第六章定积分空间解析几何

第六章定积分空间解析几何
第六章定积分空间解析几何

姓名______________ 学号__________________

2012级信息计算科学 《高等数学选讲》练习题(5)

第六章 定积分及应用

1.抛物线22y x =把圆22

8x y +≤分成两部分,求这两部分面积之比

2. 求两椭圆22221x y a b +≤,22

221x y b a

+≤的公共部分的面积.

3.求三叶玫瑰线sin3r a θ=(a>0)所围成的图形的面积.

4.设由y 轴,2,y x y a ==(01a <<)所围成的平面图形,由y a =,2y x =,1x =所围的平面图形都绕y 轴旋转,所得旋转体的体积相等,则a =_________

5.一圆锥形水池,池口直径30m ,深20m ,池中盛满了水.试求将全部池水抽出池外需做的功.

6. 求函数1tan ()1tan x f x x -=

+在区间[0,]4

π上平均值.

7.计算定积分 221x

x

e dx e π

π-+?.

8.讨论下列反常积分的收敛性:

(1)

01m x dx x +∞+? (,0n m ≥) (2)0arctan n

x dx x +∞? (3)1201(ln )dx x x ?

第七章 空间解析几何与向量代数

1.设一平面通过原点及(6,-3,2),且与平面420x y z -+=垂直,则此平面方程为_________

2.设直线L :321021030

x y z x y z +++=??--+=?,及平面π:420x y z -+-=,则直线L ( )

(A )平行于平面π. (B )在平面π上. (C )垂直于平面π. (D )与平面π斜交.

3. 已知A 点和B 点的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴一周所成的旋转曲面为S ,求由S 及两平面z=0,z=1所围成立体的体积.

第八章

多元函数微分法及其应用 1.设2(,)u xf x y xy =-,其中f 具有连续的二阶偏导数,求2,u u x x y

?????.

2.设x z xy y =+

,其中()y y x =是由方程221x y +=所确定的函数,则dz dx = _________

3.设函数(,)f x y 可微,(0,0)0f =,'(0,0)x f m =,'(0,0)y f n =,()[,(,)]t f t f t t ?=,则

'(0)?=_________.

4.设方程33

3z xyz a -=,求隐函数的偏导数2z x y ???.

5.设(,)z f x y =是二次连续可微函数,又有关系式u x ay =+,v x ay =-

(a 是不为零的常数),求2z u v

???

6.设0x y z ++=,2221x y z ++=,求dx dz 和dy dz

.

第六章 定积分的应用

第六章 定积分的应用 第一节 定积分的元素法 教学目的:理解和掌握用定积分去解决实际问题的思想方法即定积分的元素法 教学重点:元素法的思想 教学难点:元素法的正确运用 教学内容: 一、 再论曲边梯形面积计算 设 f x ()在区间],[b a 上连续,且0)(≥x f ,求以曲线y f x =()为曲边,底为] ,[b a 的曲边梯形的面积A 。 1.化整为零 用任意一组分点 b x x x x x a n i i =<<<<<<=- 110 将区间分成 n 个小区间[,]x x i i -1,其长度为 ),,2,1(1n i x x x i i i =-=?- 并记 },,,m ax {21n x x x ???= λ 相应地,曲边梯形被划分成 n 个窄曲边梯形,第 i 个窄曲边梯形的面积记为 n i A i ,,2,1, =?。 于是 ∑=?= n i i A A 1 2.以不变高代替变高,以矩形代替曲边梯形,给出“零”的近似值

),,2,1(],[)(1n i x x x f A i i i i i i =∈??≈?-ξξ 3.积零为整,给出“整”的近似值 ∑=?≈ n i i i x f A 1 )(ξ 4.取极限,使近似值向精确值转化 ?∑=?==→b a n i i i dx x f x f A )()(lim 1 ξλ 上述做法蕴含有如下两个实质性的问题: (1)若将],[b a 分成部分区间),,2,1(],[1n i x x i i =-,则 A 相应地分成部分量 ),,2,1(n i A i =?,而 ∑=?=n i i A A 1 这表明:所求量A 对于区间],[b a 具有可加性。 (2)用i i x f ?)(ξ近似i A ?,误差应是i x ?的高阶无穷小。 只有这样,和式 ∑=?n i i i x f 1 )(ξ的极限方才是精确值A 。故关键是确定 ))()(()(i i i i i i i x o x f A x f A ?=?-??≈?ξξ 通过对求曲边梯形面积问题的回顾、分析、提炼, 我们可以给出用定积分计算某个量的条件与步骤。 二、元素法 1.能用定积分计算的量U ,应满足下列三个条件 (1) U 与变量x 的变化区间],[b a 有关; (2) U 对于区间],[b a 具有可加性; (3) U 部分量i U ?可近似地表示成i i x f ??)(ξ。 2.写出计算U 的定积分表达式步骤

