水稻耐盐

水稻耐盐
水稻耐盐

中科院专家成功克隆水稻耐盐相关数

量性状基因

SKC1定位克隆图

中国科学院上海生科院植物生理生态所植物分子遗传国家重点实验室林鸿宣研究员及其博士生任仲海、高继平等,与美国加州大学伯克利分校栾升教授及其助手李乐攻博士进行合作,在水稻重要农艺性状功能基因研究上取得突破性进展,成功克隆了与水稻耐盐相关的数量性状基因SKC1,并阐明了该基因的生物学功能和作用机理。相关论文已发表于国际顶级遗传学杂志《自然-遗传学》(Nature Genetics)。

林鸿宣研究员领导的研究组,多年来潜心于水稻耐盐数量性状基因的克隆研究,并取得了突破,成功克隆了盐胁迫下控制水稻地上部钾/钠离子含量的数量性状基因SKC1。该基因编码离子转运蛋白,耐盐品种与感盐品种之间存在四个氨基酸替换的自然变异,这是引起SKC1基因功能变化的分子基础。功能分析结果表明,该基因与离子长距离运输有关,控制盐胁迫下水稻地上部的钾/钠离子平衡,即维持高钾/低钠的离子平衡,从而增加水稻的耐盐性。为了更深入探明该基因的功能,林鸿宣研究员与栾升教授领导的两个研究组合作开展了SKC1的电生理功能分析研究,发现SKC1编码的蛋白是钠离子的特异性转运蛋白而不直接运输钾离子,钾离子含量的变化是由于钠离子竞争引起的;该蛋白定位于细胞膜上,在耐盐水稻品种中其功能活性明显强于感盐品种。

该研究得到国家科技部“十五”重大专项、国家自然科学基金委、上海市科学技术委员会和沪港安信分子生物科

学研究基金等的资助。“水稻高产等重要农艺性状相关功能基因研究”重大专项主要负责人之一、中国科学院国家基因研究中心主任韩斌研究员指出,由于我国近几年来对水稻功能基因组研究的大力支持,以及科学家们的不懈努力,我国在该领域取得了世界瞩目的成果。林鸿宣研究员及其合作者对水稻耐盐相关数量性状基因的克隆和功能研究是我国水稻重要功能基因研究所取得的突出成果之一,具有重要的学术意义和广泛的应用前景。

作物耐盐机制及作物耐盐分子育种研究进展

作物耐盐机制及作物耐盐分子育种研究进展 摘要:本文概述了作物耐盐机理、作物耐盐分子育种(相关基因的克隆及转基因作物)和几种重要作物耐盐研究现状,并对作物耐盐机制研究进行展望。同时从分子、细胞和个体水平简述作物耐盐机制,为未来的作物耐盐研究提供基本的理论参考。 关键词:耐盐机制分子育种 全球有大约三分之一的土地为盐碱地,由于耕作方式的不当,次生盐碱地面积逐年增加,至今全球大约有57亿亩土地受到盐害影响,其面积占据了全球6%的土地面积[1]。而土壤中盐分过高是抑制植物生长发育的重要环境因素,绿色植物的主要生理过程光合作用、能量和脂肪代谢等都会受到盐胁迫的影响,从而导致作物减产甚至死亡[2]。目前,农业用地的盐碱化程度仍在不断加重,有研究显示预计到2050年,将有超过50%的耕地盐碱化。众所周知,全球人口仍在急剧增长,食品安全问题已然成为研究关注焦点。如何利用盐碱土地对维持农业生产的可持续性发展起到了重要作用。要想解决此问题,一种方法是优化土壤,降低盐份含量;另一种方法是培育耐盐的作物品种,使其适应盐碱含量较高的土地。但改良土壤不仅耗资巨大、时间长,而且随着化学物质的大量引入进一步的加重了土壤次生盐碱化,因此,摸清作物耐盐机制并培育耐盐的作物品种是对盐碱地改良的最佳手段。本文基于查阅大量耐盐相关文献,对作物耐盐机理、作物耐盐分子育种(相关基因的克隆及转基因作物)和几种重要作物的耐盐研究进展进行整理,概述现阶段作物耐盐机制及作物耐盐分子育种研究进展。同时从分子、细胞和个体水平简述植物耐盐机制方面的重要进展,为未来的实际应用提供基本的理论参考。 1、作物耐盐机制 随着分子生物学、生理学和基因组学的发展,人类对于植物耐盐的生理和分子机制也有了更深刻的认识。在耕地盐碱化日趋严重的今天,研究粮食作物的耐盐机制成为保证人类食品安全的重要举措之一。盐碱化是指土壤中含有高浓度的可溶性盐。当土壤的ECs值大于等于4dS/m时,该土地就被称为盐渍化土壤。这相当于盐浓度大约为40mM NaCl,并产生约0.2MPa的渗透压。由于NaCl是溶解度最大且分布最广的一种盐类,因此几乎所有植物都进化出一套调节NaCl积累的机制,并能够选择性的吸收其它低浓度的营养物质,如K+和NO3-[3]。对大多数植物来说,在水分充足的情况下根部能有效的排除Na+和Cl-。例如,海滨大麦(Hordeum marinum)能够在最高450mM NaCl浓度下外排Na+和Cl-离子[1,4]。此外,植物能够耐受由盐和干旱引起的土壤低水势,因此耐受渗透胁迫是多数盐生和非盐生植物的特征[3]。 目前发现的植物耐盐机制主要有以下三种:1、耐受渗透胁迫。渗透胁迫能够立即抑制根尖和幼叶细胞的伸长,并导致气孔关闭[3]。2、叶片外排Na+。Na+的毒害效应一般在处理数天或数周后才会体现出来,之后诱导成熟叶片死亡[2]。3、组织耐受性的增强,如某些组织具备较强的耐受Na+或Cl-的能力[5]。除以上研究较多的组织耐受机制外,植物可能还存在其他一些与Na+外排无关的耐盐机制。例如,作物能够耐受细胞内高Na+浓度的基因型,同样表现出对渗透胁迫有更强的耐受力;相对于细胞质中的Na+来说,K+可能是一种有助于提高植物耐盐能力的离子[6]。Shabala等对大麦的研究发现,其耐盐能力与Na+激活的K+外流成负相关[4]。这种表型可能与根中K+状态有关[2]。但是,叶片K+浓度与植物耐盐能力

