主成分分析原理

主成分分析原理
主成分分析原理

第七章主成分分析

(一)教学目的

通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。

(二)基本要求

了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。

(三)教学要点

1、主成分分析基本思想,数学模型,几何解释

2、主成分分析的计算步骤及应用

(四)教学时数

3课时

(五)教学内容

1、主成分分析的原理及模型

2、主成分的导出及主成分分析步骤

在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。

第一节主成分分析的原理及模型

一、主成分分析的基本思想与数学模型

(一)主成分分析的基本思想

主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。

(二)主成分分析的数学模型

对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为:

??????? ??=np n n p p x x x x x x x x x X

21

222

21112

11()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1,21=??????

? ??= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即

???????+++=+++=+++=p

pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为:

p jp j j j x x x F ααα+++= 2211

p j ,,2,1 =

要求模型满足以下条件:

①j i F F ,互不相关(j i ≠,p j i ,,2,1, =)

②1F 的方差大于2F 的方差大于3F 的方差,依次类推

③.,2,1122221p k a a a kp k k ==+++

于是,称1F 为第一主成分,2F 为第二主成分,依此类推,有第p 个主成分。主成分又叫主分量。这里ij a 我们称为主成分系数。

上述模型可用矩阵表示为:

AX F =,其中

??????? ??=p F F F F 21 ??????

? ??=p x x x X 21 ??????

? ??=??????? ??=p pp p p p p a a a a a a a a a a a a A 21212222111211 A 称为主成分系数矩阵。

二、主成分分析的几何解释

假设有n 个样品,每个样品有二个变量,即在二维空间中讨论主成分的几何意义。设n 个样品在二维空间中的分布大致为一个椭园,如下图所示:

图7.1 主成分几何解释图

将坐标系进行正交旋转一个角度θ,使其椭圆长轴方向取坐标1y ,在椭圆短轴方向取坐标2y ,旋转公式为

???+-=+=θ

θθθcos )sin (sin cos 212211j j j j j j x x y x x y n j 2,1=

写成矩阵形式为:??????=n n y y y y y y Y 22221

11211 X U x x x x x x n n ?=??

???????????-=2222111211cos sin sin cos θθθθ 其中U 为坐标旋转变换矩阵,它是正交矩阵,即有I U U U U ='='-,1,即满足

1cos sin 22=+θθ。

经过旋转变换后,得到下图的新坐标:

图7.2 主成分几何解释图

新坐标21y y -有如下性质:

(1)n 个点的坐标1y 和2y 的相关几乎为零。

(2)二维平面上的n 个点的方差大部分都归结为1y 轴上,而2y 轴上的方差较小。 1y 和2y 称为原始变量1x 和2x 的综合变量。由于n 个点在1y 轴上的方差最大,因而将二维空间的点用在1y 轴上的一维综合变量来代替,所损失的信息量最小,由此称1y 轴为第一主成分,2y 轴与1y 轴正交,有较小的方差,称它为第二主成分。

三、主成分分析的应用

主成分概念首先是由Karl parson 在1901年引进,但当时只对非随机变量来讨论的。1933年Hotelling 将这个概念推广到随机变量。特别是近年来,随着计算机软件的应用,

使得主成分分析的应用也越来越广泛。

其中,主成分分析可以用于系统评估。系统评估是指对系统营运状态做出评估,而评估一个系统的营运状态往往需要综合考察许多营运变量,例如对某一类企业的经济效益作评估,影响经济效益的变量很多,很难直接比较其优劣,所以解决评估问题的焦点是希望客观、科学地将一个多变量问题综合成一个单变量形式,也就是说只有在一维空间中才能使排序评估成为可能,这正符合主成分分析的基本思想。在经济统计研究中,除了经济效益的综合评价研究外,对不同地区经济发展水平的评价研究,不同地区经济发展竞争力的评价研究,人民生活水平、生活质量的评价研究,等等都可以用主成分分析方法进行研究。