高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册

第七章空间解析几何 第一节作业 一、选择题(单选): 1. 点M(2,-3,1)关于xoy平面的对称点是: (A)( -2,3,1 );( B)( -2,-3,-1 );(C)( 2,-3,-1 );( D)( -2,-3,1 ) 答:() 2. 点M(4,-3,5)到x轴距离为: (A).. 42—(—3)2—52; (B) 3)2—52; (cr. 4252; (D) : 4252. 答:() 、在yoz面上求与A(3,1,2),B(4,-2,-2) 和C(0,5,1)等距离的点。 第二节作业 设u a b c, v a b 2c.试用a, b, c表示2u 3v. 第三节作业 一、选择题(单选): 已知两点M'2,2,?一2)和M2(1,3,0),则MM2的三个方向余弦为: 1 1 V 2 1 1 <2 1 1 42 1 1 V2 (A) , , ; (B) , , ; (C) —, , . (D) —,,. 2 2 2 2 2 2 2 2 2 2 2 2 答:() 二、试解下列各题: 1. 一向量的终点为B( 2,-1,7),它在x轴,y轴,z轴上的投影依次为4, -4,4,求这向量的起点A的坐标。

2. 设m 3i 5 j 3k, n 2i j 4k, p 5i j 4k 求向量 a 4m 3n p 在x 轴 上的投影及在y 轴上的分向量. 3. 求平行于向量a 6,7, 6的单位向量 第四节作业 一、选择题(单选): 1. 向量a 在b 上的投影为: 答:() 2. 设a 与b 为非零向量,则a b 0是: (A )a//b 的充要条件; (B )a b 的充要条件; (C ) a b 的充要条件; (D ) a //b 的必要但不充分条件 答:() 3.向量a,b,c 两两垂直,w —1- — a 1, b —1- J )2, C 3,则s a b c 的长度 为 (A)1 2 3 6; 2 2 2 (B)1 2 3 14; (C)J12 22 32 ; (D) J1 2 3 勺6. 答:() (A) (B) -a a b (D)

第六章定积分空间解析几何

姓名______________ 学号__________________ 2012级信息计算科学 《高等数学选讲》练习题(5) 第六章 定积分及应用 1.抛物线22y x =把圆22 8x y +≤分成两部分,求这两部分面积之比 2. 求两椭圆22221x y a b +≤,22 221x y b a +≤的公共部分的面积. 3.求三叶玫瑰线sin3r a θ=(a>0)所围成的图形的面积. 4.设由y 轴,2,y x y a ==(01a <<)所围成的平面图形,由y a =,2y x =,1x =所围的平面图形都绕y 轴旋转,所得旋转体的体积相等,则a =_________ 5.一圆锥形水池,池口直径30m ,深20m ,池中盛满了水.试求将全部池水抽出池外需做的功. 6. 求函数1tan ()1tan x f x x -= +在区间[0,]4 π上平均值. 7.计算定积分 221x x e dx e π π-+?. 8.讨论下列反常积分的收敛性: (1) 01m x dx x +∞+? (,0n m ≥) (2)0arctan n x dx x +∞? (3)1201(ln )dx x x ?

