整数规划模型

随机规划

第二讲 随机规划 第一节 基本概念 1、 问题的提出 许多实际决策问题,尤其是比较复杂的决策问题,可以建 立如下的线性规划模型: {}????? ??????≥=+++=+++=++++++.0,...,,............min 11221122222121112121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a to subject x c x c x c M M (1.1) 用矩阵向量分析法,简化问题(1.1)得: ?? ???≥=0..min x b Ax t s x c T (1.2) 线性规划模型,在工业生产、运输业、农业、能源、生态、工程等领域都有广泛(典型)的应用。 在问题(1.1)中系数j c (例如价格因素)、ij a (比如生产率)、j b (比如需求量或存储能力)假设都已知为实数,这样我们的任务就是:寻找满足约束条件的决策变量j x (比如投入因素、生产率水平、能源 流),使这一组合达到最优。显然,在现实生活中,如果相关的函数(例如,费用函数或生产函数)关于决策变量是线性的,那么模型(1.1)就能够合理的描述现实生活中的问题。如果现实中不是这样

的,比如,因为产品的边际成本(边际成本指的是每一单位新增生产的产品(或者购买的产品)带来到总成本的增量)的增长或边际报酬的减少,我们就需要更一般的形式来建立问题的模型,如下: ?? ??? ?∈=≤.,...,1,0)(..)(min 0n i IR X x m i x g t s x g (1.3) 形式如(1.3)的问题就是一个数学规划问题。 这里的集合X 以及函数m i IR IR g n i ,...,0,:=→可以理解为是在建模过程中给出的。 在许多模型建立过程中(如问题(1.1)和(1.3)),若系数i ij j b a c ,,或 函数i g (和集合X )分别为给定值,这是不合理的。比如说,在水电 发电站,流入发电站蓄水池的流水量,及运输网络中各个节点的需求量等等的因素,在建模的过程中,通常都作为不确定的参数。在一个生产问题中,未来的生产率,用概率分布来描述是最好的。但在建模过程中,这些参数真实值的不确定性,并不能用他们的平均值或别的估计值来消除(即真实值与平均值/估计值存在偏差)。就是说,在考虑实际情况的时候,问题(1.1)、(1.3)的模型,可能并不适合来解决更实际的问题。在这一章我们着重并尽可能的阐明,对于实际生活中的决策问题,需要扩大建模范围的必要性。 在数学规划中引入随机性是很自然的事情。在模型中的系数i ij j b a c ,,常常代表价格、成本、需求量、资源数量、经济指标等参数。 由于各种不确定性因素的影响,这些参数经常出现波动。例如,市场

整数规划的两种数学模型解法

规划模型求解 指导老师: 组员: 组员分工 实际的内容: 1·简要介绍线性规划的历史 线性规划是运筹学中最基本、应用最广泛的分支。规划模型是一类有着广泛应用的确定性的系统优化模型,1939年,苏联数学家康托洛维奇出版《生产组织和计划中的数学方法》一书. 1947年,美国数学家丹兹格提出了线性规划问题的单纯形求解方法. 1951年,美国经济学家库普曼斯(J.C.Koopmans,1910—1985)出版《生产与配置的活动分析》一书. 1950~1956年,线性规划的对偶理论出现. 1960年,丹兹格与沃尔夫(P.Wolfe)建立大规模线性规划问题的分解算法. 1975年,康托洛维奇与库普曼斯因“最优资源配置理论的贡献”荣获诺贝尔经济学奖. 1978年,苏联数学家哈奇扬(L.G.Khachian)提出求解线性规划问题的多项式时间算法(内点算法),具有重要理论意义. 1984年,在美国贝尔实验室工作的印度裔数学家卡玛卡(N.Karmarkar)提出可以有效求解实际线性规划问题的多项式时间算法——Karmarkar算法.

