线性代数第三章练习题

线性代数第三章练习题
线性代数第三章练习题

一、单项选择题

1.若四阶方阵A 的秩为3,则( ) A .A 为可逆阵

B .齐次方程组Ax =0有非零解

C .齐次方程组Ax =0只有零解

D .非齐次方程组Ax =b 必有解

2.若线性方程组???=λ+-=+-21

2321

321x x x x x x 无解,则λ等于( )

3.设3阶方阵A 的秩为2,则与A 等价的矩阵为( ) A.????

?

??000000111 B. ?????

??300110111

C. ????

?

??000432111 D. ????

? ??333022001 4.设A 为m ×n 矩阵,且非齐次线性方程组AX=b 有唯一解,则必有( ) A .m=n B .R(A)=m C .R(A)=n

D .R(A)

二、填空题

1.三元方程x 1+x 2+x 3=0的通解是________. 2.矩阵???

?

?

?????111[1 -1 1]的秩为_________.

3.已知3元非齐次线性方程组的增广矩阵为???

?

? ??++-0100101

0121

1a a ,若该方程组无解,则a 的取值为_________.

4.设线性方程组???

?

?

?????-=????????????????????211111111321x x x a a a 有无穷多个解,则a =_________.

三、计算题

1.设矩阵A =?????

??? ??-b a 1401321a 21的秩为2,求a ,b.

2.求齐次线性方程组???

??=+++=+++=--+0

23203220

4321

43214321x x x x x x x x x x x x 的通解.

3.求线性方程组??

?

??=++=+++=+++3220231

43243214321x x x x x x x x x x x 的通解.

4. 判断线性方程组123412341

34x x 3x x 12x x x 4x 2x 4x 5x 1-+-=??

--+=??-+=-?是否有解,有解时求出它的解.

5.给定线性方程组

???

??-=++-=++-=++2

23

321

321321ax x x x ax x a x x x

(1)问a 为何值时,方程组有无穷多个解; (2)当方程组有无穷多个解时,求出其通解.

6.当a 为值何时,方程组???

??=+++=+++=+++a

x x x x x x x x x x x x 43214321432132322221

有解在有解时,求出它的通解.

线性代数自考知识点汇总

行列式 1. 行列式的性质 性质1 行列式与它的转置行列式相等T D D =. 性质2 互换行列式的两行(列),行列式变号. 推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零. 如a b c a b c 0a b c '''= 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式. 如11 121311121321 222321 222331 32 33 31 32 33 a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零. 如a b c a b c 0ka kb kc '''= 性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和. 如11 12131112131112 13 2121 2222 2323 21222321 222331 32 33 31 32 33 31 3233 a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变. 如11 121311121321 222321222331 32 33 3111 3212 3313 a a a a a a a a a a a a a a a a ka a ka a ka =+++ 2. 余子式与代数余子式 在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i j ij ij A (1) M +=-叫做元素ij a 的代数余子式. 如11 1213 21 222331 32 33 a a a a a a a a a ,元素23a 的余子式为11 122331 32a a M a a = , 元素23a 的代数余子式为111223 232331 32 a a A (1)M a a +=-=- .

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

线性代数第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解: ∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4 T T =-----=- ∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]T T T αα+=-+-= 2.设 12[2,5,1,3],[10,1,5,10],T T αα== 3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α 解: ∵ 1236325αααα=+- [6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24], T T T T =+--= ∴ [1,2,3,4].T α= 3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ====L 时, 11220m m k k k ααα+++=L 成立, 则向量组12,,m αααK 线性相关 解:不正确.如:[][]121,2,3,4T T αα==,虽然 12000,αα+=但12,αα线性无关。 (2) 如果存在m 个不全为零的数12,,,,m k k k L 使 11220,m m k k k ααα+++≠L 则向量组12,,,m αααL 线性无关。 解: 不正确. 如[][]11121,2,2,4,1,2,T T k αα====存在k 使 121220,,.αααα+≠但显然线性相关 (3) 如果向量组12,,,m αααL 线性无关,则其中任何一个向量都 不能由其余向量线性表出. 解: 正确。(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m αααL 线性相关,与题没矛盾。 (4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。 解:不正确。例如:[][][]1230,0,0,0,1,0,0,0,1,T T T ααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。 (5) 如果向量β可由向量123,,ααα线性表示,即: 112233,k k k βααα=++则表示系数 123,,k k k 不全为零。 解:不正确。例如:[][][]120,0,0,1,0,0,0,1,0,T T T βαα=== []31230,0,1,000T αβααα==++,表示系数全为0。 (6) 若向量12,αα线性相关,12,ββ线性无关,则1212,,,ααββ线性相关.