第七章 空间解析几何与向量代数 1.设一平面通过原点及(6,-3,2),且与平面420x y z -+=垂直,则此平面方程为_________ 2.设直线L :321021030 x y z x y z +++=??--+=?,及平面π:420x y z -+-=,则直线L ( ) (A )平行于平面π. (B )在平面π上. (C )垂直于平面π. (D )与平面π斜交. 3. 已知A 点和B 点的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴一周所成的旋转曲面为S ,求由S 及两平面z=0,z=1所围成立体的体积. 第八章 多元函数微分法及其应用 1.设2(,)u xf x y xy =-,其中f 具有连续的二阶偏导数,求2,u u x x y ?????. 2.设x z xy y =+ ,其中()y y x =是由方程221x y +=所确定的函数,则dz dx = _________ 3.设函数(,)f x y 可微,(0,0)0f =,'(0,0)x f m =,'(0,0)y f n =,()[,(,)]t f t f t t ?=,则 '(0)?=_________. 4.设方程33 3z xyz a -=,求隐函数的偏导数2z x y ???. 5.设(,)z f x y =是二次连续可微函数,又有关系式u x ay =+,v x ay =- (a 是不为零的常数),求2z u v ???

第六章-空间解析几何要求与练习(含答案)

第六章 要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. 3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 7、了解空间曲线在坐标平面上的投影,会求其方程. 二、练习 1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB 的模;(3)AB 的方向余弦;(4)AB 方向上的单位向量. 解:(1)()3,8,2AB =-,AB 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的 分向量2k ;(2)AB = ;(3)AB ; (4)AB 382) i j k -++. 2、设向量a 和b 夹角为60o ,且||5a =,||8b =,求||a b +,||a b -. 解:()2 220||||||2||||cos60a b a b a b a b += +=++= ( ) 2 220||||||2||||cos60a b a b a b a b -= -=+-=7. 3、已知向量{2,2,1}a =,{8,4,1}b =-,求 (1)平行于向量a 的单位向量; (2)向量b 的方向余弦. 解(1)2223a = +=平行于向量a 的单位向量221 {,,}333±; (2)2849b =+=,向量b 的方向余弦为:841,,999 -. 4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求 (1)垂直于a 和b 的单位向量; (2)向量a 在b 上的投影;

微积分第六章-定积分的应用

第六章 定积分的应用 本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。 一、教学目标与基本要求: 使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题; 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等) 二、本章教学内容的重点难点: 找出未知量的元素(微元)的方法。用元素法建立这些几何、物理的公式解决实际问题。运用元素法将一个量表达为定积分的分析方法 §6.1定积分的微小元素法 一、内容要点 1、复习曲边梯形的面积计算方法,定积分的定义 面积A ?∑=?==→b a n i i i dx x f x f )()(lim 1 ξλ 面积元素dA =dx x f )( 2、计算面积的元素法步骤: (1)画出图形; (2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者 扇形; (3)计算出面积元素; (4)在面积元素前面添加积分号,确定上、下限。 二、教学要求与注意点 掌握用元素法解决一个实际问题所需要的条件。用元素法解决一

个实际问题的步骤。 §6.2 定积分在几何中的应用 一、内容要点 1、在直角坐标系下计算平面图形的面积 方法一 面积元素dA =dx x x )]()([12??-,面积 A = x x x b a d )]()([12??-? 第一步:在D 边界方程中解出y 的两个表达式)(1x y ?=,)(2x y ?=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ?)(2x ?=解出, b x a ≤≤,)()(21x y x ??≤≤,面积S =x x x b a d )]()([12??-? 方法二 面积元素dA =dy y y )]()([12??-,面积 A = y y y d c d )]()([12??-? 第一步:在D 边界方程中解出x 的两个表达式)(1y x ?=,)(2y x ?=. 第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ?) (2y ?=解出, d y c ≤≤,)()(21y x y ??≤≤,面积S =y y y d c d )]()([12??-? 例1 求22-=x y ,12+=x y 围成的面积 解?????+=-=1 22 2x y x y ,1222+=-x x ,1-=x ,3=x 。当31<<-x 时1222+<-x x ,于是 面积?--=+-=--+=3 1 313223 210)331 ()]2()12[(x x x dx x x 例2 计算4,22-==x y x y 围成的面积 解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时 )

定积分的应用教案

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体 积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知 的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6. 1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) (是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以 [a,b]为积分区间的定积分: ?=b a dx x f A) (. 一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得 ?=b a dx x f U) (.用这一方法求一量的值的方法称为微元法(或元素法).

§6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图. (2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分 31]3132[)(10323102=-=-=?x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图. (2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,2 1)(2+==y y y y 右左??. (4)计算积分 ?--+=422)2 14(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+b y a x 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ?=a ydx S 04. 椭圆的参数方程为: x =a cos t , y =b sin t , 于是 ?=a ydx S 04?=0 )cos (sin 4πt a td b

第七章空间解析几何与向量代数[作业No.40]班级_.

