第十章 机器视觉 人工智能课程 北京大学

第十章 机器视觉   人工智能课程   北京大学
第十章 机器视觉   人工智能课程   北京大学

第十章机器视觉

教学内容:本章所研究的机器视觉是诸多传感信息中包含信息最丰富、最复杂和最重要的感觉之一,也是应用最为广泛的机器感觉之一。内容包括图象的理解与分析、视觉的知识表示与控制策略和物体形状的分析与识别等。

教学重点:物体边缘距离的计算、表面方向的计算、物体形状识别方法

教学难点:图匹配法、松弛标示法、多层匹配法等

教学方法:用较为通俗的语言将机器视觉的相关知识讲透彻,同时结合图表,对不同线条的标示方法进行讲解。多结合日常生活中常有的现象,让学生对所学知识有更深入的认识。

教学要求:重点掌握视觉信息的表达方法,包括初始简图、二维半简图和三维模型;掌握物体边缘距离和表面方向的生理学基础及计算原理和计算方法;了解复杂形状物体的表示和三维物体的形状描述方法;一般了解机器视觉应用系统的构成、视觉系统的设计思想。

10.1 图象的理解与分析

教学内容:对图象进行理解和解释是计算机视觉的研究中心,也是人工智能研究的焦点之一。

教学重点:初始简图、二维半简图和三维模型

教学难点:松弛算法、边缘距离的计算

教学方法:以课堂书本知识为主,采取提问,讨论等方式提高学生学习的积极性,自主性和创造性。

教学要求:重点掌握视觉信息的表达方法,包括初始简图、二维半简图和三维模型;掌握物体边缘距离和表面方向的生理学基础及计算原理和计算方法

10.1.1 视觉信息的表达方法

根据马氏(Marr)提出的假设,视觉信息处理过程包括3个主要表达层次,即初始简图、二维半简图和三维简图,如图10.1所示。

图10.1 视觉信息的表达层次

1、初始简图的基本概念:

亮度图象含有两种重要信息:图象的亮度变化和局部几何特征。初始简图是一种本原表达法,它能完全而又清楚地表示上述信息。初始简图所包含的信息大部分集中在与实际边缘以及边缘终止点有关的剧烈灰度变化上。对于每一边缘亮度变化,在初始简图上都有对应的描述。这些描述包括:与边缘有关的亮度变化率、总的亮度变化、边缘长度、曲率和方向等。粗略地说,初始简图是以勾划草图的形式来表示图象中的亮度变化的。

图10.2 用初始简图表示灰度变化图10.3 二维半简图举例

2、二维半简图的基本概念:

二维半简图包含景物表面的信息,可以把它看做某些内在特性的混合信息。二维半简图清楚地表示物体表面方向的信息。物体表面法线从物体内部穿出来,使物体好象穿刺。

3、三维模型的表示方法

三维表达法能够完全而又清晰地表示有关物体形状的信息,其方法之一即为广义柱体。广义柱体的概念十分重要,而其表示方法又十分简单,如图10.4所示。图中,柱体的横截面沿轴线的投影不变。一个普通圆柱可看作是一个圆周沿其中心垂线移动而成;一个楔形物是一个三角形沿其中垂线移动而得的,等等。一般地说,一个广义柱体是二维轮廓图沿其轴线移动而成的。在移动过程中,轮廓与轴线之间保持固定的角度不变。轮廓可为任何形状,而且在移动过程中其尺寸可能是变化的,其轴线也不一定是垂线或直线,如图10.4所示。

图10.4 广义锥体 10.5 截面形状变化或轴线为曲线时

的广义柱体

10.1.2边缘距离的计算

1、图象辉亮边缘的平均与差分

产生噪声边缘问题是因为在获得图象时,会遇到传感器的亮度灵敏性波动、图象坐标信息误差、电子噪声、光源扰动以及无力接收大范围变化的亮度信息等。另一个原因是图象本身很复杂,其实际边缘并不是陡削的,而是逐步过渡的;还可能存在相互照明效应、意外划痕和灰尘等。

一种处理噪声边缘的方法包括下列四个步骤:

(1)从图象建立平均亮度阵列。

(2)从平均亮度阵列产生平均一阶差分阵列。

(3)从一次平均差分阵列建立二次平均差分阵列。

(4)据所得阵列,记下峰点、陡变斜率和过零点,以寻求边缘信号的集合。

2、灵长目动物视网膜特性

图10.6 灵长目动物视网膜输入-输出特性实验图10.7 视网膜实验特

性与墨西哥草帽形滤波结果的比较

墨西哥草帽形滤波器与一些了解灵长目动物早期视觉的实验相一致。关键实验如图10.6所示。被试动物注视各种从白色背景前移过的色质(stimuli)。这些色质包括一条窄的黑带、一条宽的黑带以及一个单白黑边缘。记录探针测定各种神经反应。把此神经反应与据墨西哥形草帽滤波器作出的预计进行比较。

图10.7给出比较结果。在图10.7中,(a)表示3个自左向右移动的色质的亮度分布曲线;(b) 表示以适当宽度的墨西哥草帽形滤波器对所给出的亮度分布进行滤波的结果;(c)为所谓X神经节细胞上记录的实验数据。比较图10.7(b)和(c)可见,两者极其相似。这表明灵长目动物的视网确实进行了某些与墨西哥

草帽形滤波器十分相似的处理工作。如果对墨西哥草帽形滤波器稍加修改,就能够改善相似性,如图10.7(d)所示。

比较结果得到的高度相似性,使我们有足够的根据作出下列假设:

(1)灵长目动物视膜所进行的滤波处理功能在运算上是与由墨西哥草帽形点扩散函数所进行的滤波相似。

(2)存在有两种视膜细胞,一种用于传输滤波图象的正向部分,另一种传递滤波图象的负向部分。

(3)对于每种细胞,墨西哥草帽形滤波器是通过激发与禁止这两种操作的组合来实现的。这个滤波器等价于两个以二维高斯滤波器滤波所得图象的差。

3、物体距离的测定

图10.8表示两眼立体视觉中的相对位置关系。图中,P点为一物体。两个透镜的轴线是平行的。f为两透镜与图象平面的距离,即为其焦距。b为两透镜轴线在基线上的距离,即为两眼的距离。l和r分别为P点与左、右透镜轴的距离。α和β分别为左右图象与其相应透镜轴线的距离。

从两相似三角形,可求得观察者双眼

至物体的距离:

由于双眼距离b为已知,焦距f也是确定的,因此,一个物体与双眼的距离和(α+β)成反比。(α+β)为该点的一幅图象点位置相对于另一幅图象点位置的位移,称为视差(disparity)。