线性代数公式大全最全最完美

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

线性代数自考A卷答案

河南成功学院 线性代数 .选择题:(每题4分,共20分) 1.A 2.C 3.B 4.C 5.D .填空题(每题4分,共20分) .计算(5 10分=50分): 1 +a 2 … n 1 2 … n ‘ m 1 2+a … n n (n +1) 1 2 + a … n 1.解:D = + =[+a] + ■. ■ .■ ■ 2 … ■ A * ■ 1 ^2 ? n + a 1 ^2 ■■亠 n + a (5 分) (10 分) 13 2.解: ( AI ) 0 3 -2 -2 0 3 1 -2 0 5 15 5 2 2 3 5 5 5 9 4 6 (8 分) 所以A 4二 4 5 3 5 6 5 13152 - 5 4 5 6 5 25(10 分) 3?解:t = — 2, 1时有 解; t = — 2时,通解 为 (4 分) (7 分) 2012— 2013学年第一学期期末考试试卷 A 答案 1. -186; 2. 2』 3. 3 4. k = -1 5. 0 n (n 1) a] a]

2 0 0 单位化得 0 2 42. 12」 豆 2 旦 12」 (8 分) 2 、 2 (10 分) 3_k 1 4.解:A —A E ;= —4 —1—人 4 —8 (4 分) 「3、 人=1时,特征向量为k -6 k^0 I 20」 -1 = 1, '2 = 2, '3 = 3 「0 ' 几=1时,特征向量为 -1 扎=2时,特征向量为 J 丿 1°丿 o A 丸=3时,特征向量为 1 (6分) £ t=1时,通解为 0 + k 1 ? 2 (10 分) 0 —-1)2「2) 一2 - (7 分) ? 丸=-2时,特征向量k 为 k 式0 (10 分) 2 -丸 0 5?解: A-^E = 0 2-& 0 = 一(扎 一1)(人 _2)(九-3)

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

自考线性代数第三章向量空间习题

第三章 向量空间 一、单项选择题 1.设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(Ⅱ)是由(A ,B )的列向量构成的向量组,则必有( ) A .若(I )线性无关,则(Ⅱ)线性无关 B .若(I )线性无关,则(Ⅱ)线性相关 C .若(Ⅱ)线性无关,则(I )线性无关 D .若(Ⅱ)线性无关,则(I )线性相关 2.设4321,,,αααα是一个4维向量组,若已知4α可以表为321,,ααα的线性组合,且表示法 惟一,则向量组4321,,,αααα的秩为( ) A .1 B .2 C .3 D .4 3.设向量组4321,,,αααα线性相关,则向量组中( ) A .必有一个向量可以表为其余向量的线性组合 B .必有两个向量可以表为其余向量的线性组合 C .必有三个向量可以表为其余向量的线性组合 D .每一个向量都可以表为其余向量的线性组合 4.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( ) A.α1,α3线性无关 B.α1,α2,α3,α4线性无关 C.α1,α2,α3,α4线性相关 D.α2,α3,α4线性相关 5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量 D .s ααα,,,21 全是零向量 6.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4 D.32 7.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关 D. α1,α2,α3一定线性无关 8.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3 D.4 9.下列命题中错误.. 的是( ) A.只含有一个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由一个非零向量组成的向量组线性相关 D.两个成比例的向量组成的向量组线性相关 10.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( ) A.α1必能由α2,α3,β线性表出 B.α2必能由α1,α3,β线性表出 C.α3必能由α1,α2,β线性表出 D.β必能由α1,α2,α3线性表出

