动态规划状态转移方程

动态规划状态转移方程
动态规划状态转移方程

1.资源问题1

-----机器分配问题

F[I,j]:=max(f[i-1,k]+w[i,j-k])

2.资源问题2

------01背包问题

F[I,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]);

3.线性动态规划1

-----朴素最长非降子序列

F[i]:=max{f[j]+1}

4.剖分问题1

-----石子合并

F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);

5.剖分问题2

-----多边形剖分

F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a[i]);

6.剖分问题3

------乘积最大

f[i,j]:=max(f[k,j-1]*mult[k,i]);

7.资源问题3

-----系统可靠性(完全背包)

F[i,j]:=max{f[i-1,j-c[i]*k]*P[I,x]}

8.贪心的动态规划1

-----快餐问题

F[i,j,k]:=max{f[i-1,j',k']+(T[i]-(j-j')*p1-(k-k')*p2) div p3}

9.贪心的动态规划2

-----过河

f[i]=min{{f(i-k)} (not stone[i])

{f(i-k)}+1} (stone[i]); +贪心压缩状态

10.剖分问题4

-----多边形-讨论的动态规划

F[i,j]:=max{正正 f[I,k]*f[k+1,j];

负负 g[I,k]*f[k+1,j];

正负 g[I,k]*f[k+1,j];

负正 f[I,k]*g[k+1,j];} g为min

11.树型动态规划1

-----加分二叉树 (从两侧到根结点模型)

F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]}

12.树型动态规划2

-----选课 (多叉树转二叉树,自顶向下模型)

F[I,j]表示以i为根节点选j门功课得到的最大学分

f[i,j]:=max{f[t[i].l,k]+f[t[i].r,j-k-1]+c[i]}

13.计数问题1

-----砝码称重

f[f[0]+1]=f[j]+k*w[j];

(1<=i<=n; 1<=j<=f[0]; 1<=k<=a[i];)

14.递推天地1

------核电站问题

f[-1]:=1; f[0]:=1;

f[i]:=2*f[i-1]-f[i-1-m]

15.递推天地2

------数的划分

f[i,j]:=f[i-j,j]+f[i-1,j-1];

16.最大子矩阵1

-----一最大01子矩阵

f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;

ans:=maxvalue(f);

17.判定性问题1

-----能否被4整除

g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false; g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)

18.判定性问题2

-----能否被k整除

f[I,j±n[i] mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n

20.线型动态规划2

-----方块消除游戏

f[i,i-1,0]:=0

f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k),

f[i,p,k+len[j]]+f[p+1,j-1,0]}

ans:=f[1,m,0]

21.线型动态规划3

-----最长公共子串,LCS问题

f[i,j]={0(i=0)&(j=0);

f[i-1,j-1]+1(i>0,j>0,x[i]=y[j]);

max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x[i]<>y[j]);

22.最大子矩阵2

-----最大带权01子矩阵O(n^2*m)

枚举行的起始,压缩进数列,求最大字段和,遇0则清零

23. 资源问题4

-----装箱问题(判定性01背包)

f[j]:=(f[j] or f[j-v[i]]);

24.数字三角形1

-----朴素の数字三角形

f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);

25.数字三角形2

-----晴天小猪历险记之Hill

同一阶段上暴力动态规划

if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j]

26.双向动态规划1

数字三角形3

-----小胖办证

f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j])

27. 数字三角形4

-----过河卒

//边界初始化

f[i,j]:=f[i-1,j]+f[i,j-1];

28.数字三角形5

-----朴素的打砖块

f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);

29.数字三角形6

-----优化的打砖块

f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]}

30.线性动态规划3

-----打鼹鼠’

f[i]:=f[j]+1;(abs(x[i]-x[j])+abs(y[i]-y[j])<=t[i]-t[j])

31.树形动态规划3

-----贪吃的九头龙

?

?????======??????+-++--+=0))2()0(&)0(())1(&)1((1],[]][,[*]0,[],',[]0,',[]][,[*]1,[],1',[]1,',[min ],,[m and j i or j i j i d i p i w k d k j j r f j l f i p i w k d k j j r f j l f k j i f

32.状态压缩动态规划1

-----炮兵阵地

Max(f[Q*(r+1)+k],g[j]+num[k])

If (map[i] and plan[k]=0) and

((plan[P] or plan[q]) and plan[k]=0)

33.递推天地3

-----情书抄写员

f[i]:=f[i-1]+k*f[i-2]

34.递推天地4

-----错位排列

f[i]:=(i-1)(f[i-2]+f[i-1]);

f[n]:=n*f[n-1]+(-1)^(n-2);

35.递推天地5

-----直线分平面最大区域数

f[n]:=f[n-1]+n

:=n*(n+1) div 2 + 1;

36.递推天地6

-----折线分平面最大区域数

f[n]:=(n-1)(2*n-1)+2*n;

37.递推天地7

-----封闭曲线分平面最大区域数

f[n]:=f[n-1]+2*(n-1)

:=sqr(n)-n+2;

38递推天地8

-----凸多边形分三角形方法数

f[n]:=C(2*n-2,n-1) div n;

对于k 边形

f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)

39递推天地9

-----Catalan 数列一般形式

1,1,2,5,14,42,132

f[n]:=C(2k,k) div (k+1);

40递推天地10

-----彩灯布置

排列组合中的环形染色问题

f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);

41线性动态规划4

-----找数

线性扫描

sum:=f[i]+g[j];

(if sum=Aim then getout; if sum

42线性动态规划5

-----隐形的翅膀

min:=min{abs(w[i]/w[j]-gold)};

if w[i]/w[j]

43剖分问题5

-----最大奖励

f[i]:=max(f[i],f[j]+(sum[j]-sum[i])*i-t

44最短路1

-----Floyd

f[i,j]:=max(f[i,j],f[i,k]+f[k,j]);

ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];

45 剖分问题6

-----小H 的小屋

F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);

46 计数问题2

-----陨石的秘密(排列组合中的计数问题)

Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];

F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);

47 线性动态规划

------合唱队形

两次F[i]:=max{f[j]+1}+枚举中央结点

48 资源问题

------明明的预算方案:加花的动态规划

f[i,j]:=max(f[i,j],f[l,j-v[i]-v[fb[i]]-v[fa[i]]]+v[i]*p[i]+v[fb[i]]*p[fb[i]]+v[fa[i]]*p[fa[i]]);

49 资源问题

-----化工场装箱员

[,[1,],[1,]][,,]:min [,[1,],[1,]]1

[10,[1,10],[1,10]f n i getA n n i j getB n n i f n i j f n j i getA n n j getB n n j f n i j i getA n n i j j getB n n i j ++++++????=+++++++????+--+++--+++--??