另外,主成分分析除了用于系统评估研究领域外,还可以与回归分析结合,进行主成分回归分析,以及利用主成分分析进行挑选变量,选择变量子集合的研究。

第二节 主成分的导出及主成分分析的步骤

一、主成分的导出

根据主成分分析的数学模型的定义,要进行主成分分析,就需要根据原始数据,以及模型的三个条件的要求,如何求出主成分系数,以便得到主成分模型。这就是导出主成分所要解决的问题。

1、根据主成分数学模型的条件①要求主成分之间互不相关,为此主成分之间的协差阵应该是一个对角阵。即,对于主成分,

AX F =

其协差阵应为,

A X AX AX AX AX Var F Var ''='?==)()()()(

=??????

? ??=Λp λλλ 21 2、设原始数据的协方差阵为V ,如果原始数据进行了标准化处理后则协方差阵等于相关矩阵,即有,

X X R V '==

3、再由主成分数学模型条件③和正交矩阵的性质,若能够满足条件③最好要求A 为正交矩阵,即满足

I A A ='

于是,将原始数据的协方差代入主成分的协差阵公式得

Λ='=''=A AR A X AX F Var )(

Λ'='Λ

='A A R A AR

展开上式得 ??????

? ?????????? ??=??????? ?????????? ??p pp p p p p pp p p p p pp p p p p a a a a a a a a a a a a a a a a a a r r r r r r r r r λλλ 2121222121211121222121211121

2222111211 展开等式两边,根据矩阵相等的性质,这里只根据第一列得出的方程为:

()???????=-+++=++-+=+++-0

)(0)(0111221111212122112111121211111p pp p p p p p p a r a r a r a r a r a r a r a r a r λλλ 为了得到该齐次方程的解,要求其系数矩阵行列式为0,即

01

21212221

1121

11=---λλλpp p p p p r r r r r r r r r

01=-I R λ

显然,1λ是相关系数矩阵的特征值,()

p a a a a 112111,, =是相应的特征向量。 根据第二列、第三列等可以得到类似的方程,于是i λ是方程 0=-I R λ

的p 个根,i λ为特征方程的特征根,j a 是其特征向量的分量。

4、下面再证明主成分的方差是依次递减

设相关系数矩阵R 的p 个特征根为p λλλ≥≥≥ 21,相应的特征向量为j a

??????

? ??=??????? ??=p pp p p p p a a a a a a a a a a a a A 2121

2222111211 相对于1F 的方差为 1111

11)(λ='=''=a R a a X X a F Var 同样有:i i F Var λ=)(,即主成分的方差依次递减。并且协方差为:

j i j i Ra a X a X a Cov '=''),(

j p

i a a a a )(1∑=''=αα

ααλ j i a a a a j i p ≠=''=∑=,0))((1α

αααλ

综上所述,根据证明有,主成分分析中的主成分协方差应该是对角矩阵,其对角线上的元素恰好是原始数据相关矩阵的特征值,而主成分系数矩阵A 的元素则是原始数据相关矩阵特征值相应的特征向量。矩阵A 是一个正交矩阵。

于是,变量()

p x x x ,,21经过变换后得到新的综合变量 ???????+++=+++=+++=p

pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 新的随机变量彼此不相关,且方差依次递减。

二、主成分分析的计算步骤

样本观测数据矩阵为:

??????

? ??=np n n p p x x x x x x x x x X 212222111211 第一步:对原始数据进行标准化处理。

)var(*

j j ij ij x x x x -= ),,2,1;,,2,1(p j n i ==

其中 ∑==n

i ij j x n x 1

1 21

)(11)var(j n

i ij j x x n x --=∑= ),,2,1(p j =

第二步:计算样本相关系数矩阵。

??????