盐胁迫下水稻种子发芽特性及耐盐性评价

盐胁迫下水稻种子发芽特性及耐盐性评价 摘要在0g/L、6g/L、9g/L、12g/L、15g/L等5个NaCl单盐浓度下,对北方滨海稻区11个推广水稻品种进行了发芽率处理试验,结果表明:发芽率、芽长、根长、根数均随盐浓度升高而呈下降趋势。垦稻95-4芽期耐盐能力最高,为强耐盐品种,辽农21芽期耐盐能力最低。 关键词盐;水稻;发芽;耐盐性 盐碱土壤是制约农业生产的重要因素,目前我国盐碱土地面积约0.37亿公顷,面积相当于现有耕地的1/4。水稻属于不耐盐的甜土作物,而北方滨海盐碱地区土壤含盐量高,近几年由于淡水资源的严重短缺,极大地限制了水稻生产。培育耐盐品种,加快该区水稻发展,是当前盐碱地种稻面临的主要问题之一。如何从现有的优良水稻种质资源中筛选出耐盐强的品种,为耐盐育种提供亲本材料或直接应用于生产,对盐碱地的开发利用是最经济而行之有效的手段。该试验用不同浓度的NaCl单盐溶液处理不同粳稻品种,对供试品种的发芽特性进行了综合评价,为耐盐种质筛选及水稻生产提供了理论依据。 1试验材料与方法 1.1试验材料 目前供试品种为北方盐碱稻区推广的11个水稻品种,分别为津原45、津原47(天津市原种场),辽农21、辽粳28(辽宁省农科院水稻所),盐丰47-8、辽盐98、盐粳68(辽宁省盐碱地所),冀粳14、垦育16、垦优2000、垦稻95-4(河北省农科院滨海所)。 1.2试验方法 采用NaCl单盐溶液进行种子处理,NaCl浓度分别为0g/L(CK)、6g/L、9g/L、12g/L、15g/L 5个处理。将种子置于50℃恒温箱中高温处理48h,随机挑选饱满种子50粒,均匀置于铺有2层滤纸的直径9cm培养皿中,分别加入不同浓度的NaCl溶液10mL,2次重复,放入30℃恒温箱中发芽,至第10天记录种子发芽数。

水稻常见病虫害防治技术

水稻常见病虫害防治技术 1、水稻虫害我国已知的水稻虫害有350多种,其中最主要的有20余种,常见的水稻虫害有以下几种: (1)水稻螟虫危害水稻的螟虫种类很多,主要有三化螟和二化螟,部分地区还有大螟等。三化螟和.二化螟都是以幼虫钻蛀茎秆危害水稻,水稻受害后出现的症状是枯心和白穗,二化螟还取食叶鞘,造成枯鞘。 防治方法:①每亩用50%杀螟松乳油0.15~0.2千克,对水50~60千克喷洒,用药1~2次;②每亩用杀虫双大粒剂1千克拌细土30千克制成毒土撒施;③每亩用40%的水胺硫磷0.1~0.15千克对水50~60千克喷洒。 (2)粘由粘虫是一种迁飞性害虫,又称”行军虫”,一般每小时飞行速度为20~40公里。以幼虫取食水稻叶片,危害轻时叶片被吃成缺刻,严重时大部分叶片被吃光,水稻减产10%—20%,大发生时,其幼虫不仅吃光叶片:还咬断穗茎,造成颗粒无收,所以有些地方称它为“剃枝虫”。 防治方法:①每亩用50%辛硫磷O.1”0.15千克对水50~60千克喷洒;②每亩用80%敌敌畏0.15~0.2千克对水50~60千克喷洒;③每亩用2.5%的敌杀死0.1~0.15千克对水50~60千克喷洒。 (3)稻飞虱和稻叶蝉这两种害虫每年发生代数较多,繁殖量大,以吸食水稻汁液造成危害,导致稻株枯死,倒伏落塘。它们都具有暴发性,还传播病毒病,是对水稻危害比较大的害虫。防治方法:①每亩用30%甲胺磷0.15- 0.2千克对水50~60千克喷洒;②每亩用40%的叶蝉散0.15~0.2千克对水喷洒:③每亩用50%的杀螟松0.1-0.15千克对水喷洒。(4)负泥虫负泥虫又称“背屎虫”,负泥虫的成虫、幼虫都可以危害水稻,但以幼虫为,主,取食水稻叶片的叶肉,留下透明的表皮,形成纵行的白色条纹,叶尖逐渐枯萎,危害严重时,全叶发白焦枯或全株死亡,一旦发生,常减产10%左右。 防治方法:用90%敌百虫结晶0.1~0.15千克对水50-60千克喷洒,接近傍晚时用药为好。 2、水稻病害 (1)稻瘟病稻瘟病又叫稻热病,群众称它为”火风”、烂颈瘟。稻瘟病在水稻整个生育期都能发生,根据受害时期和部位不同,分别称为苗瘟、叶瘟、节瘟、穗颈瘟、枝梗瘟和谷粒瘟等。几种主要稻瘟病的识别如下。 苗瘟:一般发生在三叶期以前,病苗基部变成灰黑色,叶片变成淡红褐色,使整株秧苗枯死。 叶瘟:从秧田期至抽穗期均可发生,主要发生在叶片上,也有少数发生在叶鞘上,其病斑有好几种类型,但主要是慢性型奉。急性型两种。慢性型病斑在田间最常见,其形状有点像织布的梭子,两头尖中间大,病班的最外层为深褐色,中间为灰白色。急性型病斑呈灰绿色或暗绿色水浸状,一般为圆形、椭圆性或不规则形。 穗颈瘟:发生在穗颈部,使穗颈变成黑褐色,最后干枯腐烂。发病早的使水稻变成白穗,发病迟的使谷粒不饱满 防治措施:①选用抗病高产良种;②播种前搞好种子处理,一般用50%的多菌灵1000倍液浸种2天;③药剂防治,每亩用20%三环唑可湿性粉剂0,1~0.15千克对水50~60千克,或40%富士1号乳油0.1~0.15?千克对水50~60千克,或30%稻瘟灵0,15~0.2千克对水50~60千克喷洒。 (2)白叶枯病白叶枯病分为叶枯型和凋枯型两种。其中叶枯型占65%左右,凋枯型占35%左右。叶枯型病害大多从叶尖或叶缘开始出现黄绿色斑点,斑点迅速扩展成条斑,受害严重时条斑可延伸至叶片基部,宽达叶片两侧。凋枯型病害大多在秧苗移栽后15~30天出现一次发病高峰,病株心叶首先发病,出现失水青枯,随后其它叶片相继青萎,最后出现死苗、缺