线性规划的基本点就是在满足一定约束条件下,使预定的目标达到最优. 现在线性规划已不仅仅是一种数学理论和方法,而且成了现代化管理的重要手段,是帮助管理者与经营者做出科学决策的一个有效的数学技术. 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看 函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念 对数学发展,数学学习的巨大作用。 2·线性规划的原理:线性规划是合理利用、调配资源 的一种应用数学方法。它的基本思路就是在满足一定的约束条件下,使预定的目标达到最优。它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少的资源(人力、物力和财力)去实现这个任务;二是资源的数量已定,如何合理利用、调配,使任务完成的最多。前者是求极小,后者是求极大。线性规划是在满足企业内、外部的条件下,实现管理目标和极值(极小值和极大值)问题,就是要以尽少的资源输入来实现更多的社会需要的产品的产出。因此,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在辅助企业经营决策、计划优化等方面具有重要的作用。其一般形式为: n n n n n n b x a x a x a b x a x a x a x c x c x c x f =+++=+++→+++= 2 2222121112121112211min )(

第六章 随机规划

第六章 随机规划 第一节 问题的提出 随机规划所研究的对象是含有随机因素的数学规划问题。例如,我们熟悉的线性规划问题 CX X f =)(min 0≥=X b AX (6.1) 如果其中的A ,b ,C 的元素中部分的或全部的是随机变量,则称其为随机线性规划问题。 在数学规划中引入随机性是很自然的事情。在模型中的A ,b ,C 的元素常常代表价格、成本、需求量、资源数量、经济指标等参数。由于各种不确定性因素的影响,这些参数经常出现波动。例如,市场上对某种商品的需求量一般无法精确的预知,只能作出大致的预测,某种产品的生产成本往往受原材料价格、劳动生产率等各种因素的影响而经常变化,这些变化与波动,在许多场合可以用一定的概率分布去描述。因此,在数学规划中引入随机变量,能够使模型更加符合实际情况,从而是的决策更加合理。 例1 某化工厂生产过程中需要A ,B 两种化学成分,现有甲、乙两种原材料可供选用。其中原料甲中化学成分A 的单位含量为10/a ,B 的单位含量为3/a ;原料乙中化学成分A 的单位含量为10/1,B 的单位含量为3/1。根据生产要求,化学成分A 的总含量不得少于10/7个单位,化学成分A 的总含量不得少于3/4个单位。甲、乙两种原料的价格相同,问如何采购原料,使得即满足生产要求,又是的成本最低? 显而易见,这个问题可以用线性规划模型来描述。根据题意,设原料甲的采购数量为1x ,原料乙的采购数量为2x ,容易得到如下线性模型: 21)(min x x X f += ,047 212121≥≥≥+≥+x x x bx x ax (6.2)

于是只要知道a 和b 的值,立即可以求得最优解。 但是,如果由于某种原因,原料甲中化学成分A 、B 的单位含量不稳定,其中T b a ),(=ξ是矩形}13 1,41{≤≤≤≤y x 内的均匀分布随机向量,则问题(7.2)就成为随机线性规划问题了。 由于引入了随机量,随机规划问题的分析与求解比普通数学规划问题要复杂大多。在处理随机规划问题时,人们最容易想到的方法也许是将模型中的随机变量用它们的期望值来代,从而得到确定性的数学规划模型,再去求解。事实上,过去许多确定性数学规划正是这样建立起来的,但是应当指出,这种处理方法在实际问题中并不总可行的。为了说明这一点,我们不妨用此方法试解例1中的问题。容易求得 T T b a E E )3/2,2/5(]),[()(==ξ, (6.3) 将此值代入问题(7.2),得到确定线性规划模型如下: 21)(min x x X f += ,043 272 5212121≥≥≥+≥+x x x x x x (6.4) 可以求得此问题的唯一最优解为 T T x x X )11/32,11/18(),(*2*1*==, (6.5) 于是以此*X 作为原随机线性规划问题(7.2)的最优解。可是,由于问题(7.2)中的T b a ),(是随机向量,我们自然希望知道,上述*X 是问题(7.2)的最优解这一事件的概率有多大?是问题(7.2)的可行解这一事件的概率有多大?然而,我们发现, 4/1}3/2,2/5),{(} 4,7),{(*2*1*2*1=≥≥=≥+≥+b a b a P x bx x ax b a P T T , (6.6) 也即,*X 对问题(7.2)是可行解以0.75的概率是不可能的,只有0.25的可能性,这个解显然是不可用的。这个例子说明,用上述方法处理随机规

(完整word版)整数规划的数学模型及解的特点

整数规划的数学模型及解的特点 整数规划IP (integer programming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。 松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。 若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。 一、整数线性规划数学模型的一般形式 ∑==n j j j x c Z 1 min)max(或 中部分或全部取整数n j n j i j ij x x x m j n i x b x a t s ,...,,...2,1,...,2,10 ),(.211 ==≥=≥≤∑= 整数线性规划问题可以分为以下几种类型 1、纯整数线性规划(pure integer linear programming):指全部决策变量都必须取整数值的整数线性规划。有时,也称为全整数规划。