-----聚会的快乐

f[i,2]:=max(f[i,0],f[i,1]);

f[i,1]:=sigma(f[t[i]^.son,0]);

f[i,0]:=sigma(f[t[i]^.son,3]);

51树形动态规划

-----皇宫看守

f[i,2]:=max(f[i,0],f[i,1]);

f[i,1]:=sigma(f[t[i]^.son,0]);

f[i,0]:=sigma(f[t[i]^.son,3]);

52递推天地

-----盒子与球

f[i,1]:=1;

f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);

53双重动态规划

-----有限的基因序列

f[i]:=min{f[j]+1}

g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j])

54最大子矩阵问题

-----居住空间

f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),

min(f[i,j,k-1],f[i-1,j-1,k])),

min(min(f[i-1,j,k-1],f[i,j-1,k-1]),

f[i-1,j-1,k-1]))+1;

55线性动态规划

------日程安排

f[i]:=max{f[j]}+P[I]; (e[j]

56递推天地

------组合数

C[I,j]:=C[i-1,j]+C[I-1,j-1]

C[I,0]:=1

57树形动态规划

-----有向树k中值问题

F[I,r,k]:=max{max{f[l[i],I,j]+f[r[i],I,k-j-1]},f[f[l[i],r,j]+f[r[i],r,k-j]+w[I,r]]}

58树形动态规划

-----CTSC 2001选课

F[I,j]:=w[i](if i∈P)+f[l[i],k]+f[r[i],m-k](0≤k≤m)(if l[i]<>0)

-----多重历史

f[i,j]:=sigma{f[i-k,j-1]}(if checked)

60背包问题(+-1背包问题+回溯)

-----CEOI1998 Substract

f[i,j]:=f[i-1,j-a[i]] or f[i-1,j+a[i]]

61线性动态规划(字符串)

-----NOI 2000 古城之谜

f[i,1,1]:=min{f[i+length(s),2,1],

f[i+length(s),1,1]+1}f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+words[s]}

62线性动态规划

-----最少单词个数

f[i,j]:=max{f[I,j],f[u-1,j-1]+l}

63线型动态规划

-----APIO2007 数据备份

状态压缩+剪掉每个阶段j前j*2个状态和j*2+200后的状态贪心动态规划

f[i]:=min(g[i-2]+s[i],f[i-1]);

64树形动态规划

-----APIO2007 风铃

f[i]:=f[l]+f[r]+{1 (if c[l]

g[i]:=1(d[l]<>d[r]) 0(d[l]=d[r])

g[l]=g[r]=1 then Halt;

65地图动态规划

-----NOI 2005 adv19910

F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];

66地图动态规划

-----优化的NOI 2005 adv19910

F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;

67目标动态规划

-----CEOI98 subtra

F[I,j]:=f[I-1,j+a[i]] or f[i-1,j-a[i]]

68目标动态规划

----- Vijos 1037搭建双塔问题

F[value,delta]:=g[value+a[i],delta+a[i]] or g[value,delta-a[i]]

69树形动态规划

-----有线电视网

f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j])

leaves[i]>=p>=l, 1<=q<=p;

70地图动态规划

-----vijos某题

F[I,j]:=min(f[i-1,j-1],f[I,j-1],f[i-1,j]);

71最大子矩阵问题

-----最大字段和问题

f[i]:=max(f[i-1]+b[i],b[i]); f[1]:=b[1]

72最大子矩阵问题

-----最大子立方体问题

枚举一组边i的起始,压缩进矩阵 B[I,j]+=a[x,I,j]

枚举另外一组边的其实,做最大子矩阵

73括号序列

-----线型动态规划

f[I,j]:=min(f[I,j],f[i+1,j-1](s[i]s[j]=”()”or(”[]”)),

f[I+1,j+1]+1 (s[j]=”(”or”[” ] , f[I,j-1]+1(s[j]=”)”or”]” )

74棋盘切割

-----线型动态规划

f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],

f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]

min{}}

75概率动态规划

-----聪聪和可可(NOI2005)

x:=p[p[i,j],j]

f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1

f[I,i]=0

f[x,j]=1

76概率动态规划

-----血缘关系

F[A, B]=(f[A0, B]+P[A1, B])/2

f[I,i]=1

f[I,j]=0(I,j无相同基因)

77线性动态规划

-----决斗

F[I,j]=(f[I,j] and f[k,j]) and (e[I,k] or e[j,k]),i

78线性动态规划

-----舞蹈家

F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]])

79线性动态规划

-----积木游戏

F[I,a,b,k]=max(f[I,a+1,b,k],f[i+1,a+1,a+1,k’],f[I,a+1,a+1,k’])

80树形动态规划(双次记录)

-----NOI2003 逃学的小孩

朴素的话枚举节点i和离其最远的两个节点 j,k O(n^2)

每个节点记录最大的两个值,并记录这最大值分别是从哪个相邻节点传过来的。当遍历到某个孩子节点的时候,只需检查最大值是否是从该孩子节点传递来的。如果是,就取次大,否则取最大值

81树形动态规划(完全二叉树)

-----NOI2006 网络收费

F[I,j,k]表示在点i所管辖的所有用户中,有j个用户为A,在I的每个祖先u上,如果N[a]>N[b]则标0否则标1,用二进制状态压缩进k中,在这种情况下的最小花费

F[I,j,k]:=min{f[l,u,k and (s[i]<<(i-1))]+w1,f[r,j-u,k and(s[i]<<(i-1))]}

82树形动态规划

-----IOI2005 河流

F[i]:=max

83记忆化搜索

-----Vijos某题,忘了

F[pre,h,m]:=sigma{SDP(I,h+1,M+i)} (pre<=i<=M+1)

84状态压缩动态规划

-----APIO 2007 动物园

f[I,k]:=f[i-1,k and not (1<<4)] + NewAddVal

85树形动态规划

-----访问术馆

f[i,j-c[i]×2]:= max ( f[l[i],k], f[r[i],j-c[i]×2-k] )