第七章空间解析几何与向量代数[作业No.40] 班级 §1空间直角坐标系§2向量及其加减法,向量与数的乗法姓名________ 一、概念题 1、在空间直角坐标系中,指出下列各点在哪个卦限。 (】,-2, 3) ________ (2,- 3,- 4) _________ (- 1,- 3,- 5) _________ (-1, 5,- 3)____________ (2, 3,- 4)____________ (- 2,- 3, ]) _______________ (-5 , 3 , 1) _________ (3 , 4 , 6) _______________ 2、指出下列各点的位置。 A(3,4,0) ___________ B(0,4,3) ________ C(3,0,0) ___________ D(0,—1,0) ________ 3、指出当点的坐标适合下列条件之一时,该点所在的卦限。 点)在__________________ 上的对称点是1 5、点A (—4,3,5 )在%0『平面上的投影点为_________________________ 在ZOX平面上的投影点为 _______________ 在0X轴上的投影点为 _________________ 在oy轴上的投影点为__________________ 6、点P (—3,2,— 1)关于yoz平面的对称点为_______________________ 关于ZOX 平面的对称点为 ______________ 关于oy轴的对称点为_______________ 关于ox轴的对称点为_______________ 7、在y轴上与点A (1,—3,7 )和点B (5,7,—5 )等距离的点 为_______________ 8、u a b 2 c, v a 3b c,用a, b, c 表示2u 3v = __________________ 二、计算题:

微积分 经管类 第四版 吴赣昌 习题全解 第六章定积分的应用

第六章定积分的应用

课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:???<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

第六章 空间解析几何要求与练习(含答案)

第六章要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. (平7 1 (1 (2AB的模;)AB方向上的单位向量 解:1)AB=,AB分别在轴的投影为-3,在8,在z 轴上的分向量2k;(2)AB=77 (4)AB方向上的单位向量12)k. 2、设向量a和b夹角为5=,||8 b=,求| 解:()2220 +=+=++=129, a b a b a b a b ||||||2||||cos60 ()2220 a b a b a b a b -=-=+-=7. ||||||2||||cos60 3、已知向量{2,2,1} b=-,求 a=,{8,4,1} (1)平行于向量a的单位向量;(2)向量b的方向余弦. 解(1)2223 a=+=平行于向量a的单位向量221 ±; {,,} 333 (2)2849 b=+=,向量b的方向余弦为:841 -. ,, 999

4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求 (1)垂直于a 和b 的单位向量;(2)向量a 在b 上的投影; (3解()()6,1,10,137c a b c =?=--=, (2()4 cos ,17 a b a b a b ?==?; (3() sin ,137a b a b a b ?=?=() 4 ,1751 a b = 60b c +=,||3a =,||2b =,||4c =,求a b b c c a ++. 解:( ) 2 22220a b c a b c a b b c c a ++=+++++=,所以a b b c c a ++=29/2-7、求参数k ,使得平面29x ky z +-=分别适合下列条件: (1(3解:8解:设平面方程为:0Ax By D ++=,将(1,5,1)P -和(3,2,1)Q -代入求得1,1, 2.A B D ===-该平面方程为:20x z +-=. 9、已知平面过(0,0,0)O 、(1,0,1)A 、(2,1,0)B 三点,求该平面方程. 解:设平面方程为:0Ax By Cz ++=,将(1,0,1)A 、(2,1,0)B 代入平面方程得, 1,2,1,A B C ==-=-,该平面方程为20x y z --=.

高等数学第六章定积分的应用

第六章 定积分的应用 §6.1 定积分的元素法 §6.2 平面图形的面积 一、填空题 1.定积分 ? b a dx x f )(的几何意义是 。 2. )(x f 、g(x)在[a,b] 上连续,则由y=f(x),y=g(x)和x=a,x=b 所围成图形的 面积A= 。 3.计算y 2=2x 与y=x-4所围成图形的面积时,选用 作积分变量较为简捷。 二、选择题 1.曲线y=x ln 与直线0,,1 === y e x e x 及所围成的区域的面积S= 。 (A )、2)11(e - (B )、e e 1- (C )、e e 1+ (D )、e 1 1+ 2.曲线r=2acos θ所围图形的面积A= 。 (A )、 θθπ d a 22 0)c o s 2(2 1 ? (B )、θθππd a 2)c o s 2(21?- (C )、 θθπ d a 2 20 )c o s 2(2 1? (D )、2θθπd a 220)cos 2(21? 3.曲线?????==t a y t x 3 3sin cos 所围图形的面积A= 。 (A )、 28a π (B )、24a π (C )、283a π (D )、22 a π 三、求下列各曲线所围成的图形的面积。 1. 曲线y=x 3-6x 与y=x 2所围成图形的面积。 2. 曲线y=-x 2+-3及共在点(0,-3)和(3,0)处的切线所围成图形的面积。

