信号与系统第二章

信号与系统第二章
信号与系统第二章

2.1 引言

连续时间系统处理连续时间信号,通常用微分方程来描述这类系统,也就是系统的输入输出之间通过他们时间函数及其对时间t的各阶导数的线性组合联系起来。

输入与输出只用一个高阶的微分方程相联系,而且不研究内部其他信号的变化,这种描述系统的方法称为输入——输出法。

此处的分析方法有很多,其中时域分析法不通过任何变换,直接求微分方程,这种方法直观,物理概念清楚,是学习各类变换域分析方法的基础。系统时域分析法包含两方面内容,一是微分方程的求解,另一是已知系统单位冲激响应,将冲激响应与输入激励信号进行卷积,求出系统的输出响应。其中第一种方法在高等数学中有详细的解释,在这里主要是解释其物理含义,并建立零输入响应和零状态响应两个重要的基本概念。虽然卷积只能用于系统的零状态响应,但他的物理概念明确。。。。。。。。。。。主要的是卷积是时域和频域之间的纽带,通过它把变换域分析赋以清晰的物理概念。

2.2 微分方程的建立与求解

激励信号为e(t),系统响应为r(t)。

由时域经典解法,方程式的完全解由两部分组成:齐次解与特解。齐次解解法:

代入:

化简为:

特征根为:

所以微分方程的齐次解为:

其中常数A由初始条件决定。

如果有重根,即:

a1相应于重根部分有k项:

特解解法:特解rp(t)的函数形式与激励函数有关,将激励e(t)代入方程式,求特解方程的待定系数,即可给出特解。

完全解:

一般需要给出初始条件才能求解系数

因此可以求出常数A

a值构成的矩阵称为范德蒙德矩阵.

齐次解表示系统的自由响应,特征根表示系统的“固有频率”,特解称为系统的强迫响应,强迫响应只与激励函数的形式有关。

r(t) = rh(t) + rp(t)

2.3 起始点的跳变从0-到0+

在系统分析中,把响应区间确定为激励信号e(t)加入之后系统状态变化区间,一般激励e(t)都是从t = 0时刻加入,这样系统的响应区间定为0+<=t<无穷,系统如果在激励信号加入之前瞬间有一组状态:

这组状态被称为系统的起始状态(简称0-状态),他包含了为计算未来响应的全部“过去”信息,在激励信号e(t)加入之后,由于受激励的影响,这组状态从0-到0+时刻可能发生变化。而A的值是由响应区间内t = 0+时刻的一组状态决定的:

所以称这组状态为初始条件(简称0+状态,也称“导出的起始状态”)可见用时域经典法求解系统响应时,为确定自由响应部分的常数A,还必须根据系统的0-状态和激励信号情况求出0+状态。

求解流程图:

2.4 零输入响应和零状态响应

由时域经典法求解系统的完全响应是把响应分成自由响应和强迫响应,为确定完全响应中的常数往往利用冲激函数匹配法,把给定的0-状态转换成0+状态以便求解,系统响应分解只是一种形式,另一种广泛应用的重要分解是零输入响应和零状态响应。

注(很重要):对于外加激励信号e(t)和他对应的响应rzs(t) = H[e(t)]的关系而言,若系统的起始状态为零,{xi(0-)} = 0,则用常系数线性微分方程描述的系统是线性对的和时不变的。如果起始状态{x1(0-)}不为0,由于响应中零输入分量的存在,导致系统响应对外加激励e(t)不满足叠加性和均匀性,也不满足时不变性,因而是非线性时变系统。同时由于零输入分量存在,使响应的变化不可能只发生在激励变化之后,因而系统也是非因果的。这样可以说用常系数线性微分方程描述的系统只有在起始状态为零的条件下,系统才是线性时不变的,而且是因果的。

信号与线性系统分析_(吴大正_第四版)习题答案第六章

. 下载可编辑 . 第六章 6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。 (1)1)(=z F ,全z 平面 (2)∞<=z z z F ,)(3 (3)0,)(1>=-z z z F (4)∞<<-+=-z z z z F 0,12)(2 (5)a z az z F >-= -,11 )(1 (6)a z az z F <-=-,11 )(1

. 下载可编辑 . 6.5 已知1)(?k δ,a z z k a k -? )(ε,2)1()(-?z z k k ε,试利用z 变换的性质求下列序列的z 变换并注明收敛域。

. 下载可编辑 . (1))(])1(1[2 1k k ε-+ (3))()1(k k k ε- (5))1()1(--k k k ε (7))]4()([--k k k εε (9))()2 cos( )2 1(k k k επ

. 下载可编辑 . 6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞ →。 (1))3 1)(21(1)(2+-+=z z z z F (3))2)(1()(2 --=z z z z F