86字符串动态规划

-----Ural 1002 Phone

if exist(copy(s,j,i-j)) then f[i]:=min(f[i],f[j]+1);

87多进程动态规划

-----CEOI 2005 service

Min( f[i,j,k], f[i-1,j,k] + c[t[i-1],t[i]] )

Min( f[i,t[i-1],k], f[i-1,j,k] + c[j,t[i]] )

Min( f[i,j,t[i-1]], f[i-1,j,k] + c[k,t[i]] )

88多进程动态规划

-----Vijos1143 三取方格数

max(f[i,j,k,l],f[i-1,j-R[m,1],k-R[m,2],l-R[m,3]]);

if (j=k) and (k=l) then inc(f[i,j,k,l],a[j,i-j]) else

if (j=k) then inc(f[i,j,k,l],a[j,i-j]+a[l,i-l]) else

if (k=l) then inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]) else

if (j=l) then inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]) else

inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]+a[l,i-l]);

89线型动态规划

-----IOI 2000 邮局问题

f[i,j]:=min(f[I,j],f[k,j-1]+d[k+1,i]);

90线型动态规划

-----Vijos 1198 最佳课题选择

if j-k>=0 then Min(f[i,j],f[i-1,j-k]+time(i,k));

91背包问题

----- USACO Raucous Rockers

多个背包,不可以重复放物品,但放物品的顺序有限制。

F[I,j,k]表示决策到第i个物品、第j个背包,此背包花费了k的空间。

f[I,j,k]:=max(f[I-1,j,k],f[I-1,j,k-t[i]]+p[i],f[i-1,j-1,maxtime-t[i]])

92多进程动态规划

-----巡游加拿大(IOI95、USACO)

d[i,j]=max{d[k,j]+1(a[k,i] & j

f[i,j]表示从起点出发,一个人到达i,另一个人到达j时经过的城市数。d[i,j]=d[j,i],所以我们限制i>j

分析状态(i,j),它可能是(k,j)(j

93动态规划

-----ZOJ cheese

f[i,j]:=f[i-kk*zl[u,1],j-kk*zl[u,2]]+a[i-kk*zl[u,1],j-kk*zl[u,2]]

94动态规划

-----NOI 2004 berry 线性

F[I,1]:=s[i]

F[I,j]:=max{min{s[i]-s[l-1]},f[l-1,j-1]} (2≤j≤k, j≤l≤i)

95动态规划

-----NOI 2004 berry 完全无向图

F[I,j]:=f[i-1,j] or (j≥w[i]) and (f[i-1,j-w[i]])

96动态规划

-----石子合并四边形不等式优化

m[i,j]=max{m[i+1,j], m[i,j-1]}+t[i,j]

97动态规划

-----CEOI 2005 service

(k≥long[i],i≥1)g[i, j, k]=max{g[i-1,j,k-long[i]]+1,g[i-1,j,k]}

(k

(0≤j≤m, 0≤k

ans:=g[n,m,0]。

状态优化:g[i, j]=min{g[i-1,j],g[i-1,j-1]+long[i]}

其中(a, b)+long[i]=(a’, b’)的计算方法为:

当b+long[i] ≤t时:a’=a; b’=b+long[i];

当b+long[i] >t时:a’=a+1; b’=long[i];

规划的边界条件:

当0≤i≤n时,g[i,0]=(0,0)

98动态规划

-----AHOI 2006宝库通道

f[k]:=max{f[k-1]+x[k,j]-x[k,i-1], x[k,j]-x[k,i-1]}

99动态规划

-----Travel

A) 费用最少的旅行计划。

设f[i]表示从起点到第i个旅店住宿一天的最小费用;g[i]表示从起点到第i个旅店住宿一天,在满足最小费用的前提下所需要的最少天数。那么:

f[i]=f[x]+v[i], g[i]=g[x]+1

x满足:

1、x

2、对于所有的t < i, d[i] – d[t] <= 800,都必须满足:

A. g[x] < g[t](f[x] = f[t]时)

B. f[x] < f[t] (其他情况)

f[0] = 0,g[0] = 0。 Ans:=f[n + 1],g[n+1]。

B). 天数最少的旅行计划。

方法其实和第一问十分类似。

设g’[i]表示从起点到第i个旅店住宿一天的最少天数;f’[i]表示从起点到第i个旅店住宿一天,在满足最小天数前提下所需要的最少费用。那么:

g’[i] = g’[x] + 1, f’[i] = f’[x] + v[i]

x满足:

1、x

2、对于所有的t < i, d[i] – d[t] <= 800,都必须满足:

f’[x] < f’[t] g’[x] = g’[t]时

g’[x] < g’[t] 其他情况

f’[0] = 0,g’[0] = 0。 Ans:=f’[n + 1],g’[n+1]。

100动态规划

-----NOI 2007 cash

y:=f[j]/(a[j]*c[j]+b[j]);

g:=c[j]*y*a[i]+y*b[i];

f[i]:=max(f[i],g)

动态规划之状态压缩

状态压缩 Abstract 信息学发展势头迅猛,信息学奥赛的题目来源遍及各行各业,经常有一些在实际应用中很有价值的问题被引入信息学并得到有效解决。然而有一些问题却被认为很可能不存在有效的(多项式级的)算法,本文以对几个例题的剖析,简述状态压缩思想及其应用。 Keywords 状态压缩、Hash、动态规划、递推 Content Introducti o n 作为OIers,我们不同程度地知道各式各样的算法。这些算法有的以O(logn)的复杂度运行,如二分查找、欧几里德GCD算法(连续两次迭代后的余数至多为 原数的一半)、平衡树,有的以)运行,例如二级索引、块状链表,再往上有O(n)、O(n p log q n)……大部分问题的算法都有一个多项式级别的时间复杂度上界1,我们一般称这类问题2为P (deterministic Polynomial-time)类问题,例如在有向图中求最短路径。然而存在几类问题,至今仍未被很好地解决,人们怀疑他们根本没有多项式时间复杂度的算法,NPC(NP-Complete)和NPH(NP-Hard)就是其中的两类,例如问一个图是否存在哈密顿圈(NPC)、问一个图是否不存在哈密顿圈(NPH)、求一个完全图中最短的哈密顿圈(即经典的Traveling Salesman Problem货郎担问题,NPH)、在有向图中求最长(简单)路径(NPH),对这些问题尚不知有多项式时间的算法存在。P和NPC都是NP(Non-deterministic Polynomial-time)的子集,NPC则代表了NP类中最难的一类问题,所有的NP类问题都可以在多项式时间内归约到NPC问题中去。NPH包含了NPC和其他一些不属于NP(也更难)的问题,NPC问题的函数版本(相对于判定性版本)一般是NPH的,例如问一个图是否存在哈密顿圈是NPC的,但求最短的哈密顿圈则是NPH的,原因在于我们可以在多项式时间内验证一个回路是否真的是哈密顿回路,却无法在多项式时间内验证其是否是最短的,NP类要求能在多项式时间内验证问题的一个解是否真的是一个解,所以最优化TSP问题不是NP的,而是NPH的。存在判定性TSP问题,它要求判定给定的完全图是否存在权和小于某常数v的哈密顿圈,这个问题的解显然可以在多项式时间内验证,因此它是NP 1请注意,大O符号表示上界,即O(n)的算法可以被认为是O(n2)的,O(n p log q n)可以被认为是O(n p+1)的。2在更正式的定义中,下面提到的概念都只对判定性问题或问题的判定版本才存在(NPH除外)。Levin给出了一个适用于非判定问题的更一般的概念,但他的论文比Cook的晚发表2年。