3. 曲线y=sinx 与y=sin2x(0)π≤≤x 所围成图形的面积。 4. r =3cos θθcos 1+=r 及所围成图形的面积。 5. 摆线?? ?-=-=) cos 1() sin (t a y t t a x 的一拱()20π≤≤t 与横轴所围成图形的面积。 四、在曲线族y=a(1-x 2)(a>0)中确定一条曲线,使该曲线和其在(-1,0)和(1,0)两点处 的切线所围图形的面积最小。

第七章_空间解析几何与向量代数复习题(答案)

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12 213+= -=z y x 的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++求a b ?是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=-

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法x i 和取点法 i 有关; 而 ? b a dx x f )(与x i 和 i 无 关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx

第六章向量代数与空间解析几何(424).

、选择题第六章向量代数与空间解析几何 习题A 1、向量a与三坐标轴的夹角分别为,则); A cos cos cos 1 B cos2cos2cos2 C cos2cos2cos2 f 2 D cos 2 cos 2 CO S 2、两个非零向量a和b平行,则 (); r r r A其必要条件是a b 0 其必要条件是 r r C充分必要条件是a b 0D充分必要条件是 3、设a,b为非零向量,且满足 r (a r 3b) (7; 5b) r ,(a r 4b) r (7 a 2b),则 r r a,b的夹角 4、平面x 2y 5 0的位置是) ; A平行Z轴B 通过Z轴垂直Z轴D 平行XOY平面5、过点 A 3,0,2 ,B 4,1,6 且平行于Y轴的平面的法向量n (); 1,1,4 0,1, 1 1,1, 4 1,0,0 C 1,1,4 0,1,0 D 1,1,4 0,0, 1 6、向量a 1,1, 2,0, 2,则同时垂直a及b的单位向量为(); 2,0, b a 2,0,2 2,0, 2,0, 2

7、过点M 1,0,3且与两平面 1 :X 2 y 2z 1 0都平行的直线方程为 2y z 1 0 () ; A g - 3 c y 3 1 B 3X1 1y D - 3X 1 1 8、平面X 2y 5 0的位置是) ; 平行Z轴 B 通过 C 垂直z轴9、过点 A 3,0,2 ,B 4,1,6且平行于丫轴的平面的法向量 10 、 1 、 2 、 3 、 4 、 5 、 6 、 7 、 9 、 平行XOY平面 ) ; 1,1,4 0,1, 1 1,1,4 0,1, 曲面X2 4y2 z24与平面X (a z)24y2 X 0 (a z)24y2 X 0 、填空题 平行于向量a 3i B 1,1,4 D 1,1,4 z a的交线在 1,0,0 0,0, 1 yOz上的投影方程是( X2 r 4j 点P 3, 1,6到平面X 5k的单位向量2y 2z 1 设平面X 2y Kz 6与平面Mx 过点M 1,2,0与平面3x y 2z B (a X)24y2 z 0 X2 4 z)2 4y2z2 4 0的距离为 4y z 2平行,则K 7 0垂直的直线方程 xoy平面上的曲线X2 3y25绕x轴旋转一周形成的旋转曲面方程为 直线过点平面方程 义三卫与平面X y z 7 0的位置关系为 2 1 3 - X 1 y 1 z 2 M 1,2, 2且与直线一!丿一垂直的平面方程为 2 3 1 xoy上的曲线y2z 2绕轴旋转一周而成的旋转面方程为 X2 4 y 1 20表示

第七章空间解析几何与向量代数.

