P30,i Q30=K∑q∑Q30,i S30=(P²30+Q& sup2;30)½ I30=S30/(1.732UN) 注: 对车间干线取K∑p=0.85~0.95 K∑q=0.85~ 0.97 对低压母线①由用电设备组计算负荷直接相加来计算时取? ?K∑p=0.80~0.90? ???K∑q=0.85~0.95? ?? ?? ?? ??? ? ?? ?? ?? ?? ?? ?? ?? ?? ?? ???②由车间干线计算负荷直接相加来计算时取? ???K∑p=0.90~0.95? ???K∑q=0.93~0.97? ?? ?? ?? ??? ? ?3. 对断续周期工作制的用电设备组? ???①电焊机组要求统一换算到ε=100﹪, Pe=PN(εN)½ =Sncosφ(εN)½ (PN.SN为电焊机的铭牌容 量;εN为与铭牌容量对应的负荷持续率;cosφ为铭牌规定的功率因数. ) ②吊车电动机组要求统一换算到ε=25﹪, Pe=2PN(εN)½ 二. 单相用电设备组计算负荷的确定: 单相设备接在三相线路中,应尽可能地均衡分配,使三相负荷尽可能的平衡.如果三相线路中单相设备的总容量不超过三相设备总容量的 15﹪,则不论单相设备容量如何分配,单相设备可与三相设备综合按三相负荷平衡计算.如果单相设备容量超过三相设备容量15﹪时,则应将 单相设备容量换算为等效三相设备容量,再与三相设备容量相加.

说说荷载及分项系数的调整

说说“荷载及分项系数调整” 住房和城乡建设部2018第263号公告:《建筑结构可靠性统一标准》(GB50068-2018),自2019年4月1日起实施. 新版可靠性标准最大的变化,主要是对荷载(作用)分项系数的调整. 取消了以永久作用起控制作用时分项系数1.35的规定; 永久作用分项系数由1.2调整到1.3; 可变作用分项系数由1.4调整到1.5; 不少同行疑惑,《可靠性标准》改了,其他规范要不要跟着一起改? 第1.0.5条,给出了指引性的规定: 制定建筑结构荷载规范和各种材料的结构设计规范以及其他相关标准应遵守本标准规定的基本原则,并应制定相应的具体规定. 但第1.0.6条又规定: 建筑结构设计除应符合本标准的规定外,尚应符合国家现行有关标准的规定. 这其实就有点矛盾了,《高规》和《抗规》没有同步调整的当下,我们该如何执行呢?至今尚无统一的说法. 我们就从逻辑上捋一捋这个事儿.

首先,《建筑结构可靠性统一标准》属于通用标准,是其他标准制定的依据,必然是牵一发而动全身.如果《抗规》和《高规》与《统一标准》出现矛盾,是应该按更新的通用标准来执行的. 对上面这点,绝大多数工程师是没有疑义的.大家争执的点是在操作层面. 有些人把永久作用理解为恒载,把可变作用理解为活载,认为只在极限承载力设计时,才考虑1.3和1.5的分项系数调整,其他统统不管.这就有点狭隘了. 结合与多个专家的沟通,目前个人观点倾向如下:计算刚重比采用的重力荷载设计值,分项系数调整为1.3和1.5; 计算轴压比采用的重力荷载代表值,分项系数应由1.2调整为1.3; 风荷载分项系数由1.4调整为1.5; 地震作用分项系数仍为1.3; 上述观点主要基于如下逻辑: 尽量保持分项系数的系统性和一致性; 把风荷载当做可变作用; 有人会说,地震作用也是可变作用.严格来说,确实如此.在《统一标准》名词解释中可以看到: 可变作用是指,在设计使用年限内其量值随时间变化,且其变化与平均值相比不可忽略不计的作用.