2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。 3、0—1型整数线性规划(zero —one integer liner programming):指决策变量只能取值0或1的整数线性规划。 1 解整数规划问题 0—1型整数规划 0—1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的 ???? ? ????≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z

第五章整数规划

第五章 整数规划 主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。 重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。 要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。 §1 问题的提出 要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。 例1 求解下列整数规划问题 211020m ax x x z += ????? ? ?≥≤+≤+为整数2 1212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为: 96m ax ,0,8.421===z x x 。

用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点 方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x , 最优值为z=90。 由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。下面介绍几种常用解法。 §2 分枝定界法 分枝定界法可用于解纯整数或混合的整数规划问题。基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是 A 的最优值 * z 的上界,记为 z ;而A 的任意可行解的目标函数值是* z 的一个下界 z ,采 取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。现举例说明: 例2 求解A 219040m ax x x z += ?????? ?≥≤+≤+为整数 21212121,0 ,7020756 79x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解 =1x 4.81, =2x 1.82, ① ② ③ ④ ⑤

01型整数规划模型

甲乙公司不合作即竞争下所争取到的不同名专业推广者所建立的不同动态规划模 型的组合方案如下:其中X 为可能竞争到的专业推广者人数,即动态规划模型中第一天的

专业推广者推 广能力的份数,Y 为第二天需要的专业推广者推广能力的份数,即第三天安排从事推广 工作的专业推广者的人数;Z 为第三天需要的专业推广者推广能力的份数,即第三天安排从事推广工作的专业推广者的人数;a 为x 名专业推广者累计从事培训工作出来的兼职推广者的批数(每批20 人),其中,有多种组合方案;甲公司雇佣这些兼职推广者均工作一天,从事推广工作,第二天辞退a ?b 批兼职推广员,其余的b 批继续从事推广工作一天后辞退,即兼职宣传员总共最多雇佣2 天;cost 为花费的成本,即资金的使用数量;F 为不同方案下所达到的总推广效益。上表可以提供给甲公司做决策依据,根据效益的大小甲公司可以决策的目标方向顺序是从①--⑧,即不合作的情况下甲公司可以尽量争取到9 人,如若 不行,考虑争取4 人。 §5.4 0—1型整数规划模型 1、 0—1型整数规划模型概述 整数规划指的是决策变量为非负整数值的一类线性规划,在实际问题的应用中,整数规划模型对应着大量的生产计划或活动安排等决策问题,整数规划的解法主要有分枝定界解法及割平面解法(这里不作介绍,感兴趣的读者可参考相关书籍)。在整数规划问题中,0—1型整数规划则是其中较为特殊的一类情况,它要求决策变量的取值仅为0或1,在实际问题的讨论中,0—1型整数规划模型也对应着大量的最优决策的活动与安排讨论,我们将列举一些模型范例,以说明这个事实。 0—1型整数规划的的数学模型为: 目标函数 n n x c x c x c z M i n M a x +++= 2211)( 约束条件为: ???? ?? ?==≥≤++=≥≤++=≥≤++1 | 0 ) ,() ,() ,(2211222221211 1212111n m n mn m m n n n n x x x b x a x a x a b x a x a x a b x a x a x a , , ,21 这里,0 | 1表示0或1。 2、0—1型整数规划模型的解法

基于随机提前期的库存模型的规划周期word参考模板

随机提前期库存模型的规划周期 摘要:相关的规划周期的文献都大量地致力于分析具有确定提前期的库存系统。我们证明了,在某种情况下,相关的规划周期理论也适用于具有随机提前期的情况。特别的,当生产需求被认为是不可替换的以及确定的,这时生产运作只能被设置成符合这种特殊要求的并且也只适合于满足这种要求的情况。当持有订单、退订单、下订单时,在可变生产成本不变,并且销售提前期不变的情况下,按照一系列连续的整体的生产要求进行生产时总是最优的策略。特定发货量的生产日期具有凸性性质。基于以上的结论,我们证明了一些规划周期理论。并给出了远期的动态规划递归方法。这些结论被归纳为基本动态订购数量模型。我们呈现了几个案例用以阐述最优策略对提前期变化的灵敏度。 对于动态订购数量问题的规划周期的探索具有远远超越计算存储方法的优势。在许多情况下,对于下一个最佳生产决策的判断是最重要的,因为这些事项常常需要定期得到解决以纳入改善后的信息。这将导致在有限时间内的周期问题的自然停止法则,并随后降低获取和探索信息的成本。Lundin和Morton二人近来集成了规划周期的相关文献,将它们作为一个整体进行研究。至目前为止,这项研究已经致力于分析具有确定提前期的库存系统。这篇文章的主要目的是证明在某些假设下一些周期规划的理论和概念也可以被归纳为随机提前期的情况。 Gross和Soriano以及Vinson的研究清楚地证明了提前期变动