. 下载可编辑 . 6.10 求下列象函数的双边逆z 变换。 (1)31 ,)31)(21(1)(2<--+= z z z z z F (2)21 ,)3 1)(21()(2>--= z z z z z F (3)2 1,) 1()2 1 ()(23 < --= z z z z z F

. 下载可编辑 . (4)2131,)1()2 1()(23 <<--= z z z z z F

第二章1信号与系统课后答案

第二章 已知描述系统的微分方程和初始状态如下,试求其零输入相应(1)y’’(t)+5y’(t)+6y(t)=f(t), y(0-)=1, y’(0-)=-1 解:微分方程对应的特征方程为λ2+5λ+6=0 其特征根为λ1=-2,λ2=-3,系统的零输入响应可写为 y zi (t)=C1e-2t+C2e-3t 又(0-)=y(0-)=1, ()=()=-1,则有 1=+ -1=-2-3 由以上两式联立,解得=2=-1 即系统的零输入响应为(t)=2-,t (2) 微分方程的特征方程为 其特征根系统的零输入响应可写为 又()=()=-2,则有 )= 以上两式联立,解得 因此系统的零输入响应为, (3) 微分方程对应的特征方程为

其特征根为=-1,系统的零输入响应可写为 又)=()=则有)=,()=-=1 以上两式联立,解得 因此系统的零输入响应为 , (4) 微分方程对应的特征方程为 其特征根为系统的零输入响应可写为 又)=()=则有)=()==0 因此系统的零输入响应为 (5) 微分方程对应的特征方程为

其特征根为, 系统的零输入响应可写为 + 又)=()= 则有 )= () = 以上三式联立,解得 , 因此系统的零输入响应为 ,t 已知描述系统的微分方程和初始态度如下,试求其 (1) 输入则方程右端不含冲激函数项,则f(t)及其导数在t=0处均不发生跃变,即 (2) 将代入微分方程,有 ○1 由于方程右端含有项,则,设

(t)+ ○2其中不含及其导数项。 对○2式两边从-到t积分,得 (t)+b+○3 其中(t),而(t)=(故不含及其导数项。 同理,对○3式两边从-到t积分,得 ○4 其中及其导数项。 将○2○3○4式代入○1式,整理得 a(t)+(8a+6b+c)+ 比较上式两端及其各阶导数前的系数,有 a=1 6a+b=0 8a+6b+c=0 以上三式联立,解得 a=1,b=-6,c=28 对○2○3两式两端从积分,得 =b=-6 则有

信号与系统第二章

2.1 引言 连续时间系统处理连续时间信号,通常用微分方程来描述这类系统,也就是系统的输入输出之间通过他们时间函数及其对时间t的各阶导数的线性组合联系起来。 输入与输出只用一个高阶的微分方程相联系,而且不研究内部其他信号的变化,这种描述系统的方法称为输入——输出法。 此处的分析方法有很多,其中时域分析法不通过任何变换,直接求微分方程,这种方法直观,物理概念清楚,是学习各类变换域分析方法的基础。系统时域分析法包含两方面内容,一是微分方程的求解,另一是已知系统单位冲激响应,将冲激响应与输入激励信号进行卷积,求出系统的输出响应。其中第一种方法在高等数学中有详细的解释,在这里主要是解释其物理含义,并建立零输入响应和零状态响应两个重要的基本概念。虽然卷积只能用于系统的零状态响应,但他的物理概念明确。。。。。。。。。。。主要的是卷积是时域和频域之间的纽带,通过它把变换域分析赋以清晰的物理概念。 2.2 微分方程的建立与求解

激励信号为e(t),系统响应为r(t)。 由时域经典解法,方程式的完全解由两部分组成:齐次解与特解。齐次解解法: 代入: 化简为: 特征根为:

所以微分方程的齐次解为: 其中常数A由初始条件决定。 如果有重根,即: a1相应于重根部分有k项: 特解解法:特解rp(t)的函数形式与激励函数有关,将激励e(t)代入方程式,求特解方程的待定系数,即可给出特解。 完全解: 一般需要给出初始条件才能求解系数

因此可以求出常数A a值构成的矩阵称为范德蒙德矩阵. 齐次解表示系统的自由响应,特征根表示系统的“固有频率”,特解称为系统的强迫响应,强迫响应只与激励函数的形式有关。 r(t) = rh(t) + rp(t) 2.3 起始点的跳变从0-到0+

信号与系统第二章答案

2-1 绘出下列各时间函数的波形图。 (1)1()(1)f t tu t =- (2) 2()[()(1)](1) f t t u t u t u t =--+- (3)3()(1)[()(1)]f t t u t u t =---- (4)4()[(2)(3)]f t t u t u t =--- (5)5()(2)[(2)(3)]f t t u t u t =---- (6)6()()2(1)(2)f t u t u t u t =--+- 解: 2-5 已知()f t 波形如图题2-5所示,试画出下列信号的波形图。 t