????????=pp p p p p r r r r r r r r r R 212222111211 为方便,假定原始数据标准化后仍用X 表示,则经标准化处理后的数据的相关系数为:

tj n

t ti ij x x n r ∑=-=1

11 ),,2,1,(p j i =

第三步:用雅克比方法求相关系数矩阵R 的特征值(p λλλ 21,)和相应的特征向量()p i a a a a ip i i i 2,1,,,21==。

第四步:选择重要的主成分,并写出主成分表达式。

主成分分析可以得到p 个主成分,但是,由于各个主成分的方差是递减的,包含的信息量也是递减的,所以实际分析时,一般不是选取p 个主成分,而是根据各个主成分累计贡献率的大小选取前k 个主成分,这里贡献率就是指某个主成分的方差占全部方差的比重,实际也就是某个特征值占全部特征值合计的比重。即

贡献率=∑=p i i

i

λ 贡献率越大,说明该主成分所包含的原始变量的信息越强。主成分个数k 的选取,主要根据主成分的累积贡献率来决定,即一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。

另外,在实际应用中,选择了重要的主成分后,还要注意主成分实际含义解释。主成分分析中一个很关键的问题是如何给主成分赋予新的意义,给出合理的解释。一般而言,这个解释是根据主成分表达式的系数结合定性分析来进行的。主成分是原来变量的线性组合,在这个线性组合中个变量的系数有大有小,有正有负,有的大小相当,因而不能简单地认为这个主成分是某个原变量的属性的作用,线性组合中各变量系数的绝对值大者表明该主成分主要综合了绝对值大的变量,有几个变量系数大小相当时,应认为这一主成分是这几个变量的总和,这几个变量综合在一起应赋予怎样的实际意义,这要结合具体实际问题和专业,给出恰当的解释,进而才能达到深刻分析的目的。

第五步:计算主成分得分。

根据标准化的原始数据,按照各个样品,分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下。

??????

? ??nk n n k k F F F F F F F F F 212222111211 第六步:依据主成分得分的数据,则可以进行进一步的统计分析。其中,常见的应用有主成份回归,变量子集合的选择,综合评价等。

主成分分析法

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: 主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。

主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p个指标),重新组合成一组较少个数的互不相关的综合指标Fm来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 ,由数学知识可知,每一个主成分所提取的信息量可用其方差来度量,其方差 Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不相关的X1,X2,…,XP的所有线性组合中方差最大的,故称F2为第二主成分,依此类推构造出的F1、F2、……、Fm为原变量指标X1、X2……XP第一、第二、……、第m个主成分。 根据以上分析得知:

PCA主成分分析原理及应用

主元分析(PCA)理论分析及应用 什么是PCA? PCA是Principal component analysis的缩写,中文翻译为主元分析/主成分分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线形代数最价值的结果之一。 在以下的章节中,不仅有对PCA的比较直观的解释,同时也配有较为深入的分析。首先将从一个简单的例子开始说明PCA应用的场合以及想法的由来,进行一个比较直观的解释;然后加入数学的严格推导,引入线形代数,进行问题的求解。随后将揭示PCA与SVD(Singular Value Decomposition)之间的联系以及如何将之应用于真实世界。最后将分析PCA理论模型的假设条件以及针对这些条件可能进行的改进。 一个简单的模型 在实验科学中我常遇到的情况是,使用大量的变量代表可能变化的因素,例如光谱、电压、速度等等。但是由于实验环境和观测手段的限制,实验数据往往变得极其的复杂、混乱和冗余的。如何对数据进行分析,取得隐藏在数据背后的变量关系,是一个很困难的问题。在神经科学、气象学、海洋学等等学科实验中,假设的变量个数可能非常之多,但是真正的影响因素以及它们之间的关系可能又是非常之简单的。 下面的模型取自一个物理学中的实验。它看上去比较简单,但足以说明问题。如图表 1所示。这是一个理想弹簧运动规律的测定实验。假设球是连接在一个无质量无摩擦的弹簧之上,从平衡位置沿轴拉开一定的距离然后释放。