对库存成本有重大影响。然而文献间也存在差异,部分是由于连续提前期和随机提前期对库存系统的影响的根本区别。当提前期是连续的,所有的订单都将按照事先设置的顺序先后到达。当提前期是独立的随机变量,

数学建模(整数规划)

整数规划模型

实际问题中 x x x x f z Max Min T n "),(),()(1==或的优化模型 m i x g t s i ",2,1,0)(..=≤x ~决策变量f (x )~目标函数g i (x )≤0~约束条件 多元函数决策变量个数n 和数 线性规划条件极值约束条件个数m 较大最优解在可行域学 规 非线性规划解 的边界上取得划 整数规划

Programming +Integer 所有变量都取整数,称为纯整数规划;有一部分取整数,称为混合整数规划;限制取0,1称为0‐1型整数规划。 型整数规划

+整数线性规划 max(min) n z c x =1j j j n =∑1 s.t. (,) 1,2,,ij j i j a x b i m =≤=≥=∑"12 ,,,0 () n x x x ≥"且为整数 或部分为整数

+例:假设有m 种不同的物品要装入航天飞机,它们的重量和体积分别为价值为w j 和v j ,价值为c j ,航天飞机的载重量和体积限制分别为W 和V ,如何装载使价值最大化? m 1?1 max j j j c y =∑ 1 0j j y =?被装载 s.t. m j j v y V ≤∑0 j ?没被装载1 j m =1 j j j w y W =≤∑ 0 or 1 1,2,,j y j m =="

(Chicago)大学的Linus Schrage教授于1980年美国芝加哥(Chi)Li S h 前后开发, 后来成立LINDO系统公司(LINDO Systems Inc.),网址:https://www.360docs.net/doc/2c15122587.html, I)网址htt//li d LINDO: Interactive and Discrete Optimizer (V6.1) Linear(V61) LINGO: Linear Interactive General Optimizer (V8.0) LINDO——解决线性规划LP—Linear Programming,整数规划IP—Integer Programming问题。 LINGO——解决线性规划LP—Linear Programming,非线性规划NLP—Nonlinear Programming,整数规划IP—Integer Programming g g整划g g g 问题。

运筹学[第五章整数规划]山东大学期末考试知识点复习

第五章整数规划 1.整数规划的特点 (1)整数规划:决策变量要求取整数的线性规划。 (2)整数规划可分为纯整数规划和混合整数规划。 (3)整数规划的可行域为离散点集。 2.整数规划的建模步骤 整数规划模型的建立几乎与线性规划模型的建立完全一致,只是变量的部分或全体必须限制为整数。 3.求解整数规划的常用方法 1)分支定界法 没有最大化的整数规划问题A,与它相应的线性规划问题为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数z*的上界,记作,而A的任意可行解的目标函数值将是z*的一个 下界,分支定界法就是将B的可行域分成子区域的方法,逐步减小和增大, 最终求得z*。 将要求解的整数规划问题称为问题A,将与它相应的线性规划问题称为问题B。 (1)解与整数规划问题A相应的线性规划问题B,可能得到以下几种情况之一: ①B没有可行解,A也没有可行解,停止计算。 ②B有最优解,并符合问题A的整数条件,则此最优解即为A的最优解,停止计算。 ③B有最优解,但不符合A的整数条件,记它的目标函数值为。

(2)用观察法找问题A的一个整数可行解,求得其目标函数值,并记作。 以z*表示问题A的最优目标数值,则≤z*≤。 下面进行迭代。 分支,在B的最优解中任选一个不符合整数条件的变量x i ,其值为b i 。 构造两个约束条件 x j ≤[b j ] ① 和 x j ≥[b j ]+1 ② 其中[b j ]为不超过b j 的最大整数。 将这两个约束条件分别加入问题B,求两个后继规划问题B1和B2。不考虑整数约束条件求解这两个后继问题。 定界,以每个后继问题为一分支标明求解的结果。 第一步:先不考虑整数约束,变成一般的线性规划问题,用图解法或单纯形法求其最优解,记为 ) ; 第二步:若求得的最优解,刚好就是整数解,则该整数就是原整数规划的最优解,否则转下步; 第三步:对原问题进行分支寻求整数最优解。 第四步:对上面两个子问题按照线性规划方法求最优解。若某个子问题的解是整数解,则停止该子问题的分支,并且把它的目标值与上一步求出的最优整数解相比较以决定取舍;否则,对该子问题继续进行分支。