立体视觉的实际问题就是据左右两图象找到相应的物体,以便能够测量视差。已有许多不同的立体视觉系统能在不同程度上成功地寻找出相应的物体。

10.1.3 表面方法的计算

1、反射图体现光照约束

把从所有可能位置观察到的亮度都相同的表面定义为朗伯表面(Lambertian Surface),它的亮度只由光源的方向决定。这一关系遵循下列公式:E=ρcosi。式中,E为被观察亮度;ρ为表面反射率(对于特定的表面材料,ρ为一常数);i为入射角。

2、表面方向的确定

上面我们研究了利用表面方向预测表面的亮度。下面研究从感测到的亮度来计算表面各方向参数f和g。

由f和g来确定表面方向,初看起来似乎是不可能的。因为一小块表面只能确定切面FG上的一条曲线,而不是单一的点。但是,事实上这样做却是可能的,因为大部分表面是平滑的,在不同深度和方向上只出现有少数不连续的情况。因此,可以利用下面两个约束:

(1)亮度。由f和g所确定的表面方向应与表面亮度所要求的表面方向无多大不同。

(2)表面平滑度。一点的表面方向应与邻近各点的表面方向无多大变化。

对于每个点,计算的f和g值应兼顾上述两个约束计算所得的值。据亮度要求特定点的f和g值应落在等亮度线上,而据表面平滑度则要求f和g值接近相邻点f和g的平均值。

3、松弛算法

(1)对所有非边界点,令f=0和g=0。对所有边界点,令f和g规定一个长度为2的垂直于边界的矢量。称输入阵列为当前阵列。

(2)进行下列步骤(直到所有的值变化得足够慢为止):

(a)对当前阵列中的每个点:

i)如果是个边界点,则不做任何事;

ii)如果是个非边界点,那么用松弛公式计算新的f和g值。

(b)把所得新阵列称为当前阵列。

10.2 积木世界的景物分析

教学内容:可见的景物的传感器编码,检测器搜索图象主要成分(如线段、简单曲线和角度等)的处理,利用知识推断有关景物的三维特征信息。

教学重点:无断裂和阴影时三面顶点的标示方法,有断裂和阴影时线条图的分析。

教学难点:无断裂和阴影时三面顶点的标示方法。

教学方法:以课堂教育为主,通过多种途径开发学生的学习热情,结合实践。

教学要求:基本了解积木世界景物的线条标示方法,掌握无断裂和阴影时三面顶点的标示方法和有断裂和阴影时线条图的分析。

10.2.1积木世界景物的线条标示方法

图10.9 几种典型的线条图

积木世界视觉研究的主要目标是理解从一堆玩具积木的图象得到对于景物的描述。所谓描述就是把出现在图象中的大量的线条聚集成代表景物中各个积木的线条组。研究积木世界景物时,输入的图象可以是积木景物的照片、电视摄影图象或是线条图。如果是属于前二种,那么第一步就是从图象得到线条图。这属

于马氏初始简图的范围,但没有那样复杂,只是用了边缘检测算子。在以下的讨论中,我们都假设已经得到了积木世界的线条图的情况。

积木世界景物分析的研究对象比较狭窄,并且是有意地进行了简化,但仍不失为合适的计算机视觉研究的初步目标。在这个领域中的研究已经取得了一些有实用意义的成果。积木世界可以推广为类似工业零件的多面体,而理解简单的三维工程图是建立有视觉的工业机器人装配系统的第一步。

10.2.2 无断裂和阴影时三面顶点的标示方法

1、线条和接点的分类

先研究无断裂的三面顶点,并且设想合适的光照条件,避免了所有的阴影。在这样的环境下,图中的所有线条代表了各种天然产生的边缘。这些线条的简单分类如下。

2、标志三面接点的方法

为了对围绕接点的线条的标示方式进行分类,需要从每个可能的方向来观察每种实际可能的三面顶点。但这样做会遇到可供选择的方向过多的困难,为此把除了一般的观察位置以外的方向都排除在外,以减少可能出现的情况。假设在这一节的其余部分仅讨论只包含三面顶点的线条图。任何三面顶点的3个面规定了3个相交的平面,这3个相交的平面把空间分成8个间隔。很明显,某个形成一个顶角的物体就占有上述8个间隔(或八分体)中的一个或几个。接点标志所说明的是物体如何占有八分体。可以通过以下两个步骤来构成完整的包含所有连接可能性的字典:先考虑所有的以物体来充满这8个八分体的方式;然后,从未被充满的八分体观察所得到的顶点。

10.2.3 有断裂和阴影时线条图的分析

改善线条描述可使约束的数目增加,从而提高分析的速度。要进一步研究是否有别的方法对线条的解释作进一步的分类。在介绍具体方法以前,有一个问题需要注意,即随着线标志集合的扩展,实际接点标志的集合将显著增加。将会有几千种合法的接点标志,而不是只有18种。因此不可能建立一个合法接点标志表和企图让摸拟计算机利用这个表格来做些什么。

以下介绍两种对线条解释作进一步分类的方法:

1.对凹面标志进一步分类并引入断裂线标志

考虑到物体经常放在一起。所以,凹面标志可以分成3类,这3类表示有关物体的数目和认出哪个物体是在前面的。设一条凹面边缘表示两个物体接触在一起的地方。然后想象把这两个物体稍为拉开一点。这样,这个凹面边缘就成为边界,其上标志指向两个可能方向中的一个。这两种可能性以一个由原来的负号标志和一个新的箭头标志组成的合成标志来表示。如果有3个物体相接触,同样可利用一个合成标志表示如果物体稍为离开一些时可以看到什么。断裂线也可以类似地处理:每一根断裂线被标以1个c和1个箭头,表示这两个有关的物体如何配合在一起。

2.用光照条件增加标志数量和严格约束

另一种改善线条描述的方法是结合单光源的光照条件。

概括起来,线条解释的每一次改进都促使一次线条标志的大扩展。开始时只考虑基本的线条、边界线、内部的凹面线和凸面线。这些初始的线条种类扩展到包括阴影线。凹面线又分成四类以反映接触在一起的物体个数,以及这些物体间如何相互遮挡。这引入了断裂线并以和凹面线相类似的方式分成2类。最后,线条的信息和照明信息相结合。从最后这次扩展产生50种线条标志。

思考:合法的标志数目相对于不合法的标志数如何增加。

10.3 视觉的知识表示与控制策略

教学内容:研究在人工智能其它领域中发展起来的知识表达方法,主要是语义网络在视觉领域中的应用。

教学重点:语义网络,位置网络

教学难点:位置网络

教学方法:以课堂教育为主,通过多种途径开发学生的学习热情,例如:课堂练习,思考,讨论及提问等,并结合实践,加深对课堂知识的理解。

教学要求:了解语义网络及位置网络,一般了解视觉系统的控制策略。

10.3.1 视觉信息的语义网络表示

着重介绍语义网络,它具有如下特点:

(1)可作为一种很方便地存取模拟知识的表达方法以及命题逻辑的知识表达的数据结构。

(2)可作为一种反映在有关领域中事物之间相互关系的模拟结构。

(3)可用作一种具有特殊的推理规则的命题逻辑表达法。

习题:试用语义网络表示以下景物:

“在道路57(road57)与河流3(river3)交叉处的桥梁位于建筑物30(building30)附近。”

10.3.2 位置网络表示

在一般的应用场合中,景物中所期望的特征的相对位置都已表示在网络中,这样网络就把图象的所期望的结构模型化了。物体之间几何关系的基本运算有以下4种:

(1)方向性运算(左、反射、北、上、下等):以相对于其他点集的位置和方向来规定 点集。

(2)区域运算(靠近于、在四边形内、在圆周内等等):建立一个和其他点集无方向关系的点集。

(3)集合运算:完成并、交以及求差等集合运算。

(4)谓词运算:对区域进行的谓词运算可通过测量某些数据的特征来删除某些点集。

10.3.3 视觉系统的控制策略

视觉控制策略支配着通过各表达层次的信息流和活动,哪个触发机构在处理?是像视网膜上色块一般的低级输入呢,还是一种高层期望,对于这两种极端作不同的强调是一个基本控制问题,这两个极端表征如下:

(1)图象数据的驱动。这里控制的进行过程是从建立广义图象到已分割图象结构,最后为描述,这也叫由底向上控制(bottom-up control)。

(2)内部模型驱动。知识库内的高层模型产生对输入的几何、分割的或广义图象的期望或预测,图象理解是这种预测的验证,这也称为自顶向下控制(top -down control)。

(3)非层次控制。这个术语似乎由麦卡洛克(McCulloch)提出来的,他使用这个术语描述脑神经反应连通性所蕴涵的反应的本质,其思想是在任何给定时刻使用能够完成最终任务的办法,提供最多帮助的专家。

10.4 物体形状的分析与识别

教学内容:多面体化为对非多面体景物的描述问题,并以这些描述为基础,对物体形状进行分析与识别。

教学重点:讨论非多面物体的分析,并特别集中于形状分析。

教学难点:松弛标示法、多层匹配法。

教学方法:课堂讲解

教学要求:了解物体形状分析与识别的基本概念

10.4.1 复杂形状物体的表示

一个好的形状表示能够由物体的部分视图来识别物体,而且物体形状的小变化只引起形状描述的小变化。物体各部分的连接表示应当是很方便的,它能够比较两个物体的差别和相似性,而不仅是进行简单的分类。

如果把复杂物体表示为被分割的比较简单的部分以及这些部分间的相互关系,那么上述要求就比较容易得到满足。

对形状的识别是由两个相关描述的匹配获得的。一个物体的部分视图所产生的描述图是完整的物体描述子图,并能适当匹配过程的需要。

1、曲线形状的描述与量度

曲线描述对于一些特别物体(如字母符号)和三维景物(如某地区照片上的道路)分析是很重要的。此外,三维物体的形状描述也往往被简化为“轮廓”线条结构。

(1)曲线的存储方法。依次采用曲线上各点的坐标序列来表示线条是最容易的描述方法。如果只要存储曲线的起点坐标和依次各点的坐标增量,那么就能够显著节省计算机内存。

(2)曲线的近似描述。曲线的紧密和结构描述可以采用近似方法。一种方法是把曲线展开为正交级数;另一种是把曲线分段为一些比较简单的曲线。线性分割分段近似是最常见的,而样条函数(对多项式分段,在各连接点规定连续条件)具有普遍意义。

(3)曲线形状分析量度法。把一些与某曲线的分析近似法有关的系数用来表示该曲线形状的特征。不同形状的曲线具有不同的系数。不过,随着比例尺、旋转和遮断情况的不同,这些系数可能变化很大。因此,这种分析量度法只适用于曲线数目较少及预期变化较小的情况。

2、面积形状的描述与量度

采用图形内部不在边界上的点来描述图形,比较健全,因为比较小的面积变化能引起大得多的边界变化。

(1)简单形状的量度。由平面图形的面积和周边来粗略量度其形状[面积×(周长)2]是个与图形尺寸、位置和方向无关的量度不变式。把一个图形的最小约束矩形定义为一个完全包围该图形的矩形,而且此矩形不会被任何其它的这类矩形所包围,见图10.10。

一种改进的对图形形状的近似量度是由它的凸缘进行的。把凸缘定义为包围已知图形的最小凸出图形。原图形则由凸缘形状及图中凹面或凹陷的数目和形状来描述,见图10.11。

图10.10最小约束矩形图10.11图形的凸缘与凹陷

(2)面积分析量度法。如同曲线描述一样,借助于某些基本函数(如二维傅里叶级数)对图形展开或近似而得到的系数,可用于对图形形状进行分析量度。对于一些基本函数,有可能组合这些系数以获得一个对比例尺、位置和方向的不变式。

10.4.2 三维物体的形状描述

三维物体的形状可由物体的外表面或这些外表面所包络的容体来描述(可把洞孔描述为负容积)。

三维物体描述特别困难之处在于,三维表面或容积需要二维图象来推断,尤其是对不可见表面的推断。下面我们将着重分析由二维图象进行容积描述问题。

1、物体形状的广义锥体表示

可用广义柱体(有时称为广义锥体)来表示物体的形状。由于单一的广义锥体能够描述任意容积,因此,复杂的形状能够自然地分割为若干个比较简单的广义锥体来描述。图10.13所示的螺丝起子可由4个广义锥体来描述。其中,一个对应于螺丝刀片,为一变化的矩形截面;另一个对应于螺丝刀杆,具有圆截面;还有2个广义锥体在手把上。简化广义锥体的准则应是其横截面的形状、尺寸或轴线方向不发生陡削变化。

图10.13螺丝起子的广义锥体表示

2、广义锥体描述的计算

广义锥体表示不是变换表示,对于同一输入可能有许多可供选择的描述。需要从中选择一种或多种最好的描述。

(1)拟合表面数据。已知可见表面的三维位置以及对轴线和横截面形状的约束,就能拟合出最佳广义锥体。对于已知形状的横截面,可能求得一个简单的迭代解答。考虑一个正圆柱体。起初,该圆柱体的轴线方向和横截面都是未知的。任选一个方向之后,就能够对可见表面拟合出椭圆横断面。通过这些横截面矩心的某轴线,并不需要与该轴线垂直。接着,能够作出垂直于该轴的横截面。重复此过程,直至只观察到很小的横截面变化为止。对于正圆柱体和正圆锥体,这个过程收敛得很快。对于任意形状的物体,其收敛情况是不确定的,这时,要采用这种拟合技术,需要假设横截面由椭圆所近似。