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

动态规划状态转移方程

1.资源问题1 -----机器分配问题 F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2.资源问题2 ------01背包问题 F[I,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]); 3.线性动态规划1 -----朴素最长非降子序列 F[i]:=max{f[j]+1} 4.剖分问题1 -----石子合并 F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]); 5.剖分问题2 -----多边形剖分 F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a[i]); 6.剖分问题3 ------乘积最大 f[i,j]:=max(f[k,j-1]*mult[k,i]); 7.资源问题3 -----系统可靠性(完全背包) F[i,j]:=max{f[i-1,j-c[i]*k]*P[I,x]} 8.贪心的动态规划1 -----快餐问题 F[i,j,k]:=max{f[i-1,j',k']+(T[i]-(j-j')*p1-(k-k')*p2) div p3} 9.贪心的动态规划2 -----过河 f[i]=min{{f(i-k)} (not stone[i]) {f(i-k)}+1} (stone[i]); +贪心压缩状态 10.剖分问题4 -----多边形-讨论的动态规划 F[i,j]:=max{正正 f[I,k]*f[k+1,j]; 负负 g[I,k]*f[k+1,j]; 正负 g[I,k]*f[k+1,j]; 负正 f[I,k]*g[k+1,j];} g为min 11.树型动态规划1 -----加分二叉树 (从两侧到根结点模型)

3 (修改)大规模状态空间中的动态规划和强化学习问题

3 大规模状态空间中的动态规划和强化学习问题 本章我们将讨论大规模状态空间中的动态规划和强化学习问题。对于这类问题,我们一般很难求得问题的精确解,只能得到问题的近似解。前面章节所介绍的一些算法,如值迭代、策略迭代和策略搜索,无法直接用于这类问题。因此,本章将函数近似引入这些算法,提出三类基于函数近似的算法版本,分别是近似值迭代、近似策略迭代和近似策略搜索。本章将从理论和实例两个角度分析算法的收敛性,讨论如何获取值函数逼近器的方法,最后比较分析三类算法的性能。 3.1 介绍 第二章详细介绍了DP/RL中三类经典算法,这三类算法都需要有精确的值函数及策略表示。一般来说,只有存储每一个状态动作对回报值的估计值才能得到精确地Q值函数,同样V值函数只有存储每一个状态的回报值的估计值才能得到;精确的策略描述也需要存储每一个状态对应的动作。如果值函数中某些变量,比如某些状态动作对、状态等,存在很多个或者无穷多个潜在值(又或者这些值是连续的),那么我们就无法精确描述对应的Q值函数或者V值函数,因此,考虑将值函数和策略通过函数近似的方式来表示。由于实际应用中大部分问题都存在大规模或者连续状态空间,因此,函数近似方法是求解动态规划和强化学习问题的基础。 逼近器主要可以分为两大类:带参的和非参的。带参的逼近器主要是从参数空间到目标函数空间的映射。映射函数及参数的个数由先验知识给定,参数的值由样本数据进行调整。典型的例子是对一组给定的基函数进行加权线性组合,其中权重就是参数。相比之下,非参的逼近器通过样本数据直接得到。本质上,非参的函数逼近器也是含带参数的,只是不像带参的函数逼近器,参数的个数及参数的值直接有样本数据决定。例如,本书中所讨论的基于核函数的逼近器就是带参数的函数逼近器,它为每一个数据点定义一个核函数,并对这些核函数做加权线性组合,其中权重就是参数。 本章主要对大规模状态空间中动态规划和强化学习问题进行广泛而深入的讨论。第二章中所介绍的三类主要算法,值迭代、策略迭代和策略搜索,将与函数近似方法相结合,获得三类新的算法,分别是近似值迭代、近似策略迭代以及近似策略搜索。本章将从理论和实例两个角度讨论算法的收敛性,并对比分析三类算法的性能。关于值函数近似与策略逼近的一些其他重要问题,本章也将给予讨论。为了帮助读者更好的阅读本章的内容,图3.1给出一个本章的内容脉络图。

状态压缩dp

状态压缩dp 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8971 Accepted: 3169 Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示: 如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。 Input 第一行包含两个由空格分割开的正整数,分别表示N和M; 接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。 Output 仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。 Sample Input 5 4

PHPP PPHH PPPP PHPP PHHP Sample Output 6 Source Noi 01 这道题是一道典型的状态压缩DP。 注意到每一行炮兵的摆放只和前两行有关系,便可以记录一个f数组,f[h,i,j]表示第h行的状态为st[i],第h-1行的状态为st[j]。 现在的关键就是如何快速求f[h,i,j]。 注意到求f数组跟状态数有关,那么便优化状态。 首先是状态的存储。注意到m范围较小,便可以按行存储。对于每一行,如果一个格子放了炮兵,就看成1,否则看成0,然后记下对应数列的十进制值即可。但这样共有2^m种状态,显然太多了。注意到有很多状态其实是不可能的(即某个炮兵附近还有炮兵),我们就可以再预处理状态时加一些判断。那么如何高效判断呢?对了,可以用位运算! 判断过程如下: for i:=0 to 1 shl m-1 do begin if i and (i shl 1)<>0 then continue;//错一位进行判断 if i and (i shl 2)<>0 then continue;//错两位进行判断 inc(sl); st[sl]:=i; count[sl]:=calc(i);//count数组记录每个序列中1的个数 end; 解决了存储问题后,整个程序就很简单了,剩下的DP不再赘述,详见程序。贴代码:https://www.360docs.net/doc/2c9808428.html,/code/view/18264/ var f:array[1..100,1..70,1..70] of integer; map:array[1..100] of integer; st,count:array[1..70] of integer; n,m,sl:integer; function calc(x:integer):integer; var sum:integer;