第五章 整数规划练习题答案

第五章 整数规划练习题答案 一. 判断下列说法是否正确 1. 用分枝定界法求解一个极大化的整数规划问题时,任何一个可行整数解的目标函数值是 该问题目标函数值的下界。() 2. 用割平面法求解整数规划时,构造的割平面有可能切去一些不属于最优解的整数解。() 3. 用割平面法求解纯整数规划时,要求包括松弛变量在内的全部变量必须取整数值。() 4. 指派问题数学模型的形式与运输问题十分相似,故也可以用表上作业法求解。() 二. 设有五项工作要分派给五个工人,每人的作业产值如下表所示,为了使总产值最大,问 应如何分配这五项工作,并求得最大产值。 工作 工人 A & B C D E 甲 9 4 6 8 5 \ 乙 8 5 9 10 6 丙 9 7 3 ' 5 8 丁 4 8 6 9 5 戊 10 ; 5 3 6 3 答案: 设原矩阵为A ,因求极大问题,令B=[M-a ij ],其中M=Max {a ij }=10,则: 16425105 3140 42 13251042510424003B 1 3752102 64 10 154062415151 3045 020305 7470574704646111-?????? ? ? ? ? ? ? ? ? ? =→→- ? ? ?- ? ? ? ? ? ??????? --- m 4n 5l m 4 4 21342132432431541545235234 6 4 64 6 4 6=<===? ??? ? ??? ? ? ? ?→→????→?? ? ??? ? ? ? ???? ? ? ? 031023 4003115406020303535?? ? ? ? ? ? ?? ? 31234311546233 5 3 5? ?? ?? ? ?→ ?? ? ?? ? m=5=n ,得最优解。解矩阵*0001000100X 0000101 00010000?? ? ? ?= ? ? ??? 。

整数线性规划理论

整数线性规划理论 §1 概论 1.1 定义 规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型整数线性规划。目前所流行的求解整数规划的方法,往 1.2 如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类: 1o 变量全限制为整数时,称纯(完全)整数规划。 2o 变量部分限制为整数的,称混合整数规划。 1.3 整数规划特点 (i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。 例1 原线性规划为 21min x x z += 0,0,5422121≥≥=+x x x x 其最优实数解为:4 5min ,4 5,021===z x x 。LINGO1.lg4 LINGO11.lg4 ③有可行解(当然就存在最优解),但最优解值变差。 例2 原线性规划为 21m i n x x z += 0,0,6422121≥≥=+x x x x 其最优实数解为:2 3min ,23,021===z x x 。 若限制整数得:2min ,1,121===z x x 。LINGO2.lg4 LINGO21.lg4 (ii ) 整数规划最优解不能按照实数最优解简单取整而获得。 1.4 求解方法分类: (i )分枝定界法—可求纯或混合整数线性规划。 (ii )割平面法—可求纯或混合整数线性规划。 (iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。 (iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。 (v )蒙特卡洛法—求解各种类型规划。 下面将简要介绍常用的几种求解整数规划的方法。 §2 分枝定界法 对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行

整数规划和多目标规划模型

1 整数规划的MATLAB 求解方法 (一) 用MATLAB 求解一般混合整数规划问题 由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。现在有许多用户发布的工具箱可以解决该类问题。这里我们给出开罗大学的Sherif 和Tawfik 在MATLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。intprog 函数的调用格式如下: [x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为: ????? ??????∈=≥≤≤=≤=) 取整数(M j x n i x ub x lb b x A b Ax t s x c f j i eq eq T ),,2,1(0..min 在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ?1维矩阵,eq A 为n m ?2维矩阵。 在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。其中c 为目标函数所对应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。lb 和ub 为设计变量对应的上界和下界。M 为具有整数约束条件限制的设计变量的序号,例如问题中设计变量为621,,,x x x ,要求32,x x 和6x 为整数,则M=[2;3;6];若要求全为整数,则M=1:6,或者M=[1;2;3;4;5;6]。TolXInteger 为判定整数的误差限,即若某数x 和最邻近整数相差小于该误差限,则认为x 即为该整数。

第5章-整数规划(割平面法)