作物耐盐性研究

作物耐盐性状研究进展 ?l耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗 透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增 高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作 用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。 作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土, 把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多 的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧 清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT(过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表 示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2耐盐性的鉴定技术和指标

耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌 发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的 对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目 前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓 度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程 中分化成盐腺,通过盐腺把吸收到体内的盐分排出体外。 稀盐:形态学上的适应:茎或叶的肉质化.碱蓬(黄须菜)茎或叶的薄壁细胞组织大量增生,细胞数目增多,体积增大,可以吸收和储存大量水分,既可以 克服植物在盐渍条件下由于吸水困难造成的水分不足,又可将吸收到体内的 盐分稀释,保持低水平。 拒盐植物的抗盐机理

玉米耐盐性研究现状与趋势_杜锦[1]

杂粮作物 R a i n F ed C rops 2009,29(6):379~382 文章编号:1003-4803(2009)06-0379-04 玉米耐盐性研究现状与趋势* 杜 锦1,张 烈2,韩 芸1,向春阳1 (1 天津农学院农学系,天津 300384;2 天津科润津丰种业有限责任公司,天津 300384) 摘要:盐分是影响玉米生长和产量的重要因子之一,多年来一直是国内外学者研究的重要课题。本文根据国内外的研究资料,从盐胁迫对玉米种子萌发的影响,盐胁迫下玉米渗透调节物质的积累,多胺含量、抗氧化物酶活性、GABA含量、激素变化和玉米耐盐性遗传等方面进行了概述,指出了玉米耐盐性研究的发展趋势。 关键词:玉米;耐盐性;性状 中图分类号:S513.01 文献标识码:B 受气候变化和全球人口不断增长的影响,土地盐碱化已经成为日益严重的环境问题和限制粮食增长的一个重要因素之一。目前,世界上有4亿~9亿h m2的土地受盐渍化的影响[1]。我国盐渍土面积约为3460万h m2,盐碱化耕地760万h m2,其中原生、次生盐化型和各种碱化型分布分别占总面积的52%,40%和8%[2~3]。盐碱土是中国分布广、类型多,对农业生产影响较大的一种低产土壤,它大大制约着农业的生产发展。如何提高植物的抗盐性,增加在盐胁迫下农作物的产量一直是人们关注的课题。盐渍化土壤的开发利用有多种途径,筛选作物的耐盐品种并加以利用是一种行之有效的措施[4]。 玉米是世界重要粮食作物之一,伴随着世界人口的增长,畜牧业和加工业的快速发展,人类对玉米的需求量也随之增加。我国是玉米生产第二大国,常年播种面积2500万hm2左右,约占世界总面积的17.2%,玉米种植面积和总产量仅次于美国。玉米也是我国的三大作物之一,在国民经济中占有重要地位。因此,开展玉米耐盐生理的研究和实践,已引起人们的广泛关注。近年来,国内外玉米育种、栽培和生理学家们在玉米的耐盐性方面开展了大量工作,对玉米耐盐性进行了多方面的深入研究,并取得了一定的进展。 1 盐胁迫对玉米种子萌发和出苗的影响 种子是上一代植物生命活动的结果,又是下一代植物生命活动的开始,而种子萌发标志着下一代生命活动的实现,种子在盐碱胁迫下能够萌发、成苗是植株在盐碱胁迫下能够生长发育的前提。种子耐盐性及其机制是植物耐盐性早期鉴定和耐盐个体与品种早期选择的基础[5~6]。 P iruzyan[7]发现盐土中种植玉米,发芽和幼苗期是对盐胁迫最敏感的时期,而开花期抗盐能力会逐渐增强。K addah和G how a il[8]研究发现玉米在萌发时期具有一定的抗盐性,但在幼苗生长时期对盐分很敏感。M ass[9]通过试验研究表明,盐浓度提高延迟了玉米出芽,但对发芽率的影响不大。R adic、Beatov i c[10]的试验研究结果表明,玉米种子的耐盐界限为0.2m o l/L,高于此界限种子发芽能力显著降低。斯琴巴特尔[11]认为,随着土壤盐碱化的加重,玉米种子发芽率显著下降,发芽天数明显推后,玉米种子的发芽指数和活力指数均下降。汤华等[12]对3个玉米自交系进行室内沙培盐胁迫试验,结果得出,出苗率与盐浓度无显著相关,不宜作为耐盐性筛选的定量指标,但玉米株高、地上部和根系鲜重都与盐浓度高度负相关,达极显著水平,可以作为玉米耐盐性早期筛选的指标。王君等[13]比较了耐盐和盐敏感自交系的种子萌发速率的差异,指出在进行玉米自交系耐盐胁迫筛选时,可以将没有胁迫条件下萌发后第3天的日发芽率,作为极耐盐胁迫筛选的初步判断指标。玉米的根系统包括主根、侧根和不定根,K han[14]通过对100个玉米品种在盐胁迫下根长变化进行研究发现,盐胁迫抑制根的伸长,尤其抑制侧根的生长。王春英等[15]得出,玉米受到盐胁迫后,植株干物质积累速度变慢,黄叶指数增多,干物质下降,根变粗,变短,侧根和根毛减少,节根条数增多,根冠比值增大。 盐胁迫对玉米幼苗期的影响是复杂的,牵涉到一系列的生理生化反应,如根据单一指标对材料耐盐性进行排序,则不能准确地确定各自交系间差异,因此为了提高耐盐性鉴定的准确性,除考虑苗期多个指标外,还应在玉米生长时期,对多个生理生化指标进行综合分析。 2 盐胁迫对玉米体内某些物质的影响 玉米对盐胁迫较为敏感。盐胁迫主要是通过离子胁迫和渗透胁迫作用,直接伤害玉米植株,进而影响植株体内各种生理状况。王丽燕[16]以农大108为材料,研究盐胁迫下N a+、K+、C l-在植株各部位的分布,发现随着N aC l浓度的增大,地上部和根部的N a+、C l-含量增加,而K+含量降低。王宝山[17]研究表明,N aC l胁迫使玉米黄化幼苗N a+浓度急速上升,特别是在根部。陈秀兰等[18]研究表明玉米种子在N aC l胁迫下,其萌发过程中N a+含量大量增加,Ca2+含量显著减少。Sa m dia[19]研究表明抗盐性高的玉米品种有明显高的K+/N a+比率。夏阳等[20]的研究表明:植株体内钠含量随N aC l浓度的升高而增加,抗盐性弱的品种含量高,茎叶钠含量与茎叶干重高度负相 *收稿日期:2009-07-27 基金项目:天津市教委项目资助(2004BA32);天津市自然科学基金重点项目资助(07J CZDJ C03900) 作者简介:杜锦(1984-),男,天津农学院在读硕士研究生。 通讯作者:向春阳,男,教授,硕士研究生导师,E m ai:l xxccyy2000@sohu.co m。