(2)采用物体边界。二维锥面能够由物体的边界来计算。如果二维轮廓是三维物体的投影,那么被计算的锥面就是所求的三维锥体的投影。

10.4.3 物体形状识别方法

物体或者由几个物体组成的构件,可由比较它们的描述及存储在计算机内的模型描述来识别。这些模型可能由下列方法获取:存储预先遇到的物体的机器描述,直接学习视图数据序列,或者只是由操作人员提供。如果物体的描述是一张特性清单,即特性矢量,那么能够采用一般的数学模式识别技术来识别。对于结构性描述,需要采用比较复杂的匹配技术。此外,不要求用大量的内存把一个描述与每一个存储模型进行匹配试验,没有完全匹配而要选择一个合适的子集,就需要进行检索。

1、图匹配法(Graph matching)

结构性描述可视为图或网络。我们对评价两幅图的相似性感兴趣。下面介绍一些有关相似性的量度。

令某幅图G:〈N,P,R〉定义为由结点集合N(表示物体的部件)、这些结合特性的集合P以及结点(节点)间关系的集合R组成的。已知两幅图G:〈N,P,R〉和G′:〈N′,P′,R′〉,如果当且仅当P(n)与P′(n)对某一给定的相似性量度相似(即节点n的特性与节点n′的特性相似)时,就说形成一对配对

(assignment)(n,n′)。如果有两对配对(n

1,n

1

′)和(n

2

,n

2

′),对于R中的r

和R′中的r′的所有关系使得r(n

1,n

1

′)=r′(n

2

,n

2

′)成立,那么就说这

两对配对是兼容的。其中,我们假设关系是二元的。

如果两幅图G和G′的节点具有一对一的配对,使得所有配对相互兼容,那么就称这两幅图是同构的(isomorphic)。其中,如果(n,n′)为一配对,那么仍然要求P(n)=P′(n′)。如果G的子图与G′的子图同构,那么就称图G与G′为亚同构的(subisomorphic)。

2、松弛标示法(Relaxation labeling)

把标示问题定义为一个标示集合与一个节点(或单元)集合的配对,使得标示配对与给定约束相一致。这种标示法有许多应用,而且包含了图匹配问题。这时,标示是其它图的节点。

令N为被标示节点的集合,L为可标示的集合。对于每个n

i

,想要指定一个

标示集合L

i ,使得L

i

为L的一个子集,而且这些标示与给定约束相容。对于不

含糊的情况,每个集合L

i

只包含一个元。最简单的约束是一元的,限制标示只

可能赋予某个确定的节点,而不考虑网络中的其它节点。二元约束规定一对节点

的标示之间的关系。对于节点n

i 的一个标示集合L

i

,可能与节点n

j

的一个标示

集合L

j 相容,如果L

i

的每个标示至少与L

j

的一个标示相容的话。这种相容性称

为弧相容性(arc consistency)。

一般说来,约束是n元的,而且弧相容性可能并不导致全局相容性(global consistency)。图10.44给出一个例子,其一元约束为:要对每个节点标示为红色或绿色,而且要求相邻点为不同的颜色。每当对一个节点指定红色或绿色之后,我们能够对其相邻节点指定一个相容的标示,但是不能使这3个节点同时满足全局约束。

一个更大的约束是路径相容性(path consistency)。两个节点n

i 和n

j

(其标

示为1

k 和1

l

)是路径一致的,如果网络内存在一条从n

i

至n

j

的路径,对于此路径

上的每个节点不存在标示集合,而对于两端点同时与标示1

k 和1

l

相一致(用二元

法)。图10.14的网络不是距径相容的。

只考虑弧相容性,因为它对减少可供选择的方案往往是有用的。

图10.14弧一致但全局不一致的标示

3、多层匹配法(Multilevel matching)

图匹配和景物松驰标示技术是普遍的。不过,它们不能提供对相似和差异的满意描述。采用数字权,结合非相关特性(如颜色和尺寸等)可能没有多大意义。一个可供替代的方案是多层匹配法。对两种描述进行多层匹配的结果本身就是一种有关它们相似和差异的描述。如果由两个模型匹配求出同样的差异,那么可能需要对景物重新进行检查,以找出更精细的细节。

已有一些采用这种方法来识别物体的例子。在某些情况下,两个模型可能具有类似的连通性。这时,可由各个单独部件的特性来对模型加以区别。一般上,需要比较详细的分析。

当模型数较多时,对每个模型进行匹配是不适宜的,而且对内存的检索很可能只需要检索少数几个模型即可。可以采用诸如观察者方位以及环境中期望物体的知识等关系来检索。

一个检索过程应当能够适应因观察条件不同而引起的物体描述变化以及由描述过程本身引起的可变性。描述的可变性可由检索观察过的描述以及根据期望变化干涉这些描述来调整。

10.5 小结

本章所研究的机器视觉是诸多传感信息中包含信息最丰富、最复杂和最重要的感觉之一,也是应用最为广泛的机器感觉之一。图象的理解与分析是机器视觉的中心研究内容之一。

物体形状是最重要的视觉信息之一,也是工农业生产、交通和国防等应用中需要识别与分析的最主要的问题。

人工智能地研究方向和应用领域

人工智能的研究方向和应用领域 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。广义的人工智能包括人工智能、人工情感与人工意志三个方面。 一、研究方向 1.问题求解 人工智能的第一个大成就是发展了能够求解难题的下棋(如国际象棋)程序。在下棋程序中应用的某些技术,如向前看几步,并把困难的问题分成一些比较容易的子问题,发展成为搜索和问题归约这样的人工智能基本技术。今天的计算机程序能够下锦标赛水平的各种方盘棋、十五子棋和国际象棋。另一种问题求解程序把各种数学公式符号汇编在一起,其性能达到很高的水平,并正在为许多科学家和工程师所应用。有些程序甚至还能够用经验来改善其性能。 2.逻辑推理与定理证明 逻辑推理是人工智能研究中最持久的子领域之一。其中特别重要的是要找到一些方法,只把注意力集中在一个大型数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的定理寻找一个证明或反证,确实称得上是一项智能任务。为此不仅需要有根据假设进行演绎的能力,而且需要某些直觉技巧。 1976年7月,美国的阿佩尔(K.Appel)等人合作解决了长达124年之久的难题--四色定理。他们用三台大型计算机,花去1200小时CPU时间,并对中间结果进行人为反复修改500多处。四色定理的成功证明曾轰动计算机界。 3.自然语言理解 NLP(Natural Language Processing)自然语言处理也是人工智能的早期研究领域之一,已经编写出能够从内部数据库回答用英语提出的问题的程序,这些程序通过阅读文本材料和建立内部数据库,能够把句子从一种语言翻译为另一种语言,执行用英语给出的指令和获取知识等。有些程序甚至能够在一定程度上翻译从话筒输入的口头指令(而不是从键盘打入计算机的指令)。目前语言处理研究的主要课题是:在翻译句子时,以主题和对话情况为基础,注意大量的一般常识--世界知识和期望作用的重要性。