割平面法 求解整数规划问题: Max Z=3x1+2x2 2x1+3x214 4x1+2x218 x1,x20,且为整数 解:首先,将原问题的数学模型标准化,这里标准化有两层含义:(1)将不等式转化为等式约束,(2)将整数规划中所有非整数系数全部转化为整数,以便于构造切割平面。从而有: Max Z=3x1+2x2 2x1+3x2+x3=14 2x1+x2+x4=9 x1,x20,且为整数 利用单纯形法求解,得到最优单纯形表,见表1: 表1 C B X B b 3 2 0 0

j 最优解为:x1=13/4, x2=5/2, Z=59/4 根据上表,写出非整数规划的约束方程,如:x2+1/2x3-1/2x4=5/2 (1) 将该方程中所有变量的系数及右端常数项均改写成“整数与非负真分数之和”的形式,即: (1+0)x2+(0+1/2)x3+(-1+1/2)x4=2+1/2 把整数及带有整数系数的变量移到方程左

边,分数及带有分数系数的变量称到方程右边,得: x2 - x4-2 =1/2-(1/2x3+1/2x4) (2) 由于原数学模型已经“标准化”,因此,在整数最优解中,x2和x4也必须取整数值,所以(2)式左端必为整数或零,因而其右端也必须是整数。又因为x3,x40,所以必有: 1/2-(1/2x3+1/2x4)<1 由于(2)式右端必为整数,于是有: 1/2-(1/2x3+1/2x4)0 (3) 或 x3+x4 1 (4) 这就是考虑整数约束的一个割平面约束方程,它是用非基变量表示的,如果用基变量来表示割平面约束方程,则有: 2x1+2x211 (5) 从图1中可以看出,(5)式所表示的割平面约束仅割去线性规划可行域中不包含整数可行解的部分区域,使点E,2)成为可行域的一个极点。

整数线性规划word版

第三章 整数线性规划 本章, 我们介绍三种解决整数线性规划问题的软件: 第一种: MATLAB 中的optimization toolbox 中的若干程序; 第二种: LINDO 软件; 第二种: LINGO 软件. 1. MATLAB 程序说明 程序名: intprogram, L01p_e, L01p_ie, transdetobi, biprogram intprogram 是利用分支定界法解决整数规划问题, 是全部的整数规划问题; L01p_e 是利用枚举法解决0-1规划问题, 变量要求全部为0或者1; L01p_ie 是利用隐枚举法解决0-1规划问题, 变量要求全部为0或者1; Transdetobi 是枚举法和隐枚举法中利用到的将十进制数转化为二进制数的函数; Biprogram 是MATLAB6.5以上版本中有的求解0-1规划的函数的程序. intprogram 执行实例1: 12 121212max 2010s.t.5424 2513 ,0, f x x x x x x x x =++≤+≤≥ 且为整数 在命令窗口的程序执行过程和结果如下: >> c=[-20,-10]; %将最大转化为最小; >> a=[5,4;2,5]; >> b=[24;13]; >> [x,f]=intprogram(c,a,b,[0;0],[inf;inf],[],0,0.0001) % c,a,b 之后[0;0] is the value of low bound;[inf;inf] is the value of up bound;[] is the initialization;0 is the number of the equation constraints; 0.0001 is the concise rate. x = 4.0000 1.0000 f = -90 intprogram 执行实例2: 书中例题3.3.1 在命令窗口的程序执行过程和结果如下: >> c=[-1,-1]; >> a=[-4,2;4,2;0,-2]; >> b=[-1;11;-1];

整数规划和多目标规划模型

1 整数规划的MATLAB 求解方法 (一) 用MATLAB 求解一般混合整数规划问题 由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。现在有许多用户发布的工具箱可以解决该类问题。这里我们给出开罗大学的Sherif 和Tawfik 在MATLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。intprog 函数的调用格式如下: [x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为: ????? ??????∈=≥≤≤=≤=) 取整数(M j x n i x ub x lb b x A b Ax t s x c f j i eq eq T ),,2,1(0..min Λ 在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ?1维矩阵,eq A 为n m ?2维矩阵。 在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。其中c 为目标函数所对应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。lb 和ub 为设计变量对应的上界和下界。M 为具有整数约束条件限制的设计变量的序号,例如问题中设计变量为621,,,x x x Λ,要求32,x x 和6x 为整数,则M=[2;3;6];若要求全为整数,则M=1:6,或者M=[1;2;3;4;5;6]。TolXInteger 为判定整数的误差限,即若某数x 和最邻近整数相差小于该误差限,则认为x 即为该整数。