动态规划经典教程

动态规划经典教程 引言:本人在做过一些题目后对DP有些感想,就写了这个总结: 第一节动态规划基本概念 一,动态规划三要素:阶段,状态,决策。 他们的概念到处都是,我就不多说了,我只说说我对他们的理解: 如果把动态规划的求解过程看成一个工厂的生产线,阶段就是生产某个商品的不同的环节,状态就是工件当前的形态,决策就是对工件的操作。显然不同阶段是对产品的一个前面各个状态的小结,有一个个的小结构成了最终的整个生产线。每个状态间又有关联(下一个状态是由上一个状态做了某个决策后产生的)。 下面举个例子: 要生产一批雪糕,在这个过程中要分好多环节:购买牛奶,对牛奶提纯处理,放入工厂加工,加工后的商品要包装,包装后就去销售……,这样没个环节就可以看做是一个阶段;产品在不同的时候有不同的状态,刚开始时只是白白的牛奶,进入生产后做成了各种造型,从冷冻库拿出来后就变成雪糕(由液态变成固态=_=||)。每个形态就是一个状态,那从液态变成固态经过了冰冻这一操作,这个操作就是一个决策。 一个状态经过一个决策变成了另外一个状态,这个过程就是状态转移,用来描述状态转移的方程就是状态转移方程。 经过这个例子相信大家对动态规划有所了解了吧。 下面在说说我对动态规划的另外一个理解: 用图论知识理解动态规划:把动态规划中的状态抽象成一个点,在有直接关联的状态间连一条有向边,状态转移的代价就是边上的权。这样就形成了一个有向无环图AOE网(为什么无环呢?往下看)。对这个图进行拓扑排序,删除一个边后同时出现入度为0的状态在同一阶段。这样对图求最优路径就是动态规划问题的求解。 二,动态规划的适用范围 动态规划用于解决多阶段决策最优化问题,但是不是所有的最优化问题都可以用动态规划解答呢? 一般在题目中出现求最优解的问题就要考虑动态规划了,但是否可以用还要满足两个条件: 最优子结构(最优化原理) 无后效性 最优化原理在下面的最短路径问题中有详细的解答; 什么是无后效性呢? 就是说在状态i求解时用到状态j而状态j就解有用到状态k…..状态N。 而求状态N时有用到了状态i这样求解状态的过程形成了环就没法用动态规划解答了,这也是上面用图论理解动态规划中形成的图无环的原因。 也就是说当前状态是前面状态的完美总结,现在与过去无关。。。 当然,有是换一个划分状态或阶段的方法就满足无后效性了,这样的问题仍然可以用动态规划解。 三,动态规划解决问题的一般思路。 拿到多阶段决策最优化问题后,第一步要判断这个问题是否可以用动态规划解决,如果不能就要考虑搜索或贪心了。当却定问题可以用动态规划后,就要用下面介绍的方法解决问题了:(1)模型匹配法: 最先考虑的就是这个方法了。挖掘问题的本质,如果发现问题是自己熟悉的某个基本的模型,就直接套用,但要小心其中的一些小的变动,现在考题办都是基本模型的变形套用时要小心条件,三思而后行。这些基本模型在先面的分类中将一一介绍。 (2)三要素法 仔细分析问题尝试着确定动态规划的三要素,不同问题的却定方向不同: 先确定阶段的问题:数塔问题,和走路问题(详见解题报告) 先确定状态的问题:大多数都是先确定状态的。 先确定决策的问题:背包问题。(详见解题报告) 一般都是先从比较明显的地方入手,至于怎么知道哪个明显就是经验问题了,多做题就会发现。 (3)寻找规律法: 这个方法很简单,耐心推几组数据后,看他们的规律,总结规律间的共性,有点贪心的意思。 (4)边界条件法 找到问题的边界条件,然后考虑边界条件与它的领接状态之间的关系。这个方法也很起效。 (5)放宽约束和增加约束 这个思想是在陈启锋的论文里看到的,具体内容就是给问题增加一些条件或删除一些条件使问题变的清晰。 第二节动态规划分类讨论

动态规划的基本概念

动态规划的基本概念 基本概念 设我们研究某一个过程,这个过程可以分解为若干个互相联系的阶段。每一阶段都有其初始状态和结束状态,其结束状态即为下一阶段的初始.状态。第一阶段的初始状态就是整个过程的初始状态,最后一阶段的结束状态就是整个过程的结束状态。在过程的每一个阶段都需要作出决策,而每一阶段的结束状态依赖于其初始状态和该阶段的决策。动态规划问题就是要找出某种决策方法, 使过程达到某种最优效果。 这种把问题看作前后关联的多阶段过程称为多阶段决策过程, 可用图9.1表示。下面介绍动态规划的术语和基本概念。 (l)阶段 把所研究的过程恰当地分为若干个互相联系的相对独立过程。 (2)状态变量 用来描述系统所处状态的变量称为状态变量。通常用s k 表示第k 阶段的初始状态,则s k +1表示第k 阶段结束时(也就是第k+l 阶段开始时)过程的状态。 通常要求状态变量具有无后效性, 即过程在第k 阶段以后的变化只与该阶段结束时的状态有关, 而与系统如何到达此状态的过程无关。 (3)决策变量的状态转移方程。系统在第k 阶段中的变化过程, 通常我们并不关心,但我们希望知道该阶段的初始状态与结束状态之间的关系。我们用以影响该系统的手段,也用一个变量x k 表示,称为决策变量, 则第k 阶段结束时的状态s k +1是决策变量x k 和初始状态s k 的函数, 即 s k +1=T (s k ,x k ) (9-1) (9-1)称为状态转移方程。 (4)权函数 反映第k 阶段决策变量x k 的效益函数W k (s k ,x k ) 称为权函数。 (5)指标函数 判断整个过程优劣的数量指标称为指标函数。当第k 阶段初始状态为s k 时,设我们在此阶段及以后各阶段均采取最优策略时,所获得的效益为f k (s k ), 那么有 ))}(),,(({)(11++∈=k k k k k k D x k k s f x s W F opt s f k k (9-2) 其中opt 表示最优,按具体问题可取为max 或min , D k 是决策变量x k 的定义域;F k 是某一个函数; s k +1=T (s k ,x k ). 图9.1