完整版机器视觉思考题及其答案

什么是机器视觉技术?试论述其基本概念和目的。答:机器视觉技术是是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉技术最大的特点是速度快、信息量大、功能多。机器视觉是用机器代替人眼来完成观测和判断,常用于大批量生产过程汇总的产品质量检测,不适合人的危险环境和人眼视觉难以满足的场合。机器视觉可以大大提高检测精度和速度,从而提高生产效率,并且可以避免人眼视觉检测所带来的偏差和误差。机器视觉系统一般由哪几部分组成?试详细论述之。答:机器视觉系统主要包括三大部分:图像获取、图像处理和识别、输出显示或控制。图像获取:是将被检测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据。 该部分主要包括,照明系统、图像聚焦光学系统、图像敏感元件(主要是CCD和CMOS采 集物体影像。 图像处理和识别:视觉信息的处理主要包括滤波去噪、图像增强、平滑、边缘锐化、分割、图像识别与理解等内容。经过图像处理后,图像的质量得到提高,既改善了图像的视觉效果又便于计算机对图像进行分析、处理和识别。 输出显示或控制:主要是将分析结果输出到显示器或控制机构等输出设备。试论述机器视觉技术的现状和发展前景。 答:。机器视觉技术的现状:机器视觉是近20?30年出现的新技术,由于其固有的柔性好、 非接触、快速等特点,在各个领域得到很广泛的应用,如航空航天、工业、军事、民用等等领域。 发展前景:随着光学传感器、信息技术、信号处理、人工智能、模式识别研究的不断深入和计算机性价比的不断提高,机器视觉技术越来越成熟,特别是市面上已经有针对机器视觉系统开发的企业提供配套的软硬件服务,相信越来越多的客户会选择机器视觉系统代替人力进行工作,既便于管理又节省了成本。价格持续下降、功能逐渐增多、成品小型化、集成产品增多。 机器视觉技术在很多领域已得到广泛的应用。请给出机器视觉技术应用的三个实例并叙述之。答:一、在激光焊接中的应用。通过机器视觉系统,实时跟踪焊缝位置,实现实时控制,防止偏离焊缝,造成产品报废。 二、在火车轮对检测中的应用,通过机器视觉系统抓拍轮对图像,找出轮对中有缺陷的轮对,提高检测精度和速度,提高效率。 三、大批量生产过程中的质量检查,通过机器视觉系统,对生产过程中的产品进行质量检查 跟踪,提高生产效率和准确度。 什么是傅里叶变换,分别绘出一维和二维的连续及离散傅里叶变换的数学表达式。论述图像傅立叶变换的基本概念、作用和目的。 答:傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。一维连续函数的傅里叶变换为:一维离散傅里叶变换为:二维连续函数的傅里叶变换为:二维离散傅里叶变换为: 图像傅立叶变换的基本概念:傅立叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图像信息的第二种语言,广泛应用于图像变换,图像编码与压缩,图像分割,图像重建等。作用和目的:图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。图像灰度变换主要有哪几种形式?各自的特点和作用是什么? 答:灰度变换:基于点操作,将每一个像素的灰度值按照一定的数学变换公式转换为一个新的灰度值。灰度变换是图像增强的一种重要手段,它可以使图像动态范围加大,使图像的对比度扩展,

机器视觉认识

机器视觉基本认识 一、机器视觉基本概念 1、机器视觉概念 机器视觉是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。随着工业自动化技术的飞速发展和各领域消费者对产品品质要求的不断提高。零缺陷、高品质、高附加值的产品成为企业应对竞争的核心,为了赢得竞争,可靠的质量控制不可或缺。由于生产过程中速度加快,产品工艺高度集成,体积缩小且制造精度提高,人眼已无法满足许多企业外形质量控制的检测需要。机器视觉代替人类视觉自动检测产品外形特征,实现100%在线全检,已成为解决各行业制造商大批量、高速、高精度产品检测的主要趋势。简言之,机器视觉就是用机器代替人眼来做测量和判断。 2、机器视觉系统 机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 可以将机器视觉系统概括为四部分: 1)、摄取:采用图像摄取装置将被摄取目标转换成图像信号,传送给图像处理系统; 2)、抽取:图像处理系统根据像素分布和亮度、颜色等信息,进行运算来抽取目标的特征,例如面积、长度、数量、位置等; 3)、输出:根据预设的判断来输出结果,如尺寸、角度、偏移量、个数、合格或不合格、有或无等; 4)、控制动作:指挥执行机构进行定位或分选等相应控制动作。 3、机器视觉系统的特点: 1)、在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉代替人工视觉; 2)、在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度,机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。 二、机器视觉与计算机视觉的区别 计算机视觉是指用计算机实现人的视觉功能—对客观世界的三维场景的感知、识别和理解。计算机视觉主要有两类方法:一类是仿生学的方法,参照人类视觉系统的结构原理,建立相应的处理模块完成类似的功能和工作;另一类是工程的方法,从分析人类视觉过程的功能着手,并不去刻意模拟人类视觉系统内部结构,而仅考虑系统的输入和输出,并采用任何现有的可行的手段实现系统功能。 计算机视觉和机器视觉两个术语既有区别又有联系。计算机视觉是采用图像处理、模式识别、人工智能技术相结合的手段,着重于一幅或多幅图像的计算机分析。图像可以由多个或者多个传感器获取,也可以是单个传感器在不同时刻获取的图像序列。分析师对目标物体

机器视觉基本介绍

机器视觉基本概念 2018.1.29 机器视觉系统 作用:利用机器代替人眼来做各种测量和判断。 它是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。 机器视觉系统的特点:是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。可以在最快的生产线上对产品进行测量、引导、检测、和识别,并能保质保量的完成生产任务 视觉检测:指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。是用于生产、装配或包装的有价值的机制。它在检测缺陷和防止缺陷产品被配送到消费者的功能方面具有不可估量的价值。 照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。 光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。 照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 镜头 FOV(Field of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比) 镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点/节点⑦畸变