运筹学-电力系统规划-模型

运筹学在电力系统中的应用 运筹学的相关基础知识在电力系统中有着广泛应用,涉及最优随机潮流,电力市场中的最优潮流等等。本文就这两方面文献作详细分析。 随机潮流计算是电力系统分析的一项重要内容,有助于对整个电网在各种运行条件下的性能有一个全面、综合的评价,并对电网存在的薄弱环节做出量化分析。针对考虑负荷不确定性的随机最优潮流问题,建立相应的机会约束规划模型。基于确定性最优潮流的内点算法,以确定性负荷最优潮流计算结果为基础,通过建立状态变量的概率分布来判断概率约束是否满足。若不满足,则根据变量的分布和等效的机会约束,形成新的上下限约束,继续计算负荷为期望值时最优潮流,直至所有概率约束满足。 最优潮流是电力系统规划和运行的重要工具。经典的最优潮流问题是在网络结构和负荷功率完全确定的条件下求解满足各(物理和安全)约束的优化调度方案。但电力系统的运行时刻受到随机因素的影响和干扰:负荷功率难以精确预知、设备可能发生故障、元件参数也会发生变化。而电力工业的市场化改革给电力系统的运行带来了更多不确定性因素。因此,有学者提出了新的随机最优潮流的问题。 机会约束规划模型是一种随机规划模型,主要针对的是约束条件中含有随机变量,且必须在观测到随机变量的实现之前作出决策的情况而建立的模型。 求解机会约束规划的传统方法是根据事先给定的置信水平,把机会约束转化为各自确定的等价类,然后用传统的方法求解其等价的确定性模型。对于特殊的比较复杂的机会约束模型,可以借助一些启发式算法直接计算。 不同的研究出发点和考虑不同的随机因素,可导出多种形式的随机最优潮流的问题。最优潮流与概率最优潮流(Probabilistic Optimal PowerFlow, POPF)也是有区别的。概率最优潮流的主要目标根据负荷等因素的概率分布获得状态变量的概率分布函数,随机因素一般不影响最优潮流的计算结果;而随机最优潮流在建立模型和优化计算过程中考虑随机因素的影响,随机因素影响计算的过程和最终的结果。 在给出随机最优潮流基本模型的基础上,讨论了在考虑不同随机因素条件下SOPF的线性随机规划模型和求解方法。而之后的研究者在文献中使用随机最优潮流考虑了元件的随机故障,目标是得到基准条件下运行费用与校正各预想故障的期望费用之和最小的调度方案。再之后考虑了负荷的不确定性,优化的目标是使有功损耗的方差最小。以下列出随机最优潮流的机会约束规划模型。 在仅考虑负荷的不确定性,不考虑发电机和线路的随机故障的情况下,以发

第五章 整数规划练习题答案

第五章 整数规划练习题答案 一. 判断下列说法是否正确 1. 用分枝定界法求解一个极大化的整数规划问题时,任何一个可行整数解的目标函数值是 该问题目标函数值的下界。() 2. 用割平面法求解整数规划时,构造的割平面有可能切去一些不属于最优解的整数解。() 3. 用割平面法求解纯整数规划时,要求包括松弛变量在内的全部变量必须取整数值。() 4. 指派问题数学模型的形式与运输问题十分相似,故也可以用表上作业法求解。() 二. 设有五项工作要分派给五个工人,每人的作业产值如下表所示,为了使总产值最大,问 应如何分配这五项工作,并求得最大产值。 工作 工人 A B C D E 甲 9 4 6 8 5 乙 8 5 9 10 6 丙 9 7 3 5 8 丁 4 8 6 9 5 戊 10 5 3 6 3 答案: 设原矩阵为A ,因求极大问题,令B=[M-a ij ],其中M=Max {a ij }=10,则: 16425105 3140 42 13251042510424003B 1 3752102 6410 1540 62 415151 3045 020305 7470574704646111-?????? ? ? ? ? ? ? ? ? ? =→→- ? ? ?- ? ? ? ? ? ??????? --- m 4n 5l m 4 4 21342132432431541545235234 6 4 64 6 4 6=<===? ??? ? ??? ? ? ? ?→→????→?? ? ??? ? ? ? ???? ? ? ? 031023 4003115406020303535?? ? ? ? ? ? ???