电气设计的负荷计算方法及其应用

电气设计的负荷计算方法及其应用范围 电气负荷计算方法有:需要系数法,利用系数法,二项式系数法,单位面积功率计算法,单位产品功率计算法等. (1),需要系数法:用设备功率乘以需要系数和同时系数,直接求出计算负荷; (2),利用系数法:采用利用系数求出最大负荷班的平均负荷,再考虑设备台娄和功率差异的影响,乘以与有效台数有关的最大系数求得计算负荷; (3),二项式系数法:将负荷分为基本负荷和附加负荷,后者考虑一定数量大容量设备影响; (4),单位面积功率法,单位指标法,单位产品耗电量法等,可用于初步设计用电量指标的估算,对于住宅建筑,在设计各阶段均可使用单位面积功率法. 它们的应用范围各不一样,按《民用建筑电气设计规范》3.4.2.1."在方案设计阶段可采用单位指标法;在初步设计阶段,宜采用需要系数法."可见:民用建筑电气计算负荷推荐采用需要系数法;这是因为民用建筑中电气设备很少有特别突出的大功率设备,而按照需要系数法简单易行;而在工业建筑中,由于各设备的用电量存的很大差异,用需要系数法进行计算与实际就存在很大出入. 例如:某车间用电设备如下: 电焊机25台,功率分别 为:3.0KVA*8;8KVA*6;16KVA*5;30KVA*2;180KVA*2;200KVA*2;ε=50% 风机:50台,功率均为:2.2KW 机床:66台,功率分别为:7.5Kw*30;15KW*30;30KW*2;45KW*2;90KW*2 吊车:2台,分别为15KW,22KW. 本车间的总配电计算负荷用上述(1),(2),(3)分别如下: (一),采用需要系数法: 电焊机,Kx=0.35, Pjs=Kx*Pe =0.35*972**cosΦ =0.35*972**0.7=168.39Kw Qjs=Pjs*tgΦ=1.02*168.39=171.76Kvar 风机:Kx=0.75 Pjs=Kx*Pe=0.75*50*2.2=82.5KW Qjs=Pjs*tgΦ=0.75*82.5=61.9Kvar 机床:Kx=0.12 Pjs=Kx*Pe=0.12*1005=120.6KW Qjs=Pjs*tgΦ=1.73*120.65=208.6Kvar 吊车:Kx=0.1 Pjs=Kx*Pe=0.1*37=3.7KW Qjs=Pjs*tgΦ=1.73*3.7=6.4Kvar P∑=K∑p*∑Pjs=0.9*374.8=375.19KW Q∑=K∑q*∑Qjs=0.95*374.8=448.66KW S∑==584.86KVA cosΦ∑=0.505

新旧规范中的汽车荷载比较

新旧规范中的汽车荷载比较 前言: 我国公路桥梁结构设计采用的汽车荷载标准长期以来采用汽车车队的形式, 计算荷载和验算荷载相结合的模式。原规范将汽车荷载划分为汽车—超20级、汽车—20级、汽车—15级、汽车—10级共四个等级,并且每个等级规定了验算荷载——挂车和履带车荷载;而新规范只将汽车荷载分为公路—I级和公路—II 级两个等级,取消了原规范规定的汽车—15级和汽车—10级汽车荷载,并且不考虑验算荷载。公路—I级相当于原规范的汽车—超20,公路—II级相当于原规范的汽车—20级。两者对简支梁的内力有什么区别,我们接下来就来分析这个问题。 正文: 新旧规范汽车荷载对简支梁产生的内力主要体现在两个方面: 1.汽车荷载的计算图式不同。 原规范汽车荷载的计算图式是以一辆加重车和具有规定间距的若干辆标准车组成的车队表示的。新规范采用车道荷载即由均布荷载和集中荷载组成的图式。 2.冲击系数不同。 旧规范近似地认为冲击力与计算跨径成反比,并与桥梁的结构形式有关。而新规范采用了结构基频来计算桥梁结构的冲击系数。 一.跨径20米的简支梁的内力分析。 下面以混凝土简支梁为研究对象,分析新旧规范标准汽车荷载效应的差别。 该桥标准跨径20m,主梁全长19.96m,计算跨径19.50m,桥面净空为净—7m+2×1.75m。主梁结构尺寸如下图示。 设计荷载分别采用《公路桥涵设计通用规范》(JTG D60-2004)采用的公路—I级、公路—II级与《公路桥涵设计通用规范》(JTJ 021-85)采用的汽车—超20级、汽车—20级进行对比分析。 (一).新桥规计算的荷载效应 根据上节中主梁结构纵、横截面的布置,取用其的一根主梁计算其各控制截面的汽车荷载效应。 汽车荷载效应计算 按《公路桥涵通用设计规范》(JTG D60-2004)4.3.2条规定,简支梁结构的冲击系数由下式计算: 介于1.5HZ和14HZ之间,冲击系数按下式计算:

冷水机组制冷量性能系数

冷水机组制冷量性能系数(COP)有哪些要求 选择合适的冷水机需要着重了解冷水机的制冷量、冷冻水量、热效率和水箱容量、温控精度、水质要求和水循环系统材质要求等。下面的数据是工业冷水机制冷量性能系数要求。 1、活塞式/涡旋式冷水机组,其性能系数(COP)要求如下: 当额定制冷量小于528KW时,其COP不应小于3.8; 当额定制冷量528~1163KW时,其COP不应小于4.0; 当额定制冷量大于1163KW时,其COP不应小于4.2。 2、对于螺杆式冷冻机组,其性能系数(COP)要求如下: 当额定制冷量小于528KW时,其COP不应小于4.10; 当额定制冷量528~1163KW时,其COP不应小于4.30; 当额定制冷量大于1163KW时,其COP不应小于4.60。 3、对于离心式冰水机组,其性能系数(COP)要求如下: 当额定制冷量小于528KW时,其COP不应小于4.40。 当额定制冷量528~1163KW时,其COP不应小于4.70。 当额定制冷量大于1163KW时,其COP不应小于5.10。 4、对于蒸发冷却或风冷式冷水机/活塞式/涡旋式冷水机组,其性能系数(COP)要求如下:

当额定制冷量小于或等于50KW时,其COP不应小于2.40。 当额定制冷量大于50KW时,其COP不应小于2.60。 5、对于风冷或蒸发冷却的螺杆式冷水机组,其性能系数(COP)要求如下:当额定制冷量小于或等于50KW时,其COP不应小于2.60。 当额定制冷量大于50KW时,其COP不应小于2.80。 6、水冷螺杆式冷水机组的综合部分负荷性能系数(IPLV)要求如下: 当额定制冷量小于528KW时,其IPLV不应小于4.47。 当额定制冷量528~1163KW时,其IPLV不应小于4.81。 当额定制冷量大于1163KW时,其IPLV不应小于5.13。 7.对于离心式水冷机组的综合部分负荷性能系数(IPLV)要求如下: 当额定制冷量小于528KW时,其IPLV不应小于4.49。 当额定制冷量528~1163KW时,其IPLV不应小于4.88。 当额定制冷量大于1163KW时,其IPLV不应小于5.42。 当名义制冷量大于7.1kW的风冷单元式机组,其能效比要求如下: 当不接风管时,能效比不小于2.60。 接风管时,能效比不小于2.30。 当名义制冷量大于7.1kW的水冷单元式机组,其能效比要求如下:

普通模板荷载标准值及分项系数

普通模板荷载标准值及分项系数 AI计算模板时的荷载标准值 AI.1模板自重标准值,应根据模板设计图纸确定。肋形楼板 及无梁楼板模板的自重标准值,可按表AI采用。 表AI楼板模板自重标准值kN/m2 AI.2新浇混凝土自重标准值,对普通混凝土可采用24kN/m3,对其他混凝土可根据实际表观密度确定。 AI.3钢筋自重标准值,应根据设计图纸确定。对一般梁板结构,每立方米钢筋混凝土的钢筋自重标准值可采用下列数值: 楼板1.1kN; 梁1.5kN。 AI.4施工人员和设备荷载标准值: AI.4.1计算模板及直接支承模板的小楞时,对均布荷载取2.5kN/m2,另应以集中荷载2.5kN进行验算,比较两者所得的弯矩值,按其中较大者采用;AI.4.2计算直接支承小楞结构构件时,均布荷载取1.5kN/m2; AI.4.3计算支架立柱及其他支承结构构件时,均布荷载取1.0kN/m2。 注 1对大型浇筑设备如上料平台、混凝土输送泵等按实际情况计算。 2混凝土堆集料高度超过100mm以上者按实际高度计算。 3模板单块宽度小于150mm时,集中荷载可分布在相邻的两块板上。 AI.5振捣混凝土时产生的荷载标准值,对水平面模板可采用2.0kN/m2;对垂直面模板可采用4.0kN/m2(作用范围在新浇筑混凝土侧压力的有效压头高度之内)。 AI.6新浇筑混凝土对模板侧面的压力标准值,一采用内部振捣器时,最大侧压力可按下列二式计算,并取二式中的较小值。 F=0.22γc t0β1β2v1/2 (A1) F=γc H (A2) 式中:F——新浇混凝土对模板的最大侧压力(kN/m2); γc——混凝土的表观密度(kN/m3);

常用荷载取值

风荷载: 正常使用活荷载标准值(KN/m2 : (1)住宅、宿舍取;其走廊、楼梯、门厅取; (2)办公、教室取;其走廊、楼梯、门厅取; (3)食堂、餐厅取;其走廊、楼梯、门厅取; (4)一般阳台取; (5)人流可能密集的走廊/楼梯/门厅/阳台、群间连廊/平台取; (6)卫生间取~ (按荷载规范);设浴缸、座厕的卫生间取; (7)住宅厨房取,中小型厨房取,大型厨房取(超重设备另行计算); (8)多功能厅、有固定坐位取;无固定坐位取; (9)商店、展览厅、娱乐室取;其走廊、楼梯、门厅取; (10)大型餐厅、宴会厅、酒吧、舞厅、健身房、舞台取; (11)礼堂、剧场、影院、有固定坐位的看台、公共洗衣房取; (12)小汽车通道及停车库取; (13)消防车通道:取;双向板楼盖、无梁楼盖取; 注:消防车超过300KN时,应按等效原则,换算为等效均布荷载。结构荷载 输入:无覆土的双向板(板跨》):板、次梁取28,主梁取20;覆土厚度》的双向板(板跨

》):板取w 28,梁参考院部《消防车等效荷载取值 计算表》; (14)书库、档案库取; (15)密集柜书库取; (16)大型宾馆洗衣房取; (17)微机房取;大中型电子计算机房取》,或按实际; (18)电梯机房、通风机房取;通风机平台取6 (< 5号风机)或8 (8号风机); (19)?机房、宾馆储藏室、布草间、公共卫生间(包括填料隔墙)取; (20)水泵房、变配电房、发电机房、银行金库及票据仓库取; (21)管道转换层取; (22)电梯井道下有人到达房间的顶板取。 屋面活荷载标准值(KN/m2 : (1)上人屋面取; (2)不上人屋面取; (3)?取(不包括花圃土石材料); 注:或维修荷载较大时,屋面活荷载应按实际情况采用;因不畅、堵塞等,应加强构造措施 或按积水深度采用。 (4)地下室顶板施工荷载一般取,塔楼内顶板一般不少于;高低层相邻的屋面,低屋面应考

需要系数法和单位面积功率法计算负荷

需要系数法计算负荷 1、车间变电所的计算负荷 有功、无功功率的同时系数分别取、 配电所或总降压变电所的计算负荷为各车间变电所计算负荷之和再乘以同时系数。配电所的同时系数分别为、,总降压变电所的同时系数分别为、单位面积功率法确定计算负荷 Pe=Pe'.S/1000 kW Pe----计算有功功率 Pe'----单位面积功率(负荷密度)w/m2(见下表1) S------建筑面积m2 用以上方法计算负荷时,还应结合工程具体情况,乘以不同的系数,系数见下表2 电能计算 W=η*Pe*365*24 η-----平均负荷系数,缺少经验数据时取民用建筑负荷密度指标(表1) 建筑类别负荷密度(w/m2) 住宅建筑 基本型 50 提高型 75 先进型 100 公寓建筑 30-50 旅馆建筑 40-70