水稻耐盐

中科院专家成功克隆水稻耐盐相关数 量性状基因 SKC1定位克隆图 中国科学院上海生科院植物生理生态所植物分子遗传国家重点实验室林鸿宣研究员及其博士生任仲海、高继平等,与美国加州大学伯克利分校栾升教授及其助手李乐攻博士进行合作,在水稻重要农艺性状功能基因研究上取得突破性进展,成功克隆了与水稻耐盐相关的数量性状基因SKC1,并阐明了该基因的生物学功能和作用机理。相关论文已发表于国际顶级遗传学杂志《自然-遗传学》(Nature Genetics)。 林鸿宣研究员领导的研究组,多年来潜心于水稻耐盐数量性状基因的克隆研究,并取得了突破,成功克隆了盐胁迫下控制水稻地上部钾/钠离子含量的数量性状基因SKC1。该基因编码离子转运蛋白,耐盐品种与感盐品种之间存在四个氨基酸替换的自然变异,这是引起SKC1基因功能变化的分子基础。功能分析结果表明,该基因与离子长距离运输有关,控制盐胁迫下水稻地上部的钾/钠离子平衡,即维持高钾/低钠的离子平衡,从而增加水稻的耐盐性。为了更深入探明该基因的功能,林鸿宣研究员与栾升教授领导的两个研究组合作开展了SKC1的电生理功能分析研究,发现SKC1编码的蛋白是钠离子的特异性转运蛋白而不直接运输钾离子,钾离子含量的变化是由于钠离子竞争引起的;该蛋白定位于细胞膜上,在耐盐水稻品种中其功能活性明显强于感盐品种。 该研究得到国家科技部“十五”重大专项、国家自然科学基金委、上海市科学技术委员会和沪港安信分子生物科

学研究基金等的资助。“水稻高产等重要农艺性状相关功能基因研究”重大专项主要负责人之一、中国科学院国家基因研究中心主任韩斌研究员指出,由于我国近几年来对水稻功能基因组研究的大力支持,以及科学家们的不懈努力,我国在该领域取得了世界瞩目的成果。林鸿宣研究员及其合作者对水稻耐盐相关数量性状基因的克隆和功能研究是我国水稻重要功能基因研究所取得的突出成果之一,具有重要的学术意义和广泛的应用前景。