图 题2-5 (3)3()(36) f t f t =+ (5)51 1()3 6f t f t ??= -- ? ?? 解: t t 2-6 已知()f t 波形如图题2-6所示,试画出下列信号的波形图。 图 题2-6 (4)4()(2)(2)f t f t u t =-- (6)6()(1)[()(2)]f t f t u t u t =--- 解: 2-7 计算下列各式。 (1) 0()() f t t t δ+ (2)00()()d f t t t t t δ∞ -∞ +-? (3)2 4 e (3)d t t t δ-+? (4)0 e sin (1)d t t t t δ∞ -+? (5) d [ e ()] d t t t δ- (6)0()()d f t t t t δ∞ -∞ -? (7)0()()d f t t t t δ∞ -∞ -? (8)00()d 2t t t u t t δ∞ -∞ ??-- ?? ? ? (9)00()(2)d t t u t t t δ∞ -∞ --? (10)(e )(2)d t t t t δ∞ -∞ ++? (11)(sin )d 6t t t t δ∞ -∞ π? ?+- ???? (12) j 0e [()()]d t t t t t Ωδδ∞ --∞ --? 解:(1) 原式0()()f t t δ=

信号与线性系统题解 阎鸿森 第二章

信号与线性系统题解 阎鸿森 第二章 习题答案 2.1 (1) 已知连续时间信号()x t 如图P2.1(a)所示。试画出下列各信号的波形图,并加以标 注。 (a) (2)x t - (b) (1)x t - (c) (22)x t + (2) 根据图P2.1(b)所示的信号()h t ,试画出下列各信号的波形图,并加以标注。 (a) (3)h t + (b) (2)2 t h - (c) (12)h t - (3) 根据图P2.1(a)和(b)所示的()x t 和()h t ,画出下列各信号的波形图,并加以标注。 (a) ()()x t h t - (b) (1)(1)x t h t -- (c) (2)(4)2 t x h t -+ 图P2.1 解:(1) 各信号波形如下图所示:

(a) (b)(c) 1 2 (2)x t -(1)x t -(22)x t +t t t 22 22111 11210 01 -1-1 -2 -2 -3 5 (2) 各信号波形如下图所示: (a) (b)(c) 12 12 -32 (3)h t +(2)2t h -(12) h t -t t t 00 1 1 1 12468 1-2-3-4-5- (3) 各信号波形如下图所示: ()()x t h t -(1)(1)x t h t --(2)2 t x -(a) (b) (c) t t t ∴(2/2)(4)0 x t h t -+=00 111112 2222 2 1-1-4 6 2 - 2.2 已知信号(52)x t -的波形图如图P2.2所示,试画出()x t 的波形图,并加以标注。 (52) x t -t 3252 1123 图P2.2 解:波形如下图所示:

信号与线性系统习题答案西安交大版阎鸿森编-10页精选文档

第六章习题答案 1. 用定义计算下列信号的拉氏变换及其收敛域,并画出零极点图和收敛域。 (a) (),0at e u t a > (b) (),0at te u t a > (c) (),0at e u t a --> (d) [cos()]()c t u t Ω- (e) [cos()]()c t u t Ω+θ- (f) [sin()](),0at c e t u t a -Ω> (g) (),b at b a δ-和为实数 (h) 23,0 (),0 t t e t x t e t -?>?=?-,见图(a) (b) 2 1 ,Re{}() s a s a >-, 见图(a) (c) 1 ,Re{}s a s a -<-+,见图(b) (d) 22 ,Re{}c s s a s - <-+Ω, 见图(c) (e) 22 cos sin ,Re{}0c c s s s θθ -Ω>+Ω,见图(d) (f) 22 ,Re{}()c c s a a s Ω>-++Ω,见图(e) (g) 2 1|| sb a e a - ,整个s 平面 (h) 11,2Re{}332s s s +-<<-+,见图(f) (a) (b) (c) (d) (e) (f) 2. 用定义计算图P6.2所示各信号的拉氏变换式。 (a) (b) (c) (d) (e)

(f) 解: (a) (b) (c) 20111(1)T st sT sT te dt e e T s Ts ---=-+-? (d) (e) 2222221212()(1)[(1)]sT sT sT s X s e e e e s Ts s Ts ----=-+-+-- (f) s 222sin 111sin [()()]111 st sT st s te dt e t u t u t e dt e s s s π --+∞ --π -∞-=--π=-?=+++? ? 3. 对图P6.3所示的每一个零极点图,确定满足下述情况的收敛域。 (a) x(t)的傅立叶变换存在。 (b) 2()t x t e 的傅立叶变换存在 (c) ()0,0x t t => (d) ()0,5x t t =< 解:(a) x(t)的傅立叶变换存在,则j s =Ω应在()X s 的收敛域内 图(a) 1Re{}1s -<< 图(b) 3Re{}3s -<< 图(c) Re{}1s >- (b) 2()t x t e 的傅立叶变换存在,则s =-2轴一定在()x s 的收敛域内 图(a), Re{}1s <- 图(b), 3Re{}3s -<< 图(c), 3Re{}1s -<<- (c) x(t)=0,t>0,则x(t)为左边信号 图(a),Re{}1s <- 图(b),Re{}3s <- 图(c), Re{}3s <- (d) x(t)=0, t<5,则x(t)为右边信号