办公建筑 30-70 商业建筑 一般 40-80 大中型 60-120 体育建筑 40-70 剧场建筑 50-80 医疗建筑 40-70 教育建筑 大专院校 20-40 中小学校 12-20 展览建筑 50-80 演播室 250-500 汽车库 8-15 住宅建筑用电负荷需要系数(表2) 户数系数户数系数 3 1 18 4 21 6 24 8 25-100 10 125-200 12 260-300 14 16 注:1、表中户数是指单相配电时接于同一相上的户数,按三相配电

时连接的户数应乘以3。 住宅的公用照明和电力负荷需要系数可按选取。 国家发改委2010年10月出台的居民阶梯电价方案中:居民生活阶梯电价全国平均电量分档标准表 项目 第三档 全国 平均 分档 标准 全国 平均 分档 标准 用户 覆盖 率 全国 平均 分档 标准%%%度/月%%%度/月%度/月 方案一70%51%79%11090%82%95%210100% 210以 上 方案二80%65%88%14095%90%98%270100% 270以 上天然气每户每月9-12立方米 管道煤气每户每月30立方米左右 用电设备组名称Kx cosφtgφ

新旧规范中的汽车荷载比较

新旧规范中的汽车荷载比 较 Prepared on 24 November 2020

新旧规范中的汽车荷载比较 前言: 我国公路桥梁结构设计采用的汽车荷载标准长期以来采用汽车车队的形式,计算荷载和验算荷载相结合的模式。原规范将汽车荷载划分为汽车—超20级、汽车—20级、汽车—15级、汽车—10级共四个等级,并且每个等级规定了验算荷载——挂车和履带车荷载;而新规范只将汽车荷载分为公路—I级和公路—II 级两个等级,取消了原规范规定的汽车—15级和汽车—10级汽车荷载,并且不考虑验算荷载。公路—I级相当于原规范的汽车—超20,公路—II级相当于原规范的汽车—20级。两者对简支梁的内力有什么区别,我们接下来就来分析这个问题。 正文: 新旧规范汽车荷载对简支梁产生的内力主要体现在两个方面: 1.汽车荷载的计算图式不同。 原规范汽车荷载的计算图式是以一辆加重车和具有规定间距的若干辆标准车组成的车队表示的。新规范采用车道荷载即由均布荷载和集中荷载组成的图式。 2.冲击系数不同。 旧规范近似地认为冲击力与计算跨径成反比,并与桥梁的结构形式有关。而新规范采用了结构基频来计算桥梁结构的冲击系数。 一.跨径20米的简支梁的内力分析。 下面以混凝土简支梁为研究对象,分析新旧规范标准汽车荷载效应的差别。 该桥标准跨径20m,主梁全长,计算跨径,桥面净空为净—7m+2×。主梁结构尺寸如下图示。

设计荷载分别采用《公路桥涵设计通用规范》(JTG D60-2004)采用的公路—I 级、公路—II级与《公路桥涵设计通用规范》(JTJ 021-85)采用的汽车—超20级、汽车—20级进行对比分析。 (一).新桥规计算的荷载效应 根据上节中主梁结构纵、横截面的布置,取用其的一根主梁计算其各控制截面的汽车荷载效应。 汽车荷载效应计算 按《公路桥涵通用设计规范》(JTG D60-2004)条规定,简支梁结构的冲击系数由下式计算: 介于和14HZ之间,冲击系数按下式计算: 汽车荷载效应计算结果见下表: 汽车一级荷载: 汽车二级荷载: (二).按照旧桥规计算的荷载效应 汽车荷载效应计算: 在汽车荷载效应计算中,直接用规范中采用的标准汽车荷载在主梁上加载, 从而计算出主梁各控制截面(支点、四分点和跨中截面)的最大弯矩和剪力效应。