人工智能在建筑行业应用概述

人工智能在建筑行业应用概述 摘要 人工智能(Artificial Intelligence,AI)是当前科学技术发展中的一门前沿学科,是在计算机科学、控制论、信息论、神经心理学、哲学、语言学等学科的研究的基础上发展起来的,因此又可把它看作是一门综合性的边缘学科。随着该学科的不断发张,其在建筑领域的应用范围也不断扩大,极大的促进了我国建筑行业从传统运作走向现代管理和经营。本文首先对人工智能进行了简要介绍,并从五个方面对该技术在建筑领域的应用进行了讨论。 关键字:人工智能;建筑领域;计算机应用。 1、引言 人工智能(Artificial Intelligence,AI)是当前科学技术发展中的一门前沿学科,是在计算机科学、控制论、信息论、神经心理学、哲学、语言学等学科的研究的基础上发展起来的,因此又可把它看作是一门综合性的边缘学科。AI的出现及所取得的成就引起了人们的高度重视并得到了很高的评价。甚至有人把AI与空间技术、原子能技术一起誉为20世纪的三大科学技术成就。 人工智能是一门研究如何构造智能机器(智能计算机)或智能系统并使它能模拟、延伸、扩展人类智能的学科。或者说人工智能就是要研究如何使机器具有听、说、看、写、思维、学习、适应环境变化、解决所面临的各种实际问题等功能的一门学科。人工智能的研究重心主要集中在专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统及人工神经网络等方面。但由于研究者对于人工智能的理解存在差异,所以就形成了不同的人工智能的研究方法,其主要有三种,分别如下: 1.1、以符号处理为核心的方法——符号主义 计算机具有符号处理的推算能力,这种能力蕴涵演绎推理的内涵。因此,可

2020年机器视觉公司排名

2020年机器视觉公司排名 机器视觉系统最基本的特点就是提高生产的灵活性和自动化程度。在一些不适于人工作业的危险工作环境或者人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。同时,在大批量重复性工业生产过程中,用机器视觉检测方法可以大大提高生产的效率和自动化程度。 近年来,随着我国智慧城市建设的重新火热,机器视觉技术的市场需求量大增。对于人脸识别、图片搜索引擎、医疗诊断、智能驾驶、娱乐营销等智慧城市建设的多个领域来说,机器视觉技术都是不可或缺的。 随着制造业企业对自动化、智能化需求的不断提升,一大批机器视觉企业涌现了出来。那么,让我们一起来看看都有哪些企业已经涉足这一领域,以及他们的发展情况如何。 机器视觉国外供应商 基恩士 从光电传感器和近接传感器到用于检测的测量仪器和研究院专用的高精度设备,KEYENCE的产品覆盖面极其广泛。KEYENCE的客户遍及各行各业,有超过80,000的客户都在使用KEYENCE的这些产品。用户只要针对特定应用选择合适的KEYENCE产品,就可以安装高产量,高效能的自动化生产线。 基恩士产品的设计理念是给予客户的制造与研发创造附加价值。产品按照通用目的进行工程设计,因此它们可以用在各个行业或广泛的应用场合。基恩士为既存和潜在的应用需要提供更具附加价值的产品。 基恩士为世界范围内约100个国家或地区的20余万家客户提供服务,基恩士这个名称意味着创新与卓越。 xx 创立于1933年的欧姆龙集团是全球知名的自动化控制及电子设备制造厂商,掌握着世界领先的传感与控制核心技术。通过不断创造新的社会需求,欧姆龙集团已在全球拥有近36,000名员工,营业额达7,942亿日元。产品涉及

人工智能机器视觉

计算机视觉综述 摘要:自从1956 年Dartmouth学会上提出“人工智能”后,世界各国的研究者发展了众多理论和原理。人工智能是一门极富挑战性的学科,研究他的工作人员必须懂得多门学科的知识,比如计算机、心理学、哲学、生物学、仿生学等等,它涉及的范围相当的广泛。并且在这些广泛的学科又由不通的领域组成,如计算机学习、计算机视觉等。研究人工智能的目的是使机器能够担任一些需要人工处理的工作。而这些工作需要做一定的决策,要求机器能够自行的根据当时的环境做出相对较好的决策。这就需要计算机不仅仅能够计算,还能够拥有一定得智能。而要对周围的环境进做出好的决策就需要对周边的环境进行分析,即要求机器能够“看”到周围的环境,并能够理解它们。就像人做的那样。所以计算机视觉是人工智能中非常重要的一个领域。 关键词:人工智能计算机; 视觉; 图像; 1、计算机视觉的应用 人类正在进入信息时代,计算机将越来越广泛地进入几乎所有领域。一方面是更多未经计算机专业训练的人也需要应用计算机,而另一方面是计算机的功能越来越强,使用方法越来越复杂。这就使人在进行交谈和通讯时的灵活性与目前在使用计算机时所要求的严格和死板之间产生了尖锐的矛盾。人可通过视觉和听觉,语言与外界交换信息,并且可用不同的方式表示相同的含义,而目前的计算机却要求严格按照各种程序语言来编写程序,只有这样计算机才能运行。为使更多的人能使用复杂的计算机,必须改变过去的那种让人来适应计算机,来死记硬背计算机的使用规则的情况。而是反过来让计算机来适应人的习惯和要求,以人所习惯的方式与人进行信息交换,也就是让计算机具有视觉、听觉和说话等能力。这时计算机必须具有逻辑推理和决策的能力。具有上述能力的计算机就是智能计算机。 计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能象人那样通过视觉观察和理解世界,具有自主适应环境的能力。而计算机视觉技术正广泛的应用于各个方面,充医学图像到遥感图像,充各有检查到文件处理。在需要人类视觉的场合几乎都需要用感到计算机视觉,许多人类视觉无法感知的场合,如精确定律感知、危险场景感知、不可见物体感知等,计算机视觉更突出他的优越性。现在计算机视觉已在一些领域的到应用,如零件识别与定位,产品的检验,移动机器人导航遥感图像