水稻主要病虫害防治

水稻主要病虫害防治 1、水稻螟虫(钻心虫) 水稻螟虫包括二化螟、三化螟和大螟。三化螟是我县水稻产区主要害虫之一。分蘖期造成枯心苗,孕穗期形成枯孕穗或虫伤株,抽穗期形成虫伤株或白穗。一般年份减产5%-10%,严重时减产20%以上。 防治适期:三化螟第一代:秧田期,4月上旬施药防治;大田期,6月上、中旬见成虫(螟蛾)时开始喷药。三化螟第二代:水稻破口10%至齐穗前,约7月中下旬见成虫(螟蛾)时进行喷药。 防治指标:三化螟第一代:枯鞘窝率达10%或枯鞘株率5%;第二代:枯鞘株率1%以上。三化螟为螟卵盛孵期内,正处于孕穗期的水稻或抽穗不到80%的田块,亩有卵块60个。 化学防治药剂:主要选择亩用25%锐劲特悬浮剂40毫升;20%三唑磷乳油100毫升;48%乐斯本乳油80毫升,兑水三桶喷雾。 2、稻飞虱(白背飞虱、褐飞虱) 稻飞虱是我县水稻产区近两年暴发性害虫。其为害主要是成虫群集于水稻下部,用刺吸式口器刺进稻株组织,吸食汁液。使叶片发黄,生长低矮,甚至不能抽穗,稻谷千粒重减轻,瘪谷增加,褐飞虱还能传播病毒病。 防治适期:低龄若虫高峰期。 防治指标:百丛虫量1000-1500头。 化学防治药剂:主要选择亩用70%吡虫啉水分散粒剂3-5克;25%锐劲特悬浮剂40毫升; 48%乐斯本乳油60-80毫升;25%噻嗪酮300-450克,兑水3桶喷雾。 防治配方:每桶水(15公斤)加 配方①、丁硫啶虫咪15毫升+吡虫啉一包+杰效利1包;; 配方②、高渗吡虫啉20毫升+阿维菌素20毫升+杰效利1包; 配方③、啶虫咪15毫升+阿维菌素20毫升+杰效利1包; 3、水稻粘虫 水稻粘虫一年危害水稻二代,六月上—中旬第一代,八月初第二代,防治方法,发现水稻叶片上有低龄幼虫危害时抓紧喷药防治。防治药剂:杀虫三分钟、啶虫咪等。

作物耐盐性状研究综述

作物耐盐性状研究进展 I耐盐性含义和耐盐机制种类 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。有活性氧清除系统的植物通过SOD超氧化物歧化酶)、POD 过氧化物酶)、CAT(过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~ 0.5%时就已对植物生长不利,而盐土表层 含盐量往往可达0.6%?10% 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCI浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 2耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。 3对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的

泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体外。 稀盐:形态学上的适应:茎或叶的肉质化.碱蓬(黄须菜)茎或叶的薄壁细胞组织大量增生,细胞数目增多,体积增大,可以吸收和储存大量水分,既可以克服植物在盐渍条件下由于吸水困难造成的水分不足,又可将吸收到体内的盐分稀释,保持低水平。 拒盐植物的抗盐机理 拒盐:不让外界盐分进入植物体(大麦)或允许土壤中的盐分进入 根部,但进入根部后大部分储存在根部,不再向地上部分运输,使地上部分盐分浓度保持较低水平,从而避免盐分的伤害作用。如芦苇 脯氨酸是最重要和有效的有机渗透调节物质。 几乎所有的逆境,如干旱、低温、高温、冰冻、盐渍、低pH 营养不良、病害、大气污染等都会造成植物体内脯氨酸的累积,尤其干旱胁迫时脯氨酸累积最多,可比处理开始时含量高几十倍甚至几百倍。 脯氨酸在抗逆中有两个作用: 是作为渗透调节物质,用来保持原生质与环境的渗透平衡。它可与胞内一些化合物形成聚合物,类似亲水胶体,以防止水分散失。 二是保持膜结构的完整性。脯氨酸与蛋白质相互作用能增加蛋白质的可溶性和减少可溶性蛋白的沉淀,增强蛋白质的水合作用。

水稻高温热害的预防和补救技术措施

附件1:水稻高温热害的预防和补救技术措施 一、高温热害预防技术措施 1、推行灌深水。对处于孕穗至抽穗扬花期的田块,田间保持5-8cm水层,以降低穗层温度,增加田间湿度。缺水干旱的田块要及早提水灌溉,防止干旱与高温热害叠加影响。 2、采取根外喷肥。根外喷施3%过磷酸钙溶液或0.2%磷酸二氢钾溶液,外加喷施叶面营养液肥,以增强水稻植株对高温的抗性,提高结实率和千粒重。 3、追施粒肥。对孕穗期受热害较轻的田块,于破口期前后补追一次粒肥。一般亩施尿素3~5公斤,恢复植株正常灌浆结实。 4、病虫害防治。认真抓好稻飞虱等主要害虫防治工作和后期病害的预防工作。具体按照县病虫测报站所发的《病虫情报》,操作时要尽量辟开中午高温时段,保证充足水量。 二、高温热害补救技术措施 1、对于在8月上旬抽穗扬花期遭遇高温热害的,如果结实率在10%以下、亩产不到100公斤的田块:一是蓄养再生稻。但割茬应越早越好,同时要加强再生稻田间管理,确保安全齐穗。主要措施有:坚持浅水湿润灌溉,注意防治病虫害,抽穗后应采用根外喷施0.2%的磷酸二氢钾或3%的过磷酸钙浸出液,每亩用量50-75公斤;如果9月15日前不能抽穗,可在破口期每亩喷施10毫升/千克浓度的“九二0”溶液50克,以促进抽穗。二是改种蔬菜、红绿豆、秋荞麦、鲜食性甜玉米等生育期较短的粮经作物。 2、在8月中旬抽穗扬花期,并遇到高湿热害的,预计结实率在10%以下、亩产在100公斤以下的田块,只有改种萝卜、小白菜等蔬菜和马铃薯等秋冬作物,或者进行油菜育苗,以便及早开展秋冬种工作。 3、要加强对虽受高温热害影响但仍有一定产量的田间管理,力争多收。对普遍受灾但未绝收的田块,要切实加强后期的田间