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

自学考试-线性代数试卷及答案集合

2014年10月高等教育自学考试全国统一命题考试 04184线性代数(经管类)试卷 本试卷共8页,满分100分,考试时间150分钟。 说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵, A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。错选、多选或未选均无分。 1.设3阶行列式1 1 1 232221 13 1211 a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】 A.1- B.0 C.1 D.2 2.设A 为3阶矩阵,将A 的第3行乘以2 1 -得到单位矩阵E , 则A =【 】 A.2- B.2 1 - C.21 D.2 3.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量 B. B.任意两个向量都线性无关 C.存在一个向量可由其余向量线性表出 D.每个向量均可由其余向量线性表出 4.设3阶矩阵??? ? ? ??---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为 【 】 A.????? ??-011 B.????? ??-101 C.????? ??201 D.???? ? ??211 5.二次型212 322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】 A.0 B.1 C.2 D.3 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错误、不填均无分、

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

历年自考线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2 1 21, n c c b b =2 1 21,则 =++2 21 121c a c a b b ( B ) A .n m - B .m n - C .n m + D .)(n m +- m n n m c c b b a a b b c a c a b b -=+-=+ = ++2 1 212 1 212 21 121. 2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACB B .CAB C .CBA D .BCA BCA CA B AC B C BA C AB ABC =====)()()()(. 3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8- B .2- C .2 D .8 8||)2(|2|||||3-=-=-=A A A B . 4.????? ??=3332 312322 21131211a a a a a a a a a A ,????? ??=3332 312322 211312 11333a a a a a a a a a B ,????? ??=100030001P ,??? ? ? ??=100013001Q ,则=B ( B ) A .PA B .AP C .QA D .AQ ????? ??=3332312322 211312 11a a a a a a a a a AP ????? ??100030001B a a a a a a a a a =??? ? ? ??=3332312322 211312 11333. 5.已知A 是一个43?矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关 B .由3个2维向量组成的向量组线性相关

线性代数自考复习题

练习题线性代数

西南财经大学成人(网络)教育学院

线性代数 一、填空题 1、行列式D =111213 212223313233 a a a a a a a a a 的转置行列式T D = 2、若()ij n n A a ?=为n 阶矩阵,当满足 时,A 为对称矩阵。 3、A,B 是同阶可逆矩阵,则(AB)-1 = 4、设向量组1125α?? ?=- ? ???,2321α?? ?= ? ?-??,331017α?? ?= ? ?-??,42001089α?? ? = ? ??? ,则向量组1234,,,αααα线 性__________(填 线性相关或线性无关)。 5、二次型 222123123121323(,,)25226f x x x x x x x x x x x x =+++++的二次型矩阵 为 。 6、 若行列式13 1 500 2 2 x -=-,则x =________________。 7、 设A=1111-?? ??? ,则矩阵A 的逆矩阵1A - = ________________。 8、 设1(10 0)T ε=,2(010)T ε=,2(001)T ε=, 则向量组123,,εεε线性__________(填 线性相关或线性无关)。 9、设(110)α=,(030)β=,(12 0)η=,则324αβη+-=__________. 10、设阶矩阵A 与B 相似,矩阵A 的所有特征值为111 ,,234 ,则行列式B =_______。 11、设A 为3阶方阵,A =2,则4A =________________。 12、A *是A 的伴随矩阵,且A 可逆,则(A *)-1 =________________。

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A 1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1 ,3)T T T =--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223?????? ? ? ? ? ? ?+-=+- ? ? ?-- ? ? ?-??????ααα1251613109491512561037???????? ? ? ? ? ? ? ? ?=+-= ? ? ? ?--- ? ? ? ?--???????? . 2.从以下方程中求向量α 1233()2()5()-++=+αααααα, 其中123(2,5,1,3),(10,1,5,10),(4,1 ,1,1).T T T ===-ααα 解 由方程得1233322550-++--=αααααα, 1232104651112 632532515118310124???????? ? ? ? ? ? ? ? ?=+-=+-= ? ? ? ?- ? ? ? ?????????αααα 故12 34?? ? ?= ? ??? α,即(1,2,3,4)T =α. 3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα 4.证明: 包含零向量的向量组线性相关. 证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有 12110α0αα00α0α0,0i i s k k -++++++++=≠ 而0,0,,0,,0,,0k 不全为0,故向量组线性相关. 5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关. 6.判断下列向量组的线性相关性