人工智能的模式识别与机器视觉

人工智能的模式识别与机器视觉 模式识别 “模式”(Panern)一词的本意是括完整天缺的供模仿的标本或标识。模式识别就是识别出给定物体所模仿的标本或标识。计算机模式识别系统使一个计算机系统具有模拟人类通过感官接受外界信息、识别和理解周围环境的感知能力。 模式识别是一个不断发展的学科分支,它的理论基础和研究范围也在不断发展。在二维的文字、图形和图像的识别方而,已取得许多成果。三维景物和活动目标的识别和分析是目前研究的热点。语音的识别和合成技术也有很大的发展。基于人工神经网络的模式识别技术在手写字符的识别、汽车牌照的识别、指纹识别、语音识别等方面已经有许多成功的应用。模式识别技术是智能计算机和智能机器人研究的十分重要的基础 机器视觉 实验表明,人类接受外界信息的80%以上来自视觉,10%左右来自听觉,其余来自嗅觉、味觉及触觉。在机器视觉方面,只要给计算机系统装上电视摄像输入装置就可以“看见”周围的东西。但是,视觉是一种感知,机器视觉的感知过程包含一系列的处理过程,例如,一个可见的景物由传感器编码输入,表示成一个灰度数值矩阵;图像的灰度数值由图像检测器进行处理,检测器检测出图像的主要成分,如组成景物的线段、简单曲线和角度等;这些成分又校处理,以便根据景物的表面特征和形状特征来推断有关景物的特征信息;最终目标是利用某个适当的模型来表示该景物。 视觉感知问题的要点是形成一个精练的表示来取代极其庞大的未经加工的输入情息,把庞大的视觉输人信息转化为一种易于处理和有感知意义的描述。 机器视觉可分为低层视觉和高后视觉两个层次,低层视觉主要是对视觉团像执行预处理,例如,边缘检测、运动目标检测、纹理分析等,另外还有立体造型、曲面色彩等,其目的是使对象凸现出来,这时还谈不上对它的理解。高层视觉主要是理解对象,显然,实现高层视觉需要掌捏与对象相关的知识。 机器视觉的前沿研究课题包括:实时图像的并行处理,实时图像的压缩、传输与复原,三绍景物的建模识别,动态和时变视觉等。 人娄的钉能活动过程主要是一个获得知识并运用知识的过程,知识是智能的基础。为了使计算机具有钉能,能模拟人类的智能行为,就必须使它具有知识。把人类拥有的知识采用适当的模式表示出来以便存储到计算机中,这就是知识表示要解决的问题。知识表示是对知识的一种描述,或者说是一组约定,是一种计算机可以接受的用于描述知识的数据结构,对知识进行表木就是把知识表示咸便于计算机存储和利用的菜种数据结构。知识表示方法给出的知识表示形式称为知识表示程式,知识表示模式分为外部表示模式和内部表示模式两个层次。知识外部表示模式是与软件开发的工具、运行的软件平台无关的知识表示的形式化描述。知

机器视觉技术发展现状文献综述 (2)

机器视觉技术发展现状 人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解世界,具有自主适应环境的能力。作为一个新兴学科,同时也是一个交叉学科,机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。 一、机器视觉简介 机器视觉就是用机器代替人眼来做测量和判断。机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统[1]。 机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能高等优点,有着广泛的应用前景[1]。 一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。通过CCD或CMOS摄像机将被测目标转换为图像信号,然后通过A/D 转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。图像系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置和长度等,进而根据判别的结果来控制现场的设备动作[1]。 机器视觉一般都包括下面四个过程:

第十章 机器视觉 人工智能课程 北京大学

第十章机器视觉 教学内容:本章所研究的机器视觉是诸多传感信息中包含信息最丰富、最复杂和最重要的感觉之一,也是应用最为广泛的机器感觉之一。内容包括图象的理解与分析、视觉的知识表示与控制策略和物体形状的分析与识别等。 教学重点:物体边缘距离的计算、表面方向的计算、物体形状识别方法 教学难点:图匹配法、松弛标示法、多层匹配法等 教学方法:用较为通俗的语言将机器视觉的相关知识讲透彻,同时结合图表,对不同线条的标示方法进行讲解。多结合日常生活中常有的现象,让学生对所学知识有更深入的认识。 教学要求:重点掌握视觉信息的表达方法,包括初始简图、二维半简图和三维模型;掌握物体边缘距离和表面方向的生理学基础及计算原理和计算方法;了解复杂形状物体的表示和三维物体的形状描述方法;一般了解机器视觉应用系统的构成、视觉系统的设计思想。 10.1 图象的理解与分析 教学内容:对图象进行理解和解释是计算机视觉的研究中心,也是人工智能研究的焦点之一。 教学重点:初始简图、二维半简图和三维模型 教学难点:松弛算法、边缘距离的计算 教学方法:以课堂书本知识为主,采取提问,讨论等方式提高学生学习的积极性,自主性和创造性。 教学要求:重点掌握视觉信息的表达方法,包括初始简图、二维半简图和三维模型;掌握物体边缘距离和表面方向的生理学基础及计算原理和计算方法 10.1.1 视觉信息的表达方法 根据马氏(Marr)提出的假设,视觉信息处理过程包括3个主要表达层次,即初始简图、二维半简图和三维简图,如图10.1所示。

图10.1 视觉信息的表达层次 1、初始简图的基本概念: 亮度图象含有两种重要信息:图象的亮度变化和局部几何特征。初始简图是一种本原表达法,它能完全而又清楚地表示上述信息。初始简图所包含的信息大部分集中在与实际边缘以及边缘终止点有关的剧烈灰度变化上。对于每一边缘亮度变化,在初始简图上都有对应的描述。这些描述包括:与边缘有关的亮度变化率、总的亮度变化、边缘长度、曲率和方向等。粗略地说,初始简图是以勾划草图的形式来表示图象中的亮度变化的。 图10.2 用初始简图表示灰度变化图10.3 二维半简图举例

人工智能技术在建筑行业中的应用

人工智能技术在建筑行业中的应用 学院 专业 研究方向 学生姓名 学号 任课教师姓名 2013年6月23 日

人工智能技术在建筑行业的应用 摘要:人工智能的概念和其涉及的各个方面、同时人工智能技术在建筑行业中也涉及很多。利用人工智能技术使建筑行业得到更多的发展,同时阐述了国内外人工智能技术在建筑行业中各专业领域的应用状况。 关键词:人工智能建筑业专家系统神经网络 1.引言 人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。 机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;另外在人类尚未明了大脑是如何进行语言的模糊识 别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的①。 人工智能常用的研究方法有三种,分别介绍如下: (1)以符号处理为核心的方法——符号主义 计算机具有符号处理的推算能力,这种能力蕴涵演绎推理的内涵。因此,可通过相应的程序体系来体现出某种基于逻辑思维的智能行为,达到模拟人类部分智能的目的。 该方法的特征是:立足于逻辑运算和符号操作,适合于模拟人的逻辑思维过程,解决需要进行逻辑推理的复杂问题;用一定的符号表示知识,在已知基本规则的情况下,无需输入大量的细节知识;便于模块化,易于修改;能与传统的符号数据库进行很好地连接;可对推理结论进行解释,便于对各种可能性进行选择。 (2)以网络连接为主的连接机制方法——联接主义 联接主义根据对人脑的研究,认为人类智能的基本单元是神经元,人类的认知过程就是网络中大量神经元的整体活动,这种活动不是串行方式,而是以并行分布方式进行的,区别于符号主义,人工神经网络中不存在符号的运算。它的代表性成果是1943年由生理学家麦卡洛克和数理逻辑学家皮茨创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。它以神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。虽然经过众多科学家坚持不懈的努力,在神经网络研究中取得了大量成果,但是由于神经网络研究的复杂性,目前还是处于基础性的研究阶段,还有待于数学家、物理学家、生物学家等共同努力,使神经网络研究迈上一个新的台阶。 (3)系统集成方法——行为主义 人类的智能活动中既有逻辑思维又有形象思维,单独使用符号主义方法或连接机制方法都不能完整地解决智能模拟问题。因此,把二种方法结合在一起综合研究,是模拟智能研