植物耐盐性研究进展3

第5卷第3期北华大学学报(自然科学版)Vol.5No.3 2004年6月JOURNAL OF BEIHUA UN IV ERSIT Y(Natural Science)J un.2004 文章编号:100924822(2004)0320257207 植物耐盐性研究进展 于海武1,李 莹2 (1.北京林业大学生物科学与技术学院,北京 100083;2.北华大学林学院,吉林吉林 132013) 摘要:综述了植物的耐盐机理和植物耐盐育种的研究情况,讨论了耐盐基因工程研究中存在的一些问题,并重点对现有植物的耐盐性筛选和抗渗透胁迫基因工程中的诱导渗透调节剂合成做了论述. 关键词:耐盐性;耐盐机理;基因工程;渗透调节剂 中图分类号:S332.6 文献标识码:A  盐碱土是陆地上分布广泛的一种土壤类型,约占陆地总面积的25%.在我国,从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤[1],我国盐碱土的总面积约有3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1].此外,全国约有600多万hm2,约占耕地总面积10%的次生盐渍化土壤.盐碱土主要分布在平原地区,地形平坦,土层深厚,一般都有较丰富的地下水源,对发展农业生产,尤其对于实现农业机械化、水利化极为有利,是一类潜力很大的土壤资源.目前,人们主要通过2种方式来利用盐碱地:1是通过合理的排灌、淡水洗涤、施用化学改良药剂来改造土壤[2],为植物创造有利的生长环境.实践证明,这种方法成本高,效果也不理想;2是选育和培育耐盐植物品种来适应盐渍环境并最终达到改善环境的目的,此方法更加具有应用前景. 1 植物的耐盐机理 植物耐盐性差别很大.根据植物耐盐能力的不同,可将植物分成非盐生和盐生植物2类.赵可夫等又将盐生植物分为3类:真盐生植物、泌盐盐生植物和假盐生植物[1].目前大部分的耐盐性研究工作都是以真盐生植物为基础开展的,所以对它的耐盐机理也就研究得比较多.近年来,在筛选和培育耐盐细胞系、转移渗透调节剂合成基因、合理利用盐诱导基因等方面都开展了许多研究工作,并取得了一些成果.许多研究表明:植物要适应盐渍化的生境,必须具备克服盐离子毒害(离子胁迫)和抵抗低水势(渗透胁迫)的能力,否则就无法生存[3,4].马建华等认为:植物在高盐土壤中主要先受到水分胁迫,而后就是离子胁迫[5].所以在耐盐机理中人们对离子区隔化和渗透调节做了相对较多的研究. 1.1 离子区隔化 许多真盐生植物通过调节离子的吸收和区隔化来抵抗或减轻盐胁迫.在植物体内积累过多的盐离子就会给细胞内的酶类造成伤害,干扰细胞的正常代谢.研究表明,盐胁迫条件下,植物细胞中积累的大部分无机离子被运输并贮藏在液泡中,使得植物因为渗透势降低而吸收水分,同时,避免了过量的无机离子对代谢造成的伤害,这就是离子的区隔化.在耐盐植物和非耐盐植物中都存在离子区隔化,这说明离子区隔化可能是植物所普遍具有的能力[6].盐的区隔化作用主要是依赖位于膜上的“泵”实现离子跨膜运输完成的[7,8].这种运输系统需要A TP酶,A TP水解产生能量将H+“泵”到液泡膜外,造成质子电化学梯度,驱动钠离子的跨膜运输,从而实现盐离子的区隔化.Na+积累于液泡维持了细胞质中较低的Na+/K+比例也是植物耐盐的特点之一[9]. 收稿日期:2003212204 基金项目:国家“973”计划项目(G1999016005) 作者简介:于海武(1977-),男,在读硕士,主要从事杨树抗逆性育种研究.

作物耐盐性研究

作物耐盐性研究 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼

苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究

水稻四大病害

水稻四大病害 水稻稻瘟病、白叶枯病、纹枯病、病毒病 一、水稻稻瘟病 1、苗瘟:发生在苗期三叶前芽,芽鞘水渍状斑、病苗基部变褐、上部变黄 褐、枯死、温度大时长灰褐色霉层。 2、叶瘟:秧田、本田发生最严重 3、节瘟:多发生于穗以下的第1、2节位上,褐点→环节扩展,失水干缩易 折断→白穗。 4、穗颈瘟:发生于穗梗至第1枝梗分枝的穗颈部呈褐或墨绿色→白穗 5、谷粒瘟:发生在谷壳和护颖上,大椭圆形→病斑边缘褐色→中央灰白色 →谷粒不饱满黑色。 发病原因(气候因素):温、湿、雨、光、24-28℃有利发病,此温度范围内湿度越大,病害越重,强光可抑制病菌孢子的萌发。 防治方法: ①种:a、抗病品种,b、种子处理 ②秧:a、培育无病壮秧,b、药防保护 ③密:合理密植,通风透光 ④肥:配方施肥,增强P、K肥 ⑤水:科学管水,适时晒田,介绍沟垄栽培、育秧栽培技术 ⑥药(化学药剂防治):a、40%的富士一号,150ML/亩,b、用75%三环 唑,30克/亩,兑水45KG喷雾,连房三次,隔5-7天一次。 二、水稻白叶枯病 1、普通型:即典型的叶枯症状。一般在分蘖后期才较明显,发病从叶尖或 叶缘开始,初现黄绿色或暗绿色斑点,后沿叶脉从叶缘或中脉迅速加长 而扩展成条斑,可达叶片基部或整个叶片,最后变为灰白色或黄白色, 易见黄色珠状菌脓。 2、急性型:叶片病斑暗绿色,扩展迅速,几天内全叶呈青灰色或灰绿色, 最后变为白色,像开水烫过似的,病部有蜜黄色珠状菌脓。 3、雕萎型:多在秧田后期至拔节期发生,病株心叶或心叶下1-2叶,先呈 现失水青卷而后枯萎的症状。 4、叶黄型:病株较老的叶片颜色正常,新叶呈均匀褪绿或黄色或黄绿色宽 条斑,以后病株生长受到抑制(此型目前国内仅在广东省发现)。 发病原因: ①气候条件:温度25-30℃,相对湿度90%,暴风雨有利白叶枯病的发生和 流行。 ②栽培管理:与水肥关系十分密切,串灌、漫灌加重发生和流行,偏施氮 肥,追施过早、过迟,有利病害发生。 ③水稻品种:粳稻比籼稻抗病,糯稻比粳稻抗病,窄叶比阔叶抗病,在分 蘖末期后抗病率下降,抽穗期最易感病。 ④菌源因素:病虫、病草、再生稻是本病的主要初级染源。 农业防治:排灌分开,浅水勤灌,适时晒田,施足基肥,早施追肥,避免氮肥施用过量。 药剂防治:用叶枯净或农用链霉素2包,兑水45KG,喷雾防治。