1_6237190_两阶段随机规划的若干算法及应用研+究

论文题目: 两阶段随机规划的若干算法及应用研究 作者姓名:刘敬生入学时间:2006年9月专业名称:概率论与数理统计研究方向:统计理论与应用指导教师:周长银职称:副教授 论文提交日期:2009年5月 论文答辩日期:2009年6月 授予学位日期:

STUDY OF SOME ALGORITHMS FOR TWO-STAGE APPLICATIONS ITSAPPLICATIONS STOCHASTIC PROGRAM AND ITS A Dissertation submitted in fulfillment of the requirements of the degree of MASTER OF SCIENCE from Shandong University of Science and Technology b y Liu Jingsheng Supervisor:Vice Professor Zhou Changyin College of Information Science and Engineering May2009

声明 本人呈交给山东科技大学的这篇硕士学位论文,除了所列参考文献和世所公认的文献外,全部是本人在导师指导下的研究成果。该论文资料尚没有呈交于其它任何学术机关作鉴定。 硕士生签名: 日期: AFFIRMATION I declare that this dissertation,submitted in fulfillment of the requirements for the award of Master of Science in Shandong University of Science and Technology,is wholly my own work unless referenced of acknowledge.The document has not been submitted for qualification at any other academic institute. Signature: Date:

整数线性规划

整数线性规划 【数学模型】 m in T x f x st. A x b ?≤ A eq x b eq ?= lb x ub ≤≤ i x 取值为整数 其中f , x , b , beq , lb 和ub 为向量,A 和Aeq 为矩阵。 【函数】 intprog 【说明】 在Matlab 中无求解整数线性规划的现成函数,利用Matlab 的线性规划函数linprog 来编写整数线性规划函数,输入与输出与linprog 类似,采用分枝定界法来实现。 Matlab 主程序intprog 如下: function [x,fval,status] = intprog(f,A,B,I,Aeq,Beq,lb,ub,e) %整数规划求解函数 intprog() % 其中 f 为目标函数向量 % A 和B 为不等式约束 Aeq 与Beq 为等式约束 % I 为整数约束 % lb 与ub 分别为变量下界与上界 % x 为最优解,fval 为最优值 % 控制输入参数 if nargin < 9, e = 0.00001; if nargin < 8, ub = []; if nargin < 7, lb = []; if nargin < 6, Beq = []; if nargin < 5, Aeq = []; if nargin < 4, I = [1:length(f)]; end , end , end , end , end , end %求解整数规划对应的线性规划,判断是否有解 options = optimset('display','off'); [x0,fval0,exitflag] = linprog(f,A,B,Aeq,Beq,lb,ub,[],options); if exitflag < 0 disp('没有合适整数解'); x = x0; fval = fval0; status = exitflag; return ; else %采用分支定界法求解

第六章整数规划

第五章整数规划 一、填空题 1.用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的()。 2.在分枝定界法中,若选Xr=4/3进行分支,则构造的约束条件应为()。 3.已知整数规划问题P0,其相应的松驰问题记为P0’,若问题P0’无可行解,则问题P。()。 4.在0 - 1整数规划中变量的取值可能是()或()。 5.对于一个有n项任务需要有n个人去完成的分配问题,其解中取值为1的变量数为()个。 6.分枝定界法和割平面法的基础都是用()求解整数规划。 7.若在对某整数规划问题的松驰问题进行求解时,得到最优单纯形表中,由X。所在行得X1+1/7x3+2/7x5=13/7,则以X1行为源行的割平面方程为()。 8.在用割平面法求解整数规划问题时,要求全部变量必须都为()。 9.用()求解整数规划问题时,若某个约束条件中有不为整数的系数,则需在该约束两端扩大适当倍数,将全部系数化为整数。 10.求解纯整数规划的方法是割平面法。求解混合整数规划的方法是()。 11.求解0—1整数规划的方法是隐枚举法。求解分配问题的专门方法是()。 12.在应用匈牙利法求解分配问题时,最终求得的分配元应是()。 13.分枝定界法一般每次分枝数量为()个. 二、单选题 1.整数规划问题中,变量的取值可能是()。 A.整数B.0或1C.大于零的非整数D.以上三种都可能 2.在下列整数规划问题中,分枝定界法和割平面法都可以采用的是A()。 A.纯整数规划B.混合整数规划C.0—1规划D.线性规划 3.下列方法中用于求解分配问题的是()。 A.单纯形表B.分枝定界法C.表上作业法D.匈牙利法 三、多项选择

相关文档
最新文档