南航金城信号与线性系统课后答案 第二章 连续系统的时域分析习题解答

X 第二章 连续系统的时域分析习题解答 2-1 图题2-1所示各电路中,激励为f (t ),响应为i 0(t )和u 0(t )。试列写各响应关于激励微分算子方程。 解: . 1)p ( ; )1(1)p ( , 111 , 1 111)( )b (; 105.7)625(3 102 ; )(375)()6253(4) ()()61002.041( )a (0202200 204006000f i p f p u p f p p p u i f p p p p p f t u pf i p pu i t f t u p t f t u p =+++=++?++=+=+++= ++= ?=+??==+?=++-- 2-2 求图题2-1各电路中响应i 0(t )和u 0(t )对激励f (t )的传输算子H (p )。 解:. 1 )()()( ; 11)()()( )b (; 625 3105.7)()()( ; 6253375)()()( )a (22 0 20 40 0 +++==+++== +?==+== -p p p p t f t i p H p p p t f t u p H p p t f t i p H p t f t u p H f i f u f i f u 2-3 给定如下传输算子H (p ),试写出它们对应的微分方程。 . ) 2)(1() 3()( )4( ; 323)( )3(; 3 3)( )2( ; 3)( )1( +++=++=++=+= p p p p p H p p p H p p p H p p p H 解:; 3d d 3d d )2( ; d d 3d d )1( f t f y t y t f y t y +=+=+ . d d 3d d 2d d 3d d )4( ; 3d d 3d d 2 )3( 2222t f t f y t y t y f t f y t y +=+++=+ 2-4 已知连续系统的输入输出算子方程及0– 初始条件为: . 4)(0y ,0)(0y )y(0 ),()2(1 3)( )3(; 0)(0y ,1)(0y ,0)y(0 ),()84() 12()( )2(; 1)(0y ,2)y(0 ),()3)(1(4 2)( )1(---2 ---2 --=''='=++==''='=+++-=='=+++= t f p p p t y t f p p p p t y t f p p p t y f (u 0(t ) (b) u 0(t ) (a) 图题2-1

信号与线性系统分析_(吴大正_第四版)第一章习题答案

专业课习题解析课程 第1讲 第一章信号与系统(一)

专业课习题解析课程 第2讲 第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=

解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε=

(5)) t f= r ) (sin (t (7)) f kε = t ) ( 2 (k

(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11) )]7()()[6 sin( )(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f

信号与线性系统分析习题答案-(吴大正-第四版--高等教育出版社)

第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)(

(3)) ()sin()(t t t f επ= ( 4))(sin )(t t f ε=

(5)) t f= r ) (sin (t (7)) f kε = t ) ( 2 (k

(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε

(11))]7()()[6 sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε

信号与线性系统分析习题答案吴大正_第四版__高等教育出版社

第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)() (t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8) )]5()([)(--=k k k k f εε (11))]7()()[6 sin( )(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε

(8) )]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 1-3 写出图1-3所示各波形的表达式。 1-4 写出图1-4所示各序列的闭合形式表达式。 1-5 判别下列各序列是否为周期性的。如果是,确定其周期。 (2))6 3cos()443cos()(2 π πππ+++=k k k f (5))sin(2cos 3)(5t t t f π+= 解: 1-6 已知信号 )(t f 的波形如图1-5所示,画出下列各函数的波形。 (1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f - (6) )25.0(-t f (7)dt t df ) ( (8)dx x f t ?∞-)( 解:各信号波形为 (1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f - (6) )25.0(-t f (7)dt t df )(

信号与系统作业作业1第二章答案

第二章 作业答案 2–1 已知描述某LTI 连续系统的微分方程和系统的初始状态如下,试求此系统的零输入响应。 (1))()(2)(2)(3)(t e t e t y t y t y +'=+'+'' 2)0(=-y ,1)0(-='-y 解: 根据微分方程,可知特征方程为: 0)2)(1(0232=++?=++λλλλ 所以,其特征根为: 1, 221-=-=λλ 所以,零输入响应可设为:0)(221≥+=--t e C e C t y t t zi 又因为 ???=-=??? ?-=--='=+=--31 12)0(2)0(2 1 2121C C C C y C C y 所以,03)(2≥-=--t e e t y t t zi (2))(2)()(6)(5)(t e t e t y t y t y -'=+'+'' ?1)0()0(=='--y y 。 解: 根据微分方程,可知特征方程为: 0)3)(2(0652=++?=++λλλλ 所以,其特征根为: 3, 221-=-=λλ 所以,零输入响应可设为:0)(3221≥+=--t e C e C t y t t zi