水稻耐盐指标的测定方法

一、相对电导率的测定 1.4转基因植株相对电导率测定(南京农业大学王景艳) 将新鲜的对照及转化植株烟草叶片用300mmol/LNaCI胁迫处理4h,分别称取.02g各两份,各加5ml超纯水,用DDs一12数字电导仪测定电导率(所用的电极参数为.095)(RC),之后再放入沸水中煮沸15min以杀死植物组织,取出放在自来水中冷却10min,测定其煮沸电导率扭(Rc’),相对电导率为Rc/R c’xloo%(汤章成,1999). 2.8相对电导率的测定方法(湖南农业大学张亚州) 取相同部位的转基因植株叶片和非转基因植株叶片,用去离子水冲洗,再用洁净滤纸吸干表面水分"用剪刀剪成大小基本一致的叶片,各40片,分装在两个大试管中,每管20片,然后在装有叶片的试管中各加入20mL的去离子水,放入真空干燥箱中用真空泵抽气lh以抽出细胞间隙的空气或放在摇床上摇动3h使叶片沉入水底,然后将上述试管置室温放lh,期间不断摇动。lh后用电导仪测其初电导值(S1).测毕将各试管放入沸水浴中,以杀死植物组织.取出试管后用自来水冷却至室温,摇匀,测其终电导值(52).计算公式:相对电导率L=S,/52. 二、脯氨酸含量的测定 1、(华中农业大学万丙良) 游离脯氨酸含量的测定采用磺基水杨酸提取法。分别取0.5g新鲜叶片,加少量(2-3ml)3%磺基水杨酸研磨,磺基水杨酸最终体积为5ml.转入离心管中,沸水浴中提取10min。冷却后以3000rpm离心10min,取上清液待测。取2ml上清液,加2ml冰乙酸,2ml茚三酮,混匀后沸水显色60min,取出冷却后用4ml甲苯萃取,静置片刻,取甲苯相(粉红色)于离心管。3000rpm离心5min,然后在520nm波长处测定OD值.以甲苯为空白对照,在1-6μg/ml范围内作标准曲线。 2、华中农业大学彭英 胁迫处理后第4d取苗5株,-80℃保存以备测定叶片脯氨酸含量。脯氨酸含量测定按照Bates(1973)的方法稍作改动。称取约0.3g~0.5g的水稻叶片加入5ml3%磺基水杨酸溶液,冰浴研磨至匀浆,13000r/min4℃离心15min;吸取2ml上清液加入2ml冰乙酸和2ml2.5%酸性茚三酮(l..25g茚三酮溶于30ml冰乙酸和20ml6mol/L磷酸)显色液,沸水浴加热lh;置于冰上30min 终止反应;加入4ml甲苯后剧烈振荡数秒后,待分层后吸取红色萃取液,测定520nm处吸收值。以纯L一脯氨酸(AJINOMoTO)制作0-10μg/mL的标准曲线。

作物耐盐性研究

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。

2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体

水稻得了高温热害该怎么办

水稻得了高温热害该怎么办 水稻幼穗分化八个时期: 一期看不见;二期苞毛现; 三期毛丛丛;四期粒粒显; 五期颖壳分;六期叶枕平(穗半长); 七期穗变绿;八期快出穗。 近期的高温天气对进入幼穗分化、抽穗期的水稻会造成不利影响 高温敏感时期 水稻在抽穗时对高温最为敏感,开花时1--2小时之内是诱导籽粒不育的关键时期,第二个敏感时期是在抽穗前10天左右。 高温对水稻的影响 水稻高温热害是指在幼穗分化Ⅵ期(即抽穗前10-15d,连续5天以上最高气达33-35℃,会造成颖花退化,使不实粒增加)、抽穗开花期(即连续3天日最高气温超过35℃,尤其是开花当天遇有高温胁迫,造成花药的开裂率降低,花粉粒失活,导致不育花的数量增加造成受精障碍,严重影响结实率)和灌浆成熟期(即连续5天以上最高气温超过35℃,易产生高温逼熟,充实度下降,导致粒重显著降低),气温超过水稻正常生育温度上限,影响正常开花结实,造成空秕粒率上升而减产甚至绝收的一种农业气象灾害。

水稻受害症状 1、孕穗期,如遇35℃以上的持续高温,水稻花器发育不全,花粉发育不良, 活力下降,畸形率上升。水稻秕谷率和空粒增加。 2、抽穗扬花期遇热害,影响开化散粉和花粉管伸长,导致不能授 粉而形成空壳粒,实粒率和千粒重下降。最后三片功能叶早衰发黄,灌浆期缩短,表现为“逼熟”现象。 预防措施 1.高温期间采取灌深水的方法,有条件的可采取日灌夜排或长流水灌溉,以降温增湿。 2.施好粒肥,以提高结实率和千粒重。在破口前可亩施8—10斤氯化钾,增加植株抗逆性,减少颖花退化,减少空秕粒,增加粒重。 3.根外喷施叶面肥:可亩用磷酸二氢钾100克兑水30公斤,连续数次进行叶面喷肥,既能降温增湿,又能补充作物生长所必需的水分及营养,还可增加对高温的抗性。抽穗扬花时喷施磷酸二氢钾溶液,也能有效地降低热害程度。 4.花期灌深水:花期水层保持5-10厘米,可降低田间小气候温度2-3℃,减轻热害。 5.加强病虫害防治:特别加强对纹枯病、稻瘟病、稻飞虱及螟虫为主的病虫害防治。