主成分分析原理及详解

第14章主成分分析 1 概述 1.1 基本概念 1.1.1 定义 主成分分析是根据原始变量之间的相互关系,寻找一组由原变量组成、而彼此不相关的综合变量,从而浓缩原始数据信息、简化数据结构、压缩数据规模的一种统计方法。 1.1.2 举例 为什么叫主成分,下面通过一个例子来说明。 假定有N 个儿童的两个指标x1与x2,如身高和体重。x1与x2有显著的相关性。当N较大时,N观测量在平面上形成椭圆形的散点分布图,每一个坐标点即为个体x1与x2的取值,如果把通过该椭圆形的长轴取作新坐标轴的横轴Z1,在此轴的原点取一条垂直于Z1的直线定为新坐标轴的Z2,于是这N个点在新坐标轴上的坐标位置发生了改变;同时这N个点的性质也发生了改变,他们之间的关系不再是相关的。很明显,在新坐标上Z1与N个点分布的长轴一致,反映了N个观测量个体间离差的大部分信息,若Z1反映了原始数据信息的80%,则Z2只反映总信息的20%。这样新指标Z1称为原指标的第 358

一主成分,Z2称为原指标的第二主成分。所以如果要研究N个对象的变异,可以只考虑Z1这一个指标代替原来的两个指标(x1与x2),这种做法符合PCA提出的基本要求,即减少指标的个数,又不损失或少损失原来指标提供的信息。 1.1.3 函数公式 通过数学的方法可以求出Z1和Z2与x1与x2之间的关系。 Z1=l11x1+ l12x2 Z2=l21x1+ l22x2 即新指标Z1和Z2是原指标x1与x2的线性函数。在统计学上称为第一主成分和第二主成分。 若原变量有3个,且彼此相关,则N个对象在3维空间成椭圆球分布,见图14-1。 通过旋转和改变原点(坐标0点),就可以得到第一主成分、第二主成分和第三主成分。如果第二主成分和第三主成分与第一主成高度相关,或者说第二主成分和第三主成分相对于第一主成分来说变异很小,即N个对象在新坐标的三维空间分布成一长杆状时,则只需用一个综合指标便能反映原始数据中3个变量的基本特征。 359

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

主成分分析分析法

第四节 主成分分析方法 地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题 是经常会遇到的。 变量太多, 无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中, 多个变量之间是具有一定的相关关系的。 因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上, 这种想法是可以实现的, 本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看, 这是一种降维处理技术。 假定有 n 个地理样本, 每个样本共有 p 个变量描述,这样就构成了一个 n ×p 阶的地理数据矩阵: 如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在 p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需 要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使 这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。那么,这些综合指标(即新变量 ) 应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数, 使新的变量 指标之间相互独立且代表性最好。 如果记原来的变量指标为 x 1, 为 x 1,x 2,?, zm (m ≤p ) 。则 x 2 ,?, x p ,它们的综合指标——新变量指标

在(2)式中,系数l ij 由下列原则来决定: (1)z1 2与z j(i ≠j ;i ,j=1 ,2,?,m)相互无关; (2)z 1是x1,x2,?,x p的一切线性组合中方差最大者;z2是与z1不相关的x1,x2,?,x p的所有线性组合中方差最大者;??;z m是与z1,z2,??z m-1 都不相关的x1,x2,?,x p的所有线性组合中方差最大者。 这样决定的新变量指标z1,z2,?,zm分别称为原变量指标x1,x2,?,x p 的第一,第二,?,第m主成分。其中,z1在总方差中占的比例最大,z2,z3,?,z m的方差依次递减。在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。 从以上分析可以看出,找主成分就是确定原来变量x j(j=1 ,2,?,p)在诸主成分z i (i=1 ,2,?,m)上的载荷l ij (i=1 ,2,?,m;j=1 ,2,?,p),从数学上容易知道,它们分别是x1,x2,?,x p的相关矩阵的m个较大的特征值所对应的特征向量。 第二节主成分分析的解法 主成分分析的计算步骤 通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:在公式(3)中,r ij (i ,j=1 ,2,?,p)为原来变量x i与x j的相关系数,其计 算公式为 因为R是实对称矩阵(即r ij =r ji ),所以只需计算其上三角元素或下三角元素即可。 1 计算相关系数矩阵 2 计算特征值与特征向量

数学建模主成分分析方法

主 成分分析方法 地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,这里介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 一、主成分分析的基本原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的地理数据矩阵:

111212122212p p n n np x x x x x x X x x x ???=????L L L L L L L (1) 如何从这么多变量的数据中抓住地理事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为x 1,x 2,…,x p ,它们的综合指标——新变量指标为z 1,z 2,…,zm (m≤p)。则 11111221221122221122,,......................................... ,p p p p m m m mp p z l x l x l x z l x l x l x z l x l x l x =+++??=+++????=+++?L L L (2)

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

主成分分析原理

主成分分析原理 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ?? ? ? ? ? ? ??=np n n p p x x x x x x x x x X 2 1 22221 11211 ()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1, 21=???? ?? ? ??= 主成分分析就是将 p 个观测变量综合成为p 个新的变量(综合变量),即 ?? ???? ?+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

主成分分析法PCA的原理

主成分分析法原理简介 1.什么是主成分分析法 主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。 在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 2.主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么就是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)就是一种简化数据集的技术。它就是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这就是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但就是,这也不就是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量与增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正就是适应这一要求产生的,就是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果就是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取就是个重点与难点。如上所述,主成分分析法正就是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量就是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量就是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发与利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用与开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法就是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

主成分分析法的步骤和原理 (1)

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。设随机向量X 的均值为μ,协方差矩阵为Σ。对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X p Z 2=μ21X 1+μ22X 2+…μ2p X p …… …… …… Z p =μp1X 1+μp2X 2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。R 为实对称矩阵 (即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为: 2211)()() ()(j kj n k i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。 因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺序排列,即λ1≥λ2≥…≥λi ≥0。特征值是各主成分的方差,它的大小反映了各个主成分的影响力。主成分Z i 的贡献率W i =∑=p j j j 1λλ,累计贡献率为

主成分分析原理

第七章主成分分析 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1,21=?????? ? ??= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即 ???????+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

主成分分析法介绍

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 11121212221 2 .....................p p n n np x x x x x x X x x x ?? ? ? = ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21Λ,它们的综合指标——新变量指标为Λ21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ?? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z ΛΛ ΛΛΛΛΛΛΛΛΛΛΛΛΛ 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与z j (i≠j ;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。

主成分分析在STATA中的实现以及理论介绍

第十二章 主成分分析 主成分分分析也称作主分量分析,是霍特林(Hotelling)在1933年首先提出。主成分分析是利用降维的思想,在损失较少信息的前提下把多个指标转化为较少的综合指标。转化生成的综合指标即称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分互不相关。Stata 对主成分分析的主要内容包括:主成分估计、主成分分析的恰当性(包括负偏协方差矩阵和负偏相关系数矩阵、KMO(Kaiser-Meyer-Olkin)抽样充分性、复相关系数、共同度等指标测度)、主成分的旋转、预测、各种检验、碎石图、得分图、载荷图等。 p j n i b a y ij j i ij ,,2,1,,2,1,' ==+=ε 主成分的模型表达式为: p p j i i i i diag v v v v i p V V C λλλλλλλ≥≥≥=∧='' ==∧=∑ 2121),,,,(0 1 其中,a 称为得分,b 称为载荷。主成分分析主要的分析方法是对相关系数矩阵(或协方差矩阵)进行特征值分析。 Stata 中可以通过负偏相关系数矩阵、负相关系数平方和KMO 值对主成分分析的恰当性进行分析。负偏相关系数矩阵即变量之间两两偏相关系数的负数。非对角线元素则为负的偏相关系数。如果变量之间存在较强的共性,则偏相关系数比较低。因此,如果矩阵中偏相关系数较高的个数比较多,说明某一些变量与另外一些变量的相关性比较低,主成分模型可能不适用。这时,主成分分析不能得到很好的数据约化效果。 Kaiser-Meyer-Olkin 抽样充分性测度也是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO 介于0于1之间。KMO 越高,表明变量的共性越强。如果偏相关系数相对于相关系数比较高,则KMO 比较低,主成分分析不能起到很好的数据约化效果。根据Kaiser (1974),一般的判断标准如下:0.00-0.49,不能接受(unacceptable );0.50-0.59,非常差(miserable );0.60-0.69,勉强接受(mediocre );0.70-0.79,可以接受(middling );0.80-0.89,比较好(meritorious );0.90-1.00,非常好(marvelous )。 SMC 即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC 比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。 成分载荷、KMO 、SMC 等指标都可以通过extat 命令进行分析。 多元方差分析是方差分析在多元中的扩展,即模型含有多个响应变量。本章介绍多元(协)方差分析以及霍特林(Hotelling)均值向量T 检验。 12.1 主成分估计 Stata 可以通过变量进行主成分分析,也可以直接通过相关系数矩阵或协方差矩阵进行。 (1)sysuse auto,clear pca trunk weight length headroom pca trunk weight length headroom, comp(2) covariance