又因为 ???-==??? ?=--='=+=--3 4 132)0(1)0(21 2121C C C C y C C y 所以,034)(32≥-=--t e e t y t t zi 2–2 某L TI 连续系统的微分方程为)(3)()(2)(3)(t e t e t y t y t y +'=+'+'' 已知1)0(=-y ,2)0(='-y ,试求: (1) 系统的零输入响应)(t y zi ; (2) 输入)()(t t e ε=时,系统的零状态响应)(t y zs 和全响应)(t y 。 解: (1)根据微分方程,可知特征方程为: 0)2)(1(0232=++?=++λλλλ 所以,其特征根为: 1, 221-=-=λλ 所以,零输入响应可设为:0)(221≥+=--t e C e C t y t t zi 又因为 ???=-=??? ?=--='=+=--43 22)0(1)0(2 12121C C C C y C C y 所以,034)(2≥-=--t e e t y t t zi ? (2) 可设零状态响应为:0)(221>++=--t p e C e C t y t x t x zs 其中p 为特解,由激励信号和系统方程确定。 因为)()(t t e ε= 所以,p 为常数,根据系统方程可知,23=p 。 于是,零状态响应可设为为:02 3)(221>++=--t e C e C t y t x t x zs 将上式代入原方程中,比较方程两边的系数,可得到

信号与线性系统分析-(吴大正-第四版)第六章习题答案

6.4根据下列象函数及所标注的收敛域,求其所对应的原序列。 (1)F(z) 1,全z平面 (2)F(z) z3,z (3)F(z) z 1,z 0 (4)F(z) 2z 1 z2,0 z 1 (5)F(z) a 1 (6) F(z) 一, z |a 1 az 解⑴冲I F(z) =1 可1知 fib、— 1 M — H 0 即得f(k)==肌切(2)由F(iri =它和I盘:< X可知 f(k)=.1 *k ――3 即潯/( k) = S 由F(.z")=f[和丨迸丨> 0 .可知 /鮒= 1上=1 仏心1 即得f(k)-枫必一1) t4) = 2r-|-l —i*-3. 0 < | r 展为机I的彳变换为1 ?听以有f(k)=为4- 1) +讯於)一汛上一2)e (5) 1> “I 町知_/W 为因果吊列,则町得 Xf QG _L T = = y * 富t 1—Z k= -X 即得/(^)= U k E(.k) (冊由< u可知」(力〕为反因果序列,rti常用存列的丫变换可知 则可得f(k)= 3T J _F<^>2 =一

6.5已知(k) 1,a k (k) ,k (k) 2,试利用z变换的性质求下列序 z a (z 1)

列的z 变换并注明收敛域。 (9) (1)k cos(k-) (k) 解 (1) + (— 一 / ~ — p —打 收敛域为辽>1 (3) f (k ) = (- 1)绩£(为) T (一 1)1 煙(小一 -_T 其收敛域为I >1 ⑸ JXk) = k(k- l)e(k- 1) = $魏一 1)£(方) 收敛域为丨琴丨> 1 <7) f (k ) — k_^(k ) 一匹(良 一 4)] =fe :(一 (k 一 4)疋(向 一 4) 一 4亡(冷 一 4) _ x 4 — iz — 3 z a (J ? — 1 )£ 收敛域为c >1 (1)2口 ( 1)k ] (k) (3) ( 1)k (k) (5) k(k 1) (k 1) (7) k[ (k) (k 4)]

信号与线性系统分析报告习题问题详解

信号与线性系统课后答案 第一章 信号与系统(一) 1-1画出下列各信号的波形【式中)() (t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=

(4)) fε t = (sin ) (t (5)) t r f= (sin ) (t

(7)) t (k f kε = ) ( 2 (10)) f kε k - = (k + ( ] )1 ( 1[ )

1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1) )2()1(3)1(2)(-+--+=t t t t f εεε

(2) )2 ( )1 ( 2 )( )(- + - - =t r t r t r t f (5) ) 2( ) 2( )(t t r t f- =ε

信号与线性系统分析-(吴大正-第四版)第六章习题答案

信号与线性系统分析-(吴大正-第四版)第六章习题答案

6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。 (1)1)(=z F ,全z 平面 (2)∞<=z z z F ,)(3 (3)0 ,)(1 >=-z z z F (4)∞ <<-+=-z z z z F 0,12)(2 (5)a z az z F >-=-,11 )(1 (6)a z az z F <-=-,11 )(1

6.5 已知1)(?k δ,a z z k a k -?)(ε,2 )1()(-?z z k k ε,试利用z 变换的性质求下列序列的z 变换并注明收敛域。 (1))(])1(1[2 1k k ε-+ (3))()1(k k k ε- (5))1()1(--k k k ε (7))]4()([--k k k εε (9)) ()2 cos() 2 1(k k k επ