动态规划习题精讲

信息学竞赛中的动态规划专题 哈尔滨工业大学周谷越 【关键字】 动态规划动机状态典型题目辅助方法优化方法 【摘要】 本文针对信息学竞赛(面向中学生的Noi以及面向大学生的ACM/ICPC)中的动态规划算法,从动机入手,讨论了动态规划的基本思想和常见应用方法。通过一些常见的经典题目来归纳动态规划的一般作法并从理论上加以分析和说明。并介绍了一些解决动态规划问题时的一些辅助技巧和优化方法。纵观全文可知,动态规划的关键在于把握本质思想的基础上灵活运用。 【目录】 1.动态规划的动机和基本思想 1.1.解决重复子问题 1.2.解决复杂贪心问题 2.动态规划状态的划分方法 2.1.一维状态划分 2.2.二维状态划分 2.3.树型状态划分 3.动态规划的辅助与优化方法 3.1.常见辅助方法 3.2.常见优化方法 4.近年来Noi动态规划题目分析 4.1 Noi2005瑰丽华尔兹 4.2 Noi2005聪聪与可可 4.3 Noi2006网络收费 4.4 Noi2006千年虫 附录参考书籍与相关材料

1.动态规划的动机和基本思想 首先声明,这里所说的动态规划的动机是从竞赛角度出发的动机。 1.1 解决重复子问题 对于很多问题,我们利用分治的思想,可以把大问题分解成若干小问题,然后再把各个小问题的答案组合起来,得到大问题的解答。这类问题的共同点是小问题和大问题的本质相同。很多分治法可以解决的问题(如quick_sort,hanoi_tower等)都是把大问题化成2个以内的不相重复的小问题,解决的问题数量即为∑(log2n / k)。而考虑下面这个问题: USACO 1.4.3 Number Triangles http://122.139.62.222/problem.php?id=1417 【题目描述】 考虑在下面被显示的数字金字塔。 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大。每一步可以走到左下方的点也可以到达右下方的点。 7 3 8 8 1 0 2 7 4 4 4 5 2 6 1 在上面的样例中,从7到3到8到7到5的路径产生了最大和:30。 【输入格式】 第一个行包含R(1<= R<=1000) ,表示行的数目。后面每行为这个数字金字塔特定行包含的整数。所有的被供应的整数是非负的且不大于100。 【输出格式】 单独的一行包含那个可能得到的最大的和。 【样例输入】 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 1 【样例输出】 30 显然,我们同样可以把大问题化成小问题来解决。如样例中最底层的6就可以从次底层

Poj动态规划

[1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322, 1414, 1456, 1458, 1609, 1644, 1664, 1690, 1699, 1740(博弈), 1742, 1887, 1926(马尔科夫矩阵,求平衡), 1936,1952, 1953, 1958, 1959, 1962, 1975, 1989, 2018, 2029,2039, 2063, 2081, 2082,2181, 2184, 2192, 2231, 2279, 2329, 2336, 2346, 2353,2355, 2356, 2385, 2392, 2424, 不易: 1019,1037, 1080, 1112, 1141, 1170, 1192, 1239, 1655, 1695, 1707,1733(区间减法加并查集), 1737, 1837, 1850, 1920(加强版汉罗塔), 1934(全部最长公共子序列), 1937(计算几何), 1964(最大矩形面积,O(n)算法), 2138, 2151, 2161(烦,没写), 2178, 推荐: 1015, 1635, 1636(挺好的), 1671, 1682, 1692(优化), 1704, 1717, 1722, 1726, 1732, 1770, 1821, 1853, 1949, 2019, 2127, 2176, 2228, 2287, 2342, 2374, 2378, 2384, 2411 状态DP 树DP 构造最优解 四边形不等式 单调队列 1015 Jury Compromise 1029 False coin 1036 Gangsters 1037 A decorative fence 1038 Bugs Integrated, Inc. 1042 Gone Fishing 1050 To the Max 1062 昂贵的聘礼 1074 Parallel Expectations 1080 Human Gene Functions 1088 滑雪 1093 Formatting Text 1112 Team Them Up! 1141 Brackets Sequence 1143 Number Game 1157 LITTLE SHOP OF FLOWERS 1159 Palindrome

动态规划和贪心的区别

动态规划和贪心算法的区别 动态规划法的基本思路: 动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。此算法常用于求解某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案,消除递归过程中产生的大量重叠子问题。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。 贪心算法的基本思想: 在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,贪心算法所得出的解是一系列局部最优的选择。 把求解的问题分成若干个子问题,对每一子问题求解,得到子问题的局部最优解,把子问题的解局部最优解合成原来解问题的一个解。为了解决问题,需要寻找一个构成解的候选对象集合,起初,算法选出的候选对象的集合为空。接下来的每一步中,根据选择函数,算法从剩余候选对象中选出最有希望构成解的对象。如果集合中加上该对象后不可行,那么该对象就被丢弃并不再考虑;否则就加到集合里。每一次都扩充集合,并检查该集合是否构成解。 由以上可知:在贪心算法中,作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留。并且,每一步的最优解一定包含上一步的最优解。 而在动态规划算法中,全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解。动态规划的关键是状态

基于连通性状态压缩的动态规划问题

基于连通性状态压缩的动态规划问题 长沙市雅礼中学陈丹琦 【摘要】 基于状态压缩的动态规划问题是一类以集合信息为状态且状态总数为指数级的特殊的动态规划问题.在状态压缩的基础上,有一类问题的状态中必须要记录若干个元素的连通情况,我们称这样的问题为基于连通性状态压缩的动态规划问题,本文着重对这类问题的解法及优化进行探讨和研究.本文主要从动态规划的几个步骤——划分阶段,确立状态,状态转移以及程序实现来介绍这类问题的一般解法,会特别针对到目前为止信息学竞赛中涌现出来的几类题型的解法作一个探讨.结合例题,本文还会介绍作者在减少状态总数和降低转移开销两个方面对这类问题优化的一些心得. 【关键词】 状态压缩连通性括号表示法轮廓线插头棋盘模型