第七章 空间解析几何与向量代数 §7.1空间直角坐标系 一. 空间点的直角坐标 右手系 坐标轴,坐标面,卦限 空间点的直角坐标 横坐标,纵坐标和竖坐标 二.空间两点的距离 设M 1 X i , y i , z i ,M 2 X 2,y 2,Z 2 为空间两点 特殊地,点M X, y,z 与坐标原点O 0,0,0的距离 .向量的概念 1 .定义 3 .自由向量 4 .零向量 单位向量 零向量的方向可以看作是任意的 二.向量的加减法 (1 )交换律:a b b a 的负向量:记 a 大小相等,方向相 反 三.向量与数的乖法 1 .定义 2 .运算规律 (1 )结合律: (2 )分配律: (2 )结合律:(a b) c a (b c) 1. 2. 3. =J 2 X 2 X 1 y 2 2 y i Z 2 2 Z i D = J x 2 y 2 z 2 §7 .2向量及其加减法 向量与数的乘法 2 .向径:OM 叫点M 对于点O 的向径

定理1 .设向量a 0,那么,向量b//a 存在唯一的实数 ,使b a 注:(1 ). b 可以为零向量,此时 0 (2 ).规定零向量与任何向量都平行 3 .与a 同方向的单位向量:a 0 一. 向量在轴上的投影 1 .轴u 上有向线段 AB 的值.记AB 2.点A 在轴U 上的投影 * 3 .向量在.轴U 上的投影,记prj u AB 二. 向量的坐标 1 . P 1P 2 Q i Q 2 R i R 2 2 .向量a 的坐标 a a x , a y , a z a x ,a y , a z 为a 在x,y,z 轴上的投影 上式叫向量a 的坐标表示式 §7 .3 向量的坐标 AB * 4 .(性质1 )投影T h 向量AB 在轴 u 上的投影等于向量的模乘以轴与向量的夹角 的余弦:prj u AB AB cos 5.(性质2 ) prj prj a prj b 6 .(性质3 ) prj prj a M 1M 2 M 1P M i Q M i R X 2 X 1 y 2 * j 上式称为向量基本单位向量的分解式

(完整版)(整理)第七章空间解析几何

第七章空间解析几何与向量代数内容概要

习题7-1 ★★1.填空: (1) 要使b a b a -=+成立,向量b a , 应满足b a ⊥ (2) 要使 b a b a +=+成立,向量b a , 应满足 //b a ,且同向 ★2.设c b a v c b a u -+-=+-=3 , 2,试用c b a , , 表示向量v u 32- 知识点:向量的线性运算 解:c b a c b a c b a v u 711539342232+-=+-++-=- ★3.设Q , P 两点的向径分别为21 , r r ,点 R 在线段PQ 上,且 n m RQ PR = ,证明点R 的向径为 n m m n += +r r r 12 知识点:向量的线性运算 证明:在OPQ ?中,根据三角形法则PQ OP OQ =-,又)(21r r -+=+= n m m n m m , ∴n m m n n m m PR OP OR ++=-++ =+=22r r r r r 1 11)( ★★4.已知菱形 ABCD 的对角线b a ==B , ,试用向量b a , 表示 , , , 。 知识点:向量的线性运算 解:根据三角形法则, b a ==-==+B D AD , AB AC BC AB ,又ABCD 为菱形, ∴ =(自由向量), ∴222 AB AC BD AB CD DC AB --=-=-?=?=-=-= u u u r u u u r u u u r u u u r u u u r u u u r u u u r a b b a a b ∴2b a +==,2 DA +=-u u u r a b ★★5.把ABC ?的BC 边五等分,设分点依次为4321 , , , D D D D ,再把各分点与点 A 连接,试以 a c ==BC AB , 表示向量 , , 321A D A D A D 和A D 4。

最新(高等数学)第六章定积分(全部)

(高等数学)第六章定积分(全部)