6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞ →。 (1) ) 3 1 )(21(1 )(2+-+= z z z z F (3) ) 2)(1()(2 --= z z z z F

6.10 求下列象函数的双边逆z 变换。 (1)31 ,)31)(21(1)(2< -- +=z z z z z F (2) 21 ,)3 1)(21()(2> --=z z z z z F (3)2 1,) 1()2 1 ()(23 < --=z z z z z F (4)2131,)1()2 1()(23 < <--= z z z z z F

信号与线性系统

《信号与线性系统》课程教学大纲 课程编号:28121008 课程类别:学科基础课程 授课对象:信息工程、电子信息工程、通信工程等专业 指定教材:管致中,《信号与线性系统》(第4版),高等教育出版社,2004年 教学目的: 《信号与线性系统》课程讨论确定信号经过线性时不变系统传输与处理的基本理论和基本分析方法。掌握连续时间信号分析,连续时间系统的时域、频域、复频域的分析方法,通过连续时间系统的系统函数,描述系统的频率特性及对系统稳定性的判定;连续时间信号转换到离散时间信号的采样理论及转换不失真的条件。 第一章绪论 课时:1周,共4课时 第一节引言 信号的概念 系统的概念 思考题: 1、什么是信号?举例说明。 2、什么是系统?举例说明。 第二节信号的概念 信号的分类 周期信号与非周期信号、连续时间信号与离散时间信号、能量信号与功率信号。 二、典型信号 指数信号、复指数信号、三角信号、抽样信号。 思考题: 1、复合信号的周期是如何判定的?若复合信号是周期信号,其周期如何计算? 2、如何判定一个信号是能量信号还是功率信号,或者两者都不是? 第三节信号的简单处理 信号的运算 信号的相加、相乘、时移、尺度变换等。 二、信号的分解 一个信号可以分解成奇分量与偶分量之和。 思考题: 若信号由转换至,说明转换的分步次序。 若信号由转换至,说明转换的分步次序。 3、说明信号的奇偶分解的方法。 第四节系统的概念 一、系统的分类 线性系统和非线性系统、时不变系统和时变系统、连续时间系统和离散时间系统、因果系统和非因果系统。

二、系统的性质 线性:满足齐次性与叠加性 时不变:系统的性质不随时间而改变 思考题: 1、举例说明时不变系统和时变系统。 2、若一个系统是线性的,系统的零输入响应与零状态响应具有什么特性?第五节线性非时变系统的分析 线性时不变系统的重要特性 微分特性、积分特性、频率保持特性。 思考题: 若要分析线性时不变系统的特性,说明分析的步骤。 第二章连续时间系统的时域分析 引言 一、线性连续时间系统的时域分析方法 二、线性连续时间系统的输出数学模型------输入输出方程(微分方程)思考题: 对一个RC电路模型,给出输入输出方程(微分方程)。 对一个RLC电路模型,给出输入输出方程(微分方程)。 系统方程的算子表示方法 一、算子的基本规则 二、转移算子 思考题: 对一个RC电路模型,给出输入输出方程(微分方程),并求其转移算子。对一个RLC电路模型,给出输入输出方程(微分方程),并求其转移算子。系统的零输入响应 零输入响应的概念 二、零输入响应的计算方法 1、当分解为单次根: 其中由及其各阶导数决定;为系统的自然频率。 2、当分解为n次重根: 其中由及其各阶导数决定。 思考题: 1、当分解为单次根或n次重根时,说明系统的零输入响应的求解方法。 2、零输入响应的特性是什么? 奇异函数 单位阶跃函数 二、单位冲激函数 门函数 符号函数 斜变函数

信号与线性系统题解第二章

第二章习题答案 收集自网络 2.1 (1) 已知连续时间信号()x t 如图P2.1(a)所示。试画出下列各信号的波形图,并加以标 注。 (a) (2)x t - (b) (1)x t - (c) (22)x t + (2) 根据图P2.1(b)所示的信号()h t ,试画出下列各信号的波形图,并加以标注。 (a) (3)h t + (b) (2)2 t h - (c) (12)h t - (3) 根据图P2.1(a)和(b)所示的()x t 和()h t ,画出下列各信号的波形图,并加以标注。 (a) ()()x t h t - (b) (1)(1)x t h t -- (c) (2)(4)2 t x h t -+ 图P2.1 解:(1) 各信号波形如下图所示:

(a) (b)(c) 1 2 (2)x t -(1)x t -(22)x t +t t t 22 22111 11210 01 -1-1 -2 -2 -3 5 (2) 各信号波形如下图所示: (a) (b)(c) 12 12 -32 (3)h t +(2)2t h -(12) h t -t t t 00 1 1 1 12468 1-2-3-4-5- (3) 各信号波形如下图所示: ()()x t h t -(1)(1)x t h t --(2)2 t x -(a) (b) (c) t t t ∴(2/2)(4)0 x t h t -+=00 111112 2222 2 1-1-4 6 2 - 2.2 已知信号(52)x t -的波形图如图P2.2所示,试画出()x t 的波形图,并加以标注。 (52) x t -t 3252 1123 图P2.2 解:波形如下图所示:

第二章1信号与系统,课后答案

第二章 2、1 已知描述系统得微分方程与初始状态如下,试求其零输入相应(1)y’’(t)+5y’(t)+6y(t)=f(t), y(0-)=1, y’(0-)=-1 解:微分方程对应得特征方程为λ2+5λ+6=0 其特征根为λ1=-2,λ2=-3,系统得零输入响应可写为 y zi (t)=C1e-2t+C2e-3t 又(0-)=y(0-)=1, ()=()=-1,则有 1=+ -1=-2-3 由以上两式联立,解得=2=-1 即系统得零输入响应为(t)=2-,t (2) 微分方程得特征方程为 其特征根系统得零输入响应可写为 又()=()=-2,则有 )= 以上两式联立,解得 因此系统得零输入响应为, (3) 微分方程对应得特征方程为

其特征根为=-1,系统得零输入响应可写为 又)=()=则有)=,()=-=1 以上两式联立,解得 因此系统得零输入响应为 , (4) 微分方程对应得特征方程为 其特征根为系统得零输入响应可写为 又)=()=则有)=()==0 因此系统得零输入响应为 (5) 微分方程对应得特征方程为

其特征根为, 系统得零输入响应可写为 + 又)=()= 则有 )= () = 以上三式联立,解得 , 因此系统得零输入响应为 ,t 2、2已知描述系统得微分方程与初始态度如下,试求其 (1) 输入则方程右端不含冲激函数项,则f(t)及其导数在t=0处均不发生跃变,即 (2) 将代入微分方程,有 ○1

由于方程右端含有项,则,设 (t)+ ○2 其中不含及其导数项。 对○2式两边从-到t积分,得 (t)+b+○3 其中(t),而(t)=(故不含及其导数项。 同理,对○3式两边从-到t积分,得 ○4 其中及其导数项。 将○2○3○4式代入○1式,整理得 a(t)+(8a+6b+c)+ 比较上式两端及其各阶导数前得系数,有 a=1 6a+b=0 8a+6b+c=0 以上三式联立,解得 a=1,b=-6,c=28 对○2○3两式两端从积分,得

信号与线性系统分析-(吴大正-第四版)习题答案第六章

精选 第六章 6.4 根据下列象函数及所标注的收敛域,求其所对应的原序列。 (1)1)(=z F ,全z 平面 (2)∞<=z z z F ,)(3 (3)0,)(1>=-z z z F (4)∞<<-+=-z z z z F 0,12)(2 (5)a z az z F >-= -,11 )(1 (6)a z az z F <-=-,11 )(1

精选 6.5 已知1)(?k δ,a z z k a k -? )(ε,2)1()(-?z z k k ε,试利用z 变换的性质求下列序列的z 变换并注明收敛域。

精选 (1)) (] ) 1(1[2 1k k ε-+ (3))()1(k k k ε- (5))1()1(--k k k ε (7))]4()([--k k k εε (9))()2 cos( )2 1(k k k επ

精选 6.8 若因果序列的z 变换)(z F 如下,能否应用终值定理?如果能,求出)(lim k f k ∞ →。 (1))3 1)(21(1)(2+-+=z z z z F (3))2)(1()(2 --=z z z z F

精选 6.10 求下列象函数的双边逆z 变换。 (1)31 ,)31)(21(1)(2<--+= z z z z z F (2)21 ,)3 1)(21()(2>--= z z z z z F (3)2 1,) 1()2 1 ()(23 < --= z z z z z F

精选 (4)2 131,)1()2 1()(23 <<--= z z z z z F

信号与线性系统题解第二章

信号与线性系统题解第二章

第二章习题答案 收集自网络 2.1 (1) 已知连续时间信号()x t 如图P2.1(a)所示。 试画出下列各信号的波形图,并加以标注。 (a) (2)x t - (b) (1) x t - (c) (22) x t + (2) 根据图P2.1(b)所示的信号()h t ,试画出下 列各信号的波形图,并加以标注。 (a) (3)h t + (b) (2)2t h - (c) (12) h t - (3) 根据图P2.1(a)和(b)所示的()x t 和()h t ,画 出下列各信号的波形图,并加以标注。 (a) ()() x t h t - (b) (1)(1)x t h t -- (c) (2)(4)2t x h t -+