综合部分负荷性能系数(IPLV)的计算与限值

综合部分负荷性能系数(IPLV)的计算与限值 综合部分负荷性能系数(IPLV,Integrated Part Load Value)是指:基于机组部分负荷时的性能系数值,按机组在各种负荷条件下的累积负荷百分比进行加权计算获得的表示空气调节用冷水机组部分负荷效率的单一数值。[1] IPLV计算公式 综合部分负荷性能系数(IPLV)计算方法如下: IPLV = 1.2% A + 32.8% B + 39.7% C + 26.3% D(4.2.13) 式中:A——100%负荷时的性能系数(W/W),“冷却水进水温度30℃”且“冷凝器进气干球温度35℃”;B——75%负荷时的性能系数(W/W),“冷却水进水温度26℃”且“冷凝器进气干球温度 31.5℃”;C——50%负荷时的性能系数(W/W),“冷却水进水温度23℃”且“冷凝器进气干球温度28℃”;D一一25%负荷时的性能系数(W/W),“冷却水进水温度19℃”且“冷凝器进气干球温度 24.5℃”。 冷水(热泵)机组IPLV 电机驱动的蒸气压缩循环冷水(热泵)机组的综合部分负荷性能系数(IPLV)应符合下列规定: 1)水冷定频机组的综合部分负荷性能系数(IPLV)不应低于表4.2.11的数值; 2)水冷变频离心式冷水机组的综合部分负荷性能系数(IPLV)不应低于表4.2.11中水冷离心式冷水机组限值的1.30倍; 3)水冷变频螺杆式冷水机组的综合部分负荷性能系数(IPLV)不应低于表4.2.11中水冷螺杆式冷水机组限值的1.15倍。 表4.2.11 冷水(热泵)机组综合部分负荷性能系数(IPLV)

多联式空调(热泵)机组IPLV 采用多联式空调(热泵)机组时,其在名义制冷工况和规定条件下的制冷综合性能系数IPLV(C)不应低于表4.2.17 的数值。 表4.2.17 多联式空调(热泵)机组制冷综合性能系数IPLV(C) IPLV的适用范围

常用荷载取值

常用荷载取值 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

风荷载: 正常使用活荷载标准值(KN/m2): (1)住宅、宿舍取;其走廊、楼梯、门厅取; (2)办公、教室取;其走廊、楼梯、门厅取; (3)食堂、餐厅取;其走廊、楼梯、门厅取; (4)一般阳台取; (5)人流可能密集的走廊/楼梯/门厅/阳台、群间连廊/平台取; (6)卫生间取~(按荷载规范);设浴缸、座厕的卫生间取; (7)住宅厨房取,中小型厨房取,大型厨房取(超重设备另行计算);(8)多功能厅、有固定坐位取;无固定坐位取; (9)商店、展览厅、娱乐室取;其走廊、楼梯、门厅取; (10)大型餐厅、宴会厅、酒吧、舞厅、健身房、舞台取; (11)礼堂、剧场、影院、有固定坐位的看台、公共洗衣房取; (12)小汽车通道及停车库取; (13)消防车通道:取;双向板楼盖、无梁楼盖取; 注:消防车超过300KN时,应按等效原则,换算为等效均布荷载。结构荷载

输入:无覆土的双向板(板跨≥):板、次梁取28,主梁取20;覆土厚度≥的双向板(板跨≥):板取≤28, 梁参考院部《消防车等效荷载取值 计算表》; (14)书库、档案库取; (15)密集柜书库取; (16)大型宾馆洗衣房取; (17)微机房取;大中型电子计算机房取≥,或按实际; (18)电梯机房、通风机房取;通风机平台取6(≤5号风机)或8(8号风机);(19)?机房、宾馆储藏室、布草间、公共卫生间(包括填料隔墙)取; (20)水泵房、变配电房、发电机房、银行金库及票据仓库取; (21)管道转换层取; (22)电梯井道下有人到达房间的顶板取。 屋面活荷载标准值(KN/m2): (1)上人屋面取; (2)不上人屋面取; (3)?取(不包括花圃土石材料); 注:或维修荷载较大时,屋面活荷载应按实际情况采用;因不畅、堵塞等,应加强构