线性代数第三章(答案)

第三章 矩阵的初等变换与线性方程组 一、填空题 1、 设???? ?? ? ??=n n n n n n b a b a b a b a b a b a b a b a b a A 2 1 2221 212111,其中),,2,1(,0,0n i b a i i =≠≠,则=)(A R ____ 2、 设n 阶矩阵A 的各行元素之和均为零,且=)(A R n -1,则线性方程组AX =0 的通解为________ 3、 设四阶方阵的秩为2,其伴随矩阵的秩为_______ 4、 设?????? ? ??=---112 11 22 221 21n n n n n n a a a a a a a a a A ,??????? ??=n x x x X 21,???? ??? ??=111 B ,其中 ),,2,1,,(n j i j i a a j i =≠≠,则线性方程组B AX =的解是________ 5、 已知????? ? ?=10 0210 002 P ,??? ? ? ? ?=20 0020 001A ,则=-1001)(AP P ________ 6、 设A ,B 均为n 阶矩阵AB =0,且A +B=E,则=+)()(B R A R _________ 7、 设矩阵n m A ?的秩为r ,P 为m 阶可逆矩阵,则)(PA R =________ 8、 矩阵??? ?? ??--34031302 1201 的行最简形矩阵为___________ 9、 矩阵??? ? ? ? ?----17 4 03430 1320的行最简形矩阵为__________ 10、 从矩阵A 中划去一行得到矩阵B ,则)(______)(B R A R 从矩阵A 中增加一行得到矩阵B ,则)(______)(B R A R

历年自考线性代数试题真题及答案分析解答完整版

历年自考线性代数试题 真题及答案分析解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2 1 21, n c c b b =2 1 21,则 =++2 21 121c a c a b b ( B ) A .n m - B .m n - C .n m + D .)(n m +- 2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACB B .CAB C .CBA D .BCA 3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8- B .2- C .2 D .8 4.??? ?? ??=3332312322 21131211a a a a a a a a a A ,????? ??=3332312322 211312 11333a a a a a a a a a B ,????? ??=100030001P ,??? ? ? ??=100013001Q ,则= B ( B ) A .PA B .AP C .QA D .AQ 5.已知A 是一个43?矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2

B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误.. 的是( C ) A .只含有1个零向量的向量组线性相关 B .由3个2维向量组成的向量组线 性相关 C .由1个非零向量组成的向量组线性相关 D .2个成比例的向量组成的向量组线性相关 7.已知向量组321,,ααα线性无关,βααα,,,321线性相关,则( D ) A .1α必能由βαα,,32线性表出 B .2α必能由βαα,,31线性表出 C .3α必能由βαα,,21线性表出 D .β必能由321,,ααα线性表出 8.设A 为n m ?矩阵,n m ≠,则方程组Ax =0只有零解的充分必要条件是A 的秩( D ) A .小于m B .等于m C .小于n D .等于n 9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( A ) A .T A B .2A C .1-A D .*A 10.二次型212 322 213212),,(x x x x x x x x f +++=的正惯性指数为( C ) A .0 B .1 C .2 D .3

(完整版)历年全国自考线性代数试题及答案

浙02198# 线性代数试卷 第1页(共25页) 全国2010年7月高等教育自学考试 试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。 1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.12 2.计算行列式 =----3 23 2 020005 1020203 ( )A.-180 B.-120C.120 D.180 3.设A =? ? ? ???4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示 D. α1不可由α2,α3,α4线性表示 5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .5 6.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似 B .|A |=|B | C .A 与B 等价 D .A 与B 合同 7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3 D .24 8.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2 D .4 10.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定 D .A 半负定 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。 1l.设A =??? ? ? ?????-421023,B =??????--010112,则AB =________. 12.设A 为3阶方阵,且|A |=3,则|3A -l |=________. 13.三元方程x 1+x 2+x 3=0的结构解是________. 14.设α=(-1,2,2),则与α反方向的单位向量是______. 15.设A 为5阶方阵,且R (A )=3,则线性空间W ={x |Ax =0}的维数是______. 16.设A 为3阶方阵,特征值分别为-2,21 ,l ,则|5A -1|=_______. 17.若A 、B 为同阶方阵,且Bx =0只有零解,若R (A )=3,则R (AB )=________. 18.二次型f (x 1,x 2,x 3)=21x -2x 1x 2+2 2x -x 2x 3所对应的矩阵是________.