图P2.1 解:(1) 各信号波形如下图所示: (a)(b)(c) 1 2 (2)x t -(1)x t -(22)x t +t t t 22 22111 11210 01 -1-1 -2 -2 -3 5 (2) 各信号波形如下图所示: (a)(b)(c) 12 12 -32 (3)h t +(2)2t h -(12) h t -t t t 00 1 1 1 12468 1-2-3-4-5- (3) 各信号波形如下图所示:

()()x t h t -(1)(1)x t h t --(2) 2 t x -(a)(b) (c) t t t ∴(2/2)(4)0 x t h t -+=00 111112 2222 2 1-1-4 62 - 2.2 已知信号(52)x t -的波形图如图P2.2所示,试画出()x t 的波形图,并加以标注。 (52) x t -t 3252 1123 图P2.2 解:波形如下图所示: 32 52 (52)x t -(5)x t -(5) x t +()x t t t t t 0001111111 2 2233 456 1-2-3-4-5-6- 2.3 (1) 已知离散时间信号()x n 如图P2.3(a)所 示,试画出下列各信号的波形图,并加以标注。 (a) (4) x n - (b) (21) x n +

信号与线性系统题解 阎鸿森 第六章

信号与线性系统题解 阎鸿森 第六章 习题答案 1. 用定义计算下列信号的拉氏变换及其收敛域,并画出零极点图和收敛域。 (a)(),0at e u t a > (b) (),0at te u t a > (c) (),0at e u t a --> (d) [cos()]()c t u t Ω- (e) [cos()]()c t u t Ω+θ- (f) [sin()](),0at c e t u t a -Ω> (g) (),b at b a δ-和为实数 (h) 23,0(),0 t t e t x t e t -?>? =?-,见图(a) (b) 2 1 ,Re{}() s a s a >-, 见图(a) (c) 1 ,Re{}s a s a -<-+,见图(b) (d) 22 ,Re{}c s s a s - <-+Ω, 见图(c) (e) 22 cos sin ,Re{}0c c s s s θθ -Ω>+Ω,见图(d) (f) 22 ,Re{}()c c s a a s Ω>-++Ω,见图(e) (g) 2 1|| sb a e a - ,整个s 平面 (h) 11,2Re{}332s s s +-<<-+,见图(f) j Ω a 0σ

(a) jΩ σ a- (b) jΩ σ (c) jΩ σ0 (d)

a- jΩ σ (e) 2-3 jΩ σ (f) 2.用定义计算图P6.2所示各信号的拉氏变换式。 X(t) 1 T t (a)

1 2 X(t) 123t (b) T t 1 X(t) (c) 1 T t X(t) (d) 1 T/2 t X(t)T (e)

信号与系统第二章

2.1引言 连续时间系统处理通常用微分方程描述的连续时间信号,即系统的输入和输出通过其时间函数及其导数与时间t连接。 输入和输出仅通过一个高阶微分方程连接,并且未研究其他内部信号的变化。这种描述系统的方法称为输入输出方法。 这里有很多分析方法,其中时域分析方法无需任何变换即可直接求解微分方程。该方法直观,物理概念清晰,是学习各种变换域分析方法的基础。系统时域分析方法包括两个方面:一是求解微分方程。另一种方法是通过将脉冲响应与输入激励信号进行卷积来获得系统的输出响应。第一种方法在高等数学中有详细的解释。在此主要说明其物理含义并建立两个重要的基本概念:零输入响应和零状态响应。尽管卷积只能用于系统的零状态响应,但其物理概念很清楚……主要是卷积是时域和频域之间的链接,通过该链接变换域分析给出了明确的物理概念。 2.2微分方程的建立与求解 激励信号为e(T),系统响应为R(T)。 该方程的完整解包括两部分:齐次解和特殊解。 均质溶液法: 插: 简化如下: 特征根如下 因此,微分方程的齐次解为:

常数a由初始条件确定。 如果存在多个根,则为: A1的K项对应于重根部分 特殊解:特殊解RP(T)的函数形式与激励函数有关。可以通过将激励e(T)代入方程并找到特殊解方程的待定系数来获得特殊解。 完整的解决方案: 通常,需要给出初始条件来求解系数 因此,可以得到常数a A值矩阵称为Vandermonde矩阵 齐次解表示系统的自由响应,特征值表示系统的“固有频率”,特殊解称为系统的强制响应。强制响应仅与激励函数的形式有关。 r(t)= rh(t)+ rp(t) 2.3起点从0-跳到0+ 在系统分析中,响应间隔定义为添加激励信号e(T)后系统的状态变化间隔。通常,激励e(T)从T = 0的时间开始加上,因此系统的响应间隔设置为0 + <= T <无限 这组状态称为系统的初始状态(称为0状态)。它包含所有“过去”信息以计算将来的响应。在添加激励信号e(T)后,由于激励的影响,状态组可能会从0-变为0 +。a的值由响应间隔中t = 0 +处的一组状态确定 因此,这组状态称为初始状态(称为0 +状态,也称为“派生的起始状态”)

相关文档
最新文档