【目录】 【序言】 (3) 【正文】 (5) 一. 问题的一般解法 (5) 【例1】Formula 1 (5) 问题描述 (5) 算法分析 (5) 小结 (11) 二. 一类简单路径问题 (12) 【例2】Formula 2 (15) 问题描述 (15) 算法分析 (15) 小结 (16) 三. 一类棋盘染色问题 (17) 【例3】Black & White (17) 问题描述 (17) 算法分析 (17) 小结 (19) 四. 一类基于非棋盘模型的问题 (20) 【例4】生成树计数 (20) 问题描述 (20) 算法分析 (20) 小结 (21) 五. 一类最优性问题的剪枝技巧 (22) 【例5】Rocket Mania (22) 问题描述 (22) 算法分析 (23) 小结 (25) 六.总结 (25) 【参考文献】 (26) 【感谢】 (26) 【附录】 (26)

动态规划基本原理

动态规划基本原理 近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推和建模上了。 要了解动态规划的概念,首先要知道什么是多阶段决策问题。 一、多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果. 让我们先来看下面的例子:如图所示的是一个带权有向的多段图,要求从A到D的最短 图4-1 带权有向多段图 路径的长度(下面简称最短距离)。 我们可以搜索,枚举图中的每条路径,但当图的规模大起来时,搜索的效率显然不可能尽人意。让我们来试用动态规划的思路分析这道题:从图中可以看到,A点要到达D点必然要经过B1和B2中的一个,所以A到D的最短距离必然等于B1到D的最短距离加上5,或是B2到D的最短距离加上2。同样的,B1到D的最短距离必然等于C1到D的最短距离加上3或是C2到D的最短距离加上2,……。 我们设G[i]为点i到点D的距离,显然G[C1]=4,G[C2]=3,G[C3]=5,根据上面的分析,

有: G[B1]=min{G[C1]+3,G[C2]+2}=5, G[B2]=min{G[C2]+7,G[C3]+4}=9, 再就有G[A]=min{G[B1]+5,G[B2]+2}=10, 所以A到D的最短距离是10,最短路径是A→B1→C2→D。 二、动态规划的术语 1.阶段 把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用k 表示。此外,也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。 在前面的例子中,第一个阶段就是点A,而第二个阶段就是点A到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。 2.状态 状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。 在前面的例子中,第一个阶段有一个状态即A,而第二个阶段有两个状态B1和B2,第三个阶段是三个状态C1,C2和C3,而第四个阶段又是一个状态D。 过程的状态通常可以用一个或”一组数”来描述,称为状态变量。一般,状态是离散的,但有时为了方便也将状态取成连续的。当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。 当过程按所有可能不同的方式发展时,过程各段的状态变量将在某一确定的范围内取值。状态变量取值的集合称为状态集合。 3.无后效性 我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发

动态规划算法在管理会计中的应用_钟方源

一、应用动态规划算法的动机 案例1:一家公司现有m万元,本年可投资的业务有n 项。其中,第一项业务对应的成本是C1,收益是R1;第二项业务对应的成本是C2,收益是R2……第n项业务对应的成本是C n,收益是R n。假设同种业务只能投资一次,不可重复。若每项业务对应的成本和收益已知,求该公司用m万元投资这些业务可以取得的最大收益。 显然可以用递归法来解决此问题: 设V(i,j)表示能够用j万元购买的前i项业务收益最大的子集的收益。根据V(i,j)这个最佳子集中是否包含业务i,可以得到下列递归关系式: V(i,j)= 该方程表示的是:如果第i项业务的成本C i比j小(或等于j),那么取得最大收益的方案有可能包含该项业务,至于是否包含,就看包含该业务所能取得的最大收益与不含该业务所能取得的最大收益两者中何者更大。而如果第i项业务的成本C i比j大,那就不能选择购买该项业务,也就是说取得最大收益的方案一定不包含此项业务。 当i和j有至少一项等于零时,表示该公司投资业务的资金为零或者不投资任何业务,所以其所能取得的收益一定为零,即当i=0或j=0时,V(i,j)=0,故该方程的边界条件是: 该案例目标是求出V(n,m),即用m万元购买的n项业务收益最大的子集的收益。 因此,可以得到以下递归过程(伪代码): function V(i,j:integer); begin if(i=0)or(j=0)then return0 else begin if j-C i>=0then Answer:=max[V(i-1,j),R i+V(i-1,j-C i)]; if j-C i<0then Answer:=V(i-1,j); end; end; 1.记忆化搜索。上面的递归算法显然是正确的,但是它的运算速度却很慢,因为它的时间复杂度是指数级的。如果记V(i,j)的值是d[i,j],以数组来表示,由于1≤i≤n,1≤j≤m,所以一共只有O(n×m)个d值需要计算,而在执行递归算法的时候却做了大量的重复运算。 可以这样改进这个算法: 因为V(i,j)的值一旦被计算出来就不会改变,所以在每次调用V函数之前先检查之前是否已经计算过该值,如果是,则直接从数组中读出,不必再花费时间重新进行计算,即: function V(i,j:integer); begin if Calculated[i,j]then return d[i,j]; //此处为原来的V函数代码 d[i,j]:=Answer; Calculated[i,j]:=true; end; 2.自底向上的递推。除了上述这种改进方法,还有另外一种改进方法:可以按照一定的顺序计算所有的d值。由于计算d[i,j]需要知道d[i-1,j]和d[i-1,j-C i],所以可以按照i~ j递增的顺序来计算d[i,j],即: 动态规划算法在管理会计中的应用 【摘要】动态规划算法是运用状态转移解决多阶段决策的一种最优化方法。这种方法基于最优化原理,把多阶段过程转化为一系列单阶段问题,进而逐个求解,可以高效地解决许多用贪心算法或分治算法无法解决的问题。本文结合管理会计中的问题,运用运筹学、金融建模等知识,探讨了动态规划算法在管理会计中的应用。 【关键词】动态规划;管理会计;最优化原理 【中图分类号】F230【文献标识码】A【文章编号】1004-0994(2016)05-0053-3 钟方源 max{V(i-1,j),R i+V(i-1,j-C i)},j-C i≥0 V(i-1,j),j-C i<0 V(0,j)=0,j≥0 V(i,0)=0,i≥0 2016.05财会月刊·53·□ 财务·会计□