冲击系数

公路桥梁冲击系数随机变量的概率分布及冲击系数谱 李玉良 摘要为适应近似概率设计法的应用,公路桥梁冲击系数研究必然引进概率概念。从现场实测入手,采集桥上汽车荷载流对桥梁结构产生的冲击系数随机样本,采用概率与数理统计的方法研究公路桥梁冲击系数的统计规律,得到公路桥梁冲击系数的概率分布及置信度为0.05的冲击系数谱。对冲击系数谱的适应范围及其与国内、外冲击系数的研究成果进行比较和讨论。关键词公路桥梁冲击系数随机变量概率分布冲击系数谱 l 前言 在移动的汽车荷载作用下,桥梁在空间的竖向、纵向和横向三个方向产生振动、冲击等动力效应。通常把竖向动力效应称为汽车荷载对桥粱结构的冲击力。桥梁结构的总竖向汽车荷载效应(SZ)等于竖向汽车荷载静力效应(SJ)与其动力效应之和。在国内、外的各种桥梁设计规范中,均采用把汽车荷载竖向静力效应乘以一个增大系数(1+μ)作为计入汽车荷载竖向动力效应的总竖向荷载效应。即: SZ=(1+μ)×SJ (1) 根据式(1),将冲击系数定义为:考虑移动的汽车荷载对桥梁结构产生竖向动力效应的增大系数。现今世界各国公路桥梁设计规范中有关冲击系数的规定,大都是在定值设计法概念下制定的。不管是理论计算还是现场实测,都基于移动的汽车荷载与桥梁结构产生“共振”求得,这样得到的冲击系数(1+μ)是极大值。它的不足之处是不能反映该数值在桥上出现的概率。调查得知,这样的极大值在桥上实际发生的机会是极为稀少的。 为适应近似概率设计法的应用,公路桥梁冲击系数研究必然引进概率概念。影响公路桥梁冲击系数的因素,归纳起来大致可分为三类: (1)汽车荷载本身的几何与动力特性; (2)桥梁结构的几何与动力特性; (3)激振及冲击的条件。 公路桥梁上通过的汽车荷载流是一个非列车化的问隙性连续流。它的流量大小、车辆间距、轴重大小、行驶速度、车辆的横向位置、车辆的动力特性都具有明显的不确定性,是无法预知的。这表明汽车荷载流本身具有明显的随机性。 桥梁结构的几何尺寸、材料的容重、弹性模量等也都是随机的。 汽车荷载流通过桥梁时的初始条件(如:路桥连接缝的结构状态、引道路面平整度等)和桥面的平整度等因素,也具有不确定性。这些都是移动的汽车激振和对桥梁结构产生振动、冲击等最重要的随机因素。由此我们可认识到,公路桥梁冲击系数是反映诸多影响因素随机组合产生振动、冲击等效应的一个综合性系数,具有明显的随机性。 另外,公路桥梁冲击系数与时间没有明显的关系。它的取值,充满了某一实数区间,不能用一个有限或无限数列表示。因此,本文把公路桥梁冲击系数用连续随机变量概率模型进行研究。 2 公路桥梁冲击系数的概率分布及统计参数 由于随机模拟汽车流、桥梁激振及冲击条件等非常困难,从公路桥梁随机振动与随机冲击等问题的理论研究人手,来解决公路桥梁冲击系数问题,条件尚不成熟。为此,我们的研究从现场实测入手,采集桥上汽 wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();}); 车荷载流对桥梁结构产生的冲击系数随机样本,用概率与数理统计的方法来研究公路桥梁冲击系数的统计规律。

相关文档
最新文档