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析就是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来瞧,这就是一种降维处理技术。 思路:一个研究对象,往往就是多要素的复杂系统。变量太多无疑会增加分析问题的难度与复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n个样本,每个样本共有p个变量,构成一个n×p阶的数据矩阵, 记原变量指标为x 1,x 2 ,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2 ,z 3 ,… ,z m (m≤p),则 系数l ij 的确定原则: ①z i 与z j (i≠j;i,j=1,2,…,m)相互无关; ②z 1就是x 1 ,x 2 ,…,x P 的一切线性组合中方差最大者,z 2 就是与z 1 不相关的 x 1,x 2 ,…,x P 的所有线性组合中方差最大者; z m 就是与z 1 ,z 2 ,……,z m-1 都不相关 的x 1,x 2 , (x) P , 的所有线性组合中方差最大者。 新变量指标z 1 ,z 2 ,…,z m 分别称为原变量指标x 1 ,x 2 ,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以瞧出,主成分分析的实质就就是确定原来变量 x j (j=1,2 ,…, p)在诸主成分z i (i=1,2,…,m)上的荷载l ij ( i=1,2,…,m; j=1,2 ,…,p)。 从数学上可以证明,它们分别就是相关矩阵m个较大的特征值所对应的特征向量。 二、主成分分析的计算步骤 1、计算相关系数矩阵 r ij (i,j=1,2,…,p)为原变量x i与x j的相关系数, r ij=r ji,其计算公式为 ? ? ? ? ? ? ? ? ? ? ? ? ? ? = np n n p p x x x x x x x x x X Λ M M M Λ Λ 2 1 2 22 21 1 12 11 ? ? ? ? ? ? ? + + + = + + + = + + + = p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z Λ Λ Λ 2 2 1 1 2 2 22 1 21 2 1 2 12 1 11 1 .. .......... ? ? ? ? ? ? ? ? ? ? ? ? ? ? = pp p p p p r r r r r r r r r R Λ M M M Λ Λ 2 1 2 22 21 1 12 11 ∑∑ ∑ == = - - - - = n k n k j kj i ki n k j kj i ki ij x x x x x x x x r 11 2 2 1 ) ( ) ( ) )( (

主成分分析法的步骤和原理

主成分分析法的步骤和原理 (总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p个变量来描述研究对象,分别用X 1,X 2 …X p 来表示,这p个变量构 成的p维随机向量为X=(X 1,X 2 …X p )t。设随机向量X的均值为μ,协方差矩阵 为Σ。假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为: Σ=E{(X-E[X])(X-E[X])}=(如图 对X进行线性变化,考虑原始变量的线性组合: Z1=μ11X1+μ12X2+…μ1p X p Z2=μ21X1+μ22X2+…μ2p X p ……………… Z p=μp1X1+μp2X2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2 ……Z p ,并且Z 1 是X1,X2…X p的线性组合 中方差最大者,Z 2是与Z 1 不相关的线性组合中方差最大者,…,Z p是与Z 1 , Z 2……Z p-1 都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始 数据可得矩阵X=(x ij ) m×p ,其中x ij 表示第i家上市公司的第j项财务指标数 据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分 析。其中,R ij (i,j=1,2,…,p)为原始变量X i 与X j 的相关系数。R为实对 称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式 为:

相关文档
最新文档