百个经典动态规划转移方程

1. 资源问题1 -----机器分配问题 F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2. 资源问题2 ------01背包问题 F[I,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]); 3. 线性动态规划1 -----朴素最长非降子序列 F[i]:=max{f[j]+1} 4. 剖分问题1 -----石子合并 F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]); 5. 剖分问题2 -----多边形剖分 F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a[i]); 6. 剖分问题3 ------乘积最大 f[i,j]:=max(f[k,j-1]*mult[k,i]); 7. 资源问题3 -----系统可靠性(完全背包) F[i,j]:=max{f[i-1,j-c[i]*k]*P[I,x]} 8. 贪心的动态规划1 -----快餐问题 F[i,j]表示前i条生产线生产j个汉堡,k个薯条所能生产的最多饮料, 则最多套餐ans:=min{j div a,k div b,f[I,j,k] div c} F[i,j,k]:=max{f[i-1,j',k']+(T[i]-(j-j')*p1-(k-k')*p2) div p3} 9. 贪心的动态规划2 -----过河 f[i]=min{{f(i-k)} (not stone[i]) {f(i-k)}+1} (stone[i]); +贪心压缩状态 10. 剖分问题4 -----多边形-讨论的动态规划 F[i,j]:=max{正正 f[I,k]*f[k+1,j]; 负负 g[I,k]*f[k+1,j]; 正负 g[I,k]*f[k+1,j];

100个动态规划方程

100个动规方程 1. 资源问题1-----机器分配问题 F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2. 资源问题2------01背包问题 F[I,j]:=max(f[i-1,j-v]+w,f[i-1,j]); 3. 线性动态规划1-----朴素最长非降子序列 F:=max{f[j]+1} 4. 剖分问题1-----石子合并 F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]); 5. 剖分问题2-----多边形剖分 F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a); 6. 剖分问题3------乘积最大 f[i,j]:=max(f[k,j-1]*mult[k,i]); 7. 资源问题3-----系统可靠性(完全背包) F[i,j]:=max{f[i-1,j-c*k]*P[I,x]} 8. 贪心的动态规划1-----快餐问题 F[i,j,k]:=max{f[i-1,j',k']+(T-(j-j')*p1-(k-k')*p2) div p3} 9. 贪心的动态规划2----过河 f=min{{f(i-k)} (not stone) {f(i-k)}+1} (stone); +贪心压缩状态 10. 剖分问题4-----多边形-讨论的动态规划 F[i,j]:=max{正正 f[I,k]*f[k+1,j]; 负负 g[I,k]*f[k+1,j]; 正负 g[I,k]*f[k+1,j]; 负正 f[I,k]*g[k+1,j];} g 为min 11. 树型动态规划1-----加分二叉树 (从两侧到根结点模型) F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]} 12. 树型动态规划2-----选课 (多叉树转二叉树,自顶向下模型) F[I,j]表示以i 为根节点选j 门功课得到的最大学分 f[i,j]:=max{f[t.l,k]+f[t.r,j-k-1]+c} 13. 计数问题1-----砝码称重 f[f[0]+1]=f[j]+k*w[j]; (1<=i<=n; 1<=j<=f[0]; 1<=k<=a;) 14. 递推天地1------核电站问题 f[-1]:=1; f[0]:=1; f:=2*f[i-1]-f[i-1-m] 15. 递推天地2------数的划分 f[i,j]:=f[i-j,j]+f[i-1,j-1]; 16. 最大子矩阵1-----一最大01子矩阵 f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1; ans:=maxvalue(f); 17. 判定性问题1-----能否被4整除 g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false; g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j) 18. 判定性问题2-----能否被k 整除 f[I,j±n mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n 20. 线型动态规划2-----方块消除游戏 f[i,i-1,0]:=0 f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k), f[i,p,k+len[j]]+f[p+1,j-1,0]} ans:=f[1,m,0] 21. 线型动态规划3-----最长公共子串,LCS 问题 f[i,j]={0(i=0)&(j=0); f[i-1,j-1]+1 (i>0,j>0,x=y[j]); max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x<>y[j]); 22. 最大子矩阵2-----最大带权01子矩阵O(n^2*m) 枚举行的起始,压缩进数列,求最大字段和,遇0则清零 23. 资源问题4-----装箱问题(判定性01背包) f[j]:=(f[j] or f[j-v]); 24. 数字三角形1-----朴素の数字三角形 f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]); 25. 数字三角形2-----晴天小猪历险记之Hill 同一阶段上暴力动态规划 if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j] 26. 双向动态规划1数字三角形3 -----小胖办证 f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j]) 27. 数字三角形4-----过河卒 //边界初始化 f[i,j]:=f[i-1,j]+f[i,j-1]; 28. 数字三角形5-----朴素的打砖块 f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]); 29. 数字三角形6-----优化的打砖块 f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]} 30. 线性动态规划3-----打鼹鼠’ f:=f[j]+1;(abs(x-x[j])+abs(y-y[j])<=t-t[j]) 31. 树形动态规划3-----贪吃的九头龙 32. 状态压缩动态规划1-----炮兵阵地 Max(f[Q*(r+1)+k],g[j]+num[k]) If (map and plan[k]=0) and ((plan[P] or plan[q]) and plan[k]=0) 33. 递推天地3-----情书抄写员 f:=f[i-1]+k*f[i-2] 34. 递推天地4-----错位排列 f:=(i-1)(f[i-2]+f[i-1]); f[n]:=n*f[n-1]+(-1)^(n-2); 35. 递推天地5-----直线分平面最大区域数 f[n]:=f[n-1]+n :=n*(n+1) div 2 + 1; 36. 递推天地6-----折线分平面最大区域数 f[n]:=(n-1)(2*n-1)+2*n; 37. 递推天地7-----封闭曲线分平面最大区域数 f[n]:=f[n-1]+2*(n-1) :=sqr(n)-n+2; 38 递推天地8-----凸多边形分三角形方法数 f[n]:=C(2*n-2,n-1) div n; 对于k 边形 f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3) 39 递推天地9-----Catalan 数列一般形式 1,1,2,5,14,42,132 f[n]:=C(2k,k) div (k+1);

相关文档
最新文档