线性代数第五章习题答案

思考题5-1 1. 1123123100,000=?+?+?=?+?+?a a a a 0a a a . 2.不一定。例如,对于123101,,012?????? ===???????????? a a a ,它们中的任两个都线性无关,但 是123,,a a a 是线性相关的。 3. 不一定。也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。 4. 不一定。例如,对于12121100,;,0012-???????? ====???????????????? a a b b 。12,a a 和12,b b 这两个 向量组都线性相关,但1122,++a b a b 却是线性无关的。 5. 向量组121,,,,n n +a a a a 线性无关。根据定理5-4用反证法可以证明这一结论。 习题5-1 1.提示:用行列式做。 (1)线性无关。 (2)线性相关。. 2. 0k ≠且1k ≠。 3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。 设[]12,,,,T n b b b =b 则1122.n n b b b =+++b e e e 4. 证法1:因为A 可逆,所以方程组=Ax b 有解。根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关. 证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。 5. .证: (1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0 由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。 (2)若P 可逆,则1-=A P B 。由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。 注:该题也可根据性质5-6和性质5-3来证明。 6. 证:由A 可逆知,A 的列向量组线性无关。根据定理5-6,增加两行后得到的矩阵B 的列向量组也线性无关.

线性代数第三章习题解

线性代数第三章习题解 1. 计算下列行列式: 1) 4 321; 2) 2 2b b a a ; 3) 7 04 0- 解: 1) 26432414 321-=-=?-?=; 2) )(222 2a b ab b a ab b b a a -=-=; 3) 0)4(0707 40=-?-?=-. 2. 计算下列三阶行列式: 1) 241130 4 21--; 2) 320001753-; 3) b a c a c b c b a 解: 1) 将行列式按第一列展开 2) 将行列式按第二行展开 3) 3. 计算下列行列式: 1) 0 00 0000005 5 4433 2222211111b a b a b a e d c b a e d c b a ; 2) x y y x y x y x D n 0 0000 000 00 =; 3) f e d c b a 00000000 解: 1) 将行列式按第一列展开后, 得到的各子式再按第二列展开, 这样展开后的后三列构成的任何三阶子式都至少包括一行0, 因此后三列任何三阶子式均为0, 整个行列式的值D =0. 2) 将行列式按第一列展开得 3) 先对第一列展开, 然后对第二列展开, 得 4. 利用行列式的性质计算下列行列式

1) 2 60 5 232112131412 -; 2) ef cf bf de cd bd ae ac ab ---; 3) 2 2 2 2 2222 2 2222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a 解: 下面都将所求行列式的值设为D . 1) 因为第1行加到第2行以后, 第2行将和第4行相等, 因此行列式的值D =0; 2) 首先从第1,2,3行分别提取公因子a ,d ,f , 再从第1,2,3列提取公因子b ,c ,e , 得 3) 将第2,3,4列都展开, 并统统减去第1列, 得 再将第3列减去2倍的第2列, 第4列减去3倍的第2列, 得 5. 把下列行列式化为上三角形行列式, 并计算其值 1) 1 5 2 3 21353140422 -----; 2) 2 1 6 4 72954 1732152----- 解: 1) 2) 6. 计算下列n 阶行列式 1) 12125 4 3 1432321-n n n 2) a b b b a b a 解: 1) 设此行列式的值为D , 将第2,3,…,n 列均加于第一列, 则第一列的所有元素均为 )1(2 1 321+= ++++n n n , 将此公因式提出, 因此有 再令第n 行减去第n -1行, 第n -1行减去第n -2行, …, 第2行减去第1行, 可得 2) 此题和第3题的2)一样, 因此有n n n b a D 1 )1(+-+= 7. 证明下列行列式 1) ))()((1 11 a c c b b a ab ca bc c b a ---=

相关文档
最新文档