水稻病虫害种类及图片

水稻病虫害 种子期 1、恶苗病:氰烯菌酯(防效100%)、二硫氰基甲烷、恶霉灵、门神、咪鲜 胺、多菌灵、丙环唑、硅唑咪鲜胺。 2、稻瘟病:门神、三环唑、稻瘟灵。 3、白叶枯病:叶枯唑、井冈霉素、石灰水、门神、乙蒜素。 秧田期 1.绵腐、立枯病:敌磺钠、门神、恶霉灵、甲霜灵、甲霜恶霉灵。 2.白叶枯、细条病:叶枯唑、络氨铜、叶枯唑、氯溴异氰尿酸、硫酸链霉素。 3.灰飞虱:吡虫啉、吡蚜酮、噻嗪酮、异丙威、啶虫脒。 4.稻蓟马:吡虫啉、高效氯氰菊酯。 5.稻瘿蚊:丁硫克百威。 分叶期 1.稻瘟病:门神、三环唑、稻瘟灵、硫磺、咪酰胺-三环唑。 2.纹枯病:井冈霉素、三唑酮。 3.螟虫:三唑磷、杀虫单、甲维盐。 4.稻纵卷叶螟:吡·杀单、阿维·毒。 5.稻飞虱:吡虫啉、噻嗪酮、异丙威 6.胡麻斑病:稻瘟灵、20%氟硅唑咪鲜胺。 抽穗期 1.稻瘟病:三环唑、氟硅唑、硫磺、门神、咪酰胺-三环唑、稻瘟灵、咪鲜胺。 2.纹枯病:井冈霉素、门神、三唑酮、己唑醇、嘧菌酯、恶霜嘧铜菌酯(高科)、 烯肟菌胺(爱可)。 3.螟虫:三唑磷、杀虫单、甲维盐、毒死蜱。 4.稻纵卷叶螟:吡·杀单、阿维·毒。

5.稻飞虱:吡虫啉、噻嗪酮、异丙威、啶虫脒。 6.稻曲病:井冈霉素、门神、三唑酮、烯肟菌胺。 7.白叶枯、细条病:门神、络氨铜、叶枯唑。 8.穗枯病:三环唑、氟硅唑咪鲜胺、三唑酮。 9.稻秆腐病:稻瘟灵、恶霜嘧铜菌酯、咪鲜胺。 一、稻黑色菌核秆腐病 水稻成株期茎基部的一种真菌病害,又称水稻茎朽腐或小球菌核病。病原菌是半知菌亚门的小球双曲孢和卷喙双曲孢。有性态为子囊菌亚门的小球腔菌。 病菌侵害茎基部叶鞘,形成椭圆形或纺缍形黑色斑,后扩大至整个叶鞘,茎秆上也有大块黑斑,后期的茎基部腐烂,植株青枯,茎腔内有大量小球状黑色颗粒状的菌核。成熟后的菌核在病稻草或土壤中越冬,栽秧时附着在秧苗基部,以菌丝从伤口或叶鞘基部侵入寄生。病菌为弱寄生菌,喜高温高湿,故穗期受害比前期重,稻飞虱多的田块病害更重,常造成复合侵染。 二、稻白叶枯病

水稻高温热害该如何预防

水稻高温热害该如何预防? 水稻幼穗分化八个时期: 一期看不见;二期苞毛现; 三期毛丛丛;四期粒粒显; 五期颖壳分;六期叶枕平(穗半长); 七期穗变绿;八期快出穗。 近期的高温天气对进入幼穗分化、抽穗期的水稻会造成不利影响 高温敏感时期 水稻在抽穗时对高温最为敏感,开花时1--2小时之内是诱导籽粒不育的关键时期,第二个敏感时期是在抽穗前10天左右。 高温对水稻的影响 水稻高温热害是指在幼穗分化Ⅵ期(即抽穗前10-15d,连续5天以上最高气温达33-35℃,会造成颖花退化,使不实粒增加)、抽穗开花期(即连续3天日最高气温超过35℃,尤其是开花当天遇有高温胁迫,造成花药的开裂率降低,花粉粒失活,导致不育花的数量增加造成受精障碍,严重影响结实率)和灌浆成熟期(即连续5天以上最高气温超过35℃,易产生高温逼熟,充实度下降,导致粒重显著降低),气温超过水稻正常生育温度上限,影响正常开花结实,造成空秕粒率上升而减产甚至绝收的一种农业气象灾害。 水稻受害症状

1. 孕穗期,如遇35℃以上的持续高温,水稻花器发育不全,花粉发育不良,活力下降,畸形率上升。水稻秕谷率和空粒增加。

2.抽穗扬花期遇热害,影响开化散粉和花粉管伸长,导致不能授粉而形成空壳粒,实粒率和千粒重下降。最后三片功能叶早衰发黄,灌浆期缩短,表现为“逼熟”现象。 预防措施 1.高温期间采取灌深水的方法,有条件的可采取日灌夜排或长流水灌溉,以降温增湿。

2.施好粒肥,以提高结实率和千粒重。在破口前可亩施8—10斤氯化钾,增加植株抗逆性,减少颖花退化,减少空秕粒,增加粒重。 3.根外喷施叶面肥:可亩用磷酸二氢钾100克兑水30公斤,连续数次进行叶面喷肥,既能降温增湿,又能补充作物生长所必需的水分及营养,还可增加对高温的抗性。抽穗扬花时喷施磷酸二氢钾溶液,也能有效地降低热害程度。 4.花期灌深水:花期水层保持5-10厘米,可降低田间小气候温度2-3℃,减轻热害。 5.加强病虫害防治:特别加强对纹枯病、稻瘟病、稻飞虱及螟虫为主的病虫害防治。

相关文档
最新文档