第六章定积分 第一节概念及性质 一.定积分问题举例 1.引例1.曲边梯形的面积 引:在农业生产中,我们经常会遇到丈量土地面积的问题.在工厂中,又会遇到计算生产材料的面积问题.如果所遇到的需要计算面积的图形(见图1)是不规则的,人们一般采用分割法. (1)曲边梯形的概念 设函数?Skip Record If...?在区间?Skip Record If...?上非负、连续,由直线?Skip Record If...?及曲线?Skip Record If...?所围成的图形称为曲边梯形,其中曲线?Skip Record If...?称为曲边. (2)求曲边梯形的面积?Skip Record If...?. 第一步(分割):在?Skip Record If...?内任意插入?Skip Record If...?个分点:?Skip Record If...?,把?Skip Record If...?分成n个小区间.第?Skip Record If...?个小区间记为:?Skip Record If...? ?Skip Record If...?,同时?Skip Record If...?也代表第i个小区间的长度(?Skip Record If...? ?Skip Record If...?),则?Skip Record If...?. 第二步(代替):注意到由于?Skip Record If...?是连续函数,只要划分足够细,每个小曲边梯形的高在对应的小区间上可近似看作不变,即可以任取一点?Skip Record If...?,以?Skip Record If...?的值作为?Skip Record If...?的高.则这时的小曲边梯形可近似看作小矩形. 所以?Skip Record If...?,?Skip Record If...?,?Skip Record If...?. 第三步(求和):?Skip Record If...?.

高等数学定积分应用习题答案

第六章 定积分的应用 习题 6-2 (A) 1. 求下列函数与 x 轴所围部分的面积: ] 3,0[,86)1(2+-=x x y ] 3,0[, 2)2(2x x y -= 2. 求下列各图中阴影部分的面积: 图 6-1 3.求由下列各曲线围成的图形的面积: ; 1,)1(===-x e y e y x x 与 ; )0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与 ;0,2)3(2==-=y x y x x y 与 ; )1(,2)4(22--==x y x y ;0,2)1(4)5(2=-=-=y x y x y 与 ; 2,)6(2x y x y x y ===与 ; )0(2sin ,sin 2)7(π≤≤==x x y x y ; 8,2 )8(222 (两部分都要计算)=+=y x x y 4.的图形的面积。 所围成与直线求由曲线e x e x y x y ====-,,0ln 1 5.的面积。处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y 6.的面积。处的法线所围成的图形及其在点求抛物线),2 (22p p px y = 7.形的面积。与两坐标轴所围成的图求曲线a y x =+ 8.所围图形的面积。求椭圆 12 2 22 =+b y a x 9.。与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x 10.轴之间的图形的面积。的切线的左方及下方与由该曲线过原点求位于曲线x e y x = 11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ ; )0()cos 2(2)2(>+=a a θρ ; 2cos 2)3(2(双纽线)θρ= 抛物体的体积。 轴旋转,计算所得旋转 所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==

第七章向量代数与空间解析几何复习题

第七章向量代数与空间解析几何 (一)空间直角坐标系、向量及其线性运算 一、判断题 1.点( -1, -2, -3)是在第八卦限。()2.任何向量都有确定的方向。() 3.任二向量a,b,若a b .则 a = b 同向。() 4.若二向量a,b满足关系a b = a + b ,则 a,b 同向。()5.若a b a c, 则b c() 6.向量a, b满足a = b ,则a, b同向。()a b 7.若a ={ a x,a y, a z } ,则平行于向量 a 的单位向量为{a x,a y , a z }。() | a || a || a | 8.若一向量在另一向量上的投影为零,则此二向量共线。() 二、填空题 1.点( 2, 1, -3)关于坐标原点对称的点是 2.点( 4, 3, -5)在坐标面上的投影点是 M (0, 3, -5) 3.点( 5, -3, 2)关于的对称点是 M( 5, -3, -2)。 4.设向量 a 与 b 有共同的始点,则与a, b 共面且平分 a 与 b 的夹角的向量为 5.已知向量 a 与 b 方向相反,且 | b | 2 | a | ,则 b 由 a 表示为 b =。 6.设 a =4, a 与轴l的夹角为,则 prj l a= 6 7.已知平行四边形ABCD 的两个顶点 A (2, -3,-5)、 B( -1, 3, 2)。以及它的对角线交点 E( 4,-1,7),则顶点 C 的坐标为,则顶点 D 的坐标为。8.设向量 a 与坐标轴正向的夹角为、、,且已知=60,=120。则= 9.设 a 的方向角为、、,满足 cos=1时, a 垂直于坐标面。 三、选择题 1.点( 4,-3, 5)到oy轴的距离为 (A)42( 3)252( B)( 3)252 (C)42( 3)2(D)4252 2.已知梯形 OABC 、CB // OA且CB =1 OA 设 OA = a , OC = b ,则 AB 2 =

相关文档
最新文档