面向人工智能的建筑计算性设计研究

面向人工智能的建筑计算性设计研究 摘要:梳理科学技术发展与工程实践需求交织作用下,计算应用于建筑设计的历史演化,提出建筑计算性设计并解析了建筑计算性设计思维和流程特征;面向人工智能时代背景,从信息集成、映射建模和决策支持3方面剖析了人工智能技术在建筑计算性设计中的应用,最后对建筑计算性设计发展前景进行了展望。 关键词:建筑计算性设计;人工智能;信息集成;映射建模;决策支持 一、建筑计算性设计思维、流程与技术特征 1.1建筑计算性设计思维的系统化与动态化特征 建筑计算性设计在发展演化中受到科学思想推动,融合了系统科学、复杂性科学思想,形成了系统化的思维体系。基于系统科学与复杂性科学思想,建筑计算性设计思维将人居环境系统解析为建筑子系统和环境子系统,温度、湿度、天空亮度、日照辐射变化等环境子系统扰动会改变人居环境系统平衡状态,并通过两组子系统之间的能量、物质交互逐步回归于平衡状态。因此,建筑计算性设计思维具有鲜明的系统化和动态化特征,其系统化特征推动了建筑设计过程从建筑单系统主导向建筑环境双系统协同转型,深化了建筑设计过程对人居环境系统的权衡响应。 人工智能致力于实现非生物体人工系统对人类智能行为的仿真,旨在模仿、应用人类逻辑思维、形象思维和灵感思维展开创造性工作。人工智能在大脑扫描与心电感应方面的技术发展,推动了建筑计算性设计思维由物理场域下的系统化协同向涵盖心理、文化等多场域层次的复合系统化协同转型;同时,人工智能在图像识别、自然语言处理、大数据分析方面的技术发展,加强了建筑计算性设计思维对自组织与自适应过程的解析,使建筑计算性设计由设计阶段的动态化响应向全周期与即时性动态响应拓展。可见,人工智能语境下,建筑计算性设计思维的系统化特征将日趋多维度复合,动态化特征将日益多频度综合。 1.2建筑计算性设计支撑技术的信息化与智能化特征 建筑是人居环境系统的子系统,其自组织与自适应演化受建筑性能诉求推动与人居环境系统约束。建筑计算性设计需集成、分析人居环境系统大数据,并自动化、程式地展开方案生成与性能优化。在建筑计算性设计思维与流程特征的双重要求下,建筑环境系统信息集成、建筑性能映射建模和性能导向决策支持是建筑计算性设计的关键技术问题。 人工智能作为建筑计算性设计的支持技术,其在大数据分析、图像识别、深度学习方面的技术发展将突破建筑计算性设计支技术在建筑环境系统信息集成方面的大规模数据建模瓶颈,提高建筑计算性设计支撑技术信息化水平;突破建筑计算性设计支撑技术在性能映射建模方面的技术瓶颈,权衡多性能目标展开设计决策制定,提高建筑计算性设计支撑技术的智能化水平。 二、建筑计算性设计中人工智能技术应用 2.1人工智能语境下的建筑环境信息集成 建筑环境系统信息集成是基于人居环境系统中建筑与环境交互作用机理,结合建筑子系统形态空间构建逻辑,建立建筑环境信息参数化关联关系的过程。其将建筑和环境子系统信息转译为可计算数据,使之成为设计参量与边界条件,为工程实践问题的计算性求解奠定了数据基础;同时,所建立的关联关系可保证建筑计算性设计过程中建筑与环境子系统信息的协同演化。可见,建筑环境系统信息集成是建筑计算性设计展开的科学基础与先决条件。

人工智能技术及其在建筑行业中的应用

王波1,蒋鹏2,卿晓霞3时间:2009年11月06日 字体:大中小 关键词:人工智能神经网络 摘要:人工智能的概念、研究领域和研究方法,阐述了国内外人工智能技术在建筑行业中各专业领域的应用状况。 关键词:人工智能建筑业专家系统神经网络 1人工智能概述 人工智能(Artificial Intelligence,AI)是当前科学技术发展中的一门前沿学科,是在计算机科学、控制论、信息论、神经心理学、哲学、语言学等学科的研究的基础上发展起来的,因此又可把它看作是一门综合性的边缘学科。AI的出现及所取得的成就引起了人们的高度重视并得到了很高的评价。甚至有人把AI与空间技术、原子能技术一起誉为20世纪的三大科学技术成就。 人工智能是一门研究如何构造智能机器(智能计算机)或智能系统并使它能模拟、延伸、扩展人类智能的学科。或者说人工智能就是要研究如何使机器具有听、说、看、写、思维、学习、适应环境变化、解决所面临的各种实际问题等功能的一门学科。 人工智能的研究重心主要集中在专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统及人工神经网络等方面。 人工智能常用的研究方法有三种,分别介绍如下。 (1)以符号处理为核心的方法——符号主义 计算机具有符号处理的推算能力,这种能力蕴涵演绎推理的内涵。因此,可通过相应的程序体系来体现出某种基于逻辑思维的智能行为,达到模拟人类部分智能的目的。 该方法的特征是:立足于逻辑运算和符号操作,适合于模拟人的逻辑思维过程,解决需要进行逻辑推理的复杂问题;用一定的符号表示知识,在已知基本规则的情况下,无需输入大量的细节知识;便于模块化,易于修改;能与传统的符号数据库进行很好地连接;可对推理结论进行解释,便于对各种可能性进行选择。 (2)以网络连接为主的连接机制方法 大脑是人类一切智能活动的基础,因此从大脑神经元及其连接机制着手研究,弄清大脑结构及其信息处理的过程与机制,可望揭示人类智能的奥秘,从而真正实现人类智能在机器上的模拟。 该方法的特征是:通过神经元间的并行协同作用实现信息处理;通过神经元间的连接存储知识和信息,具有联想和鲁棒性;通过对神经元间连接强度的动态调整,可较方便地实现对人类学习、分类等能力的较好模拟;适合于模拟人类的形象思维;求解问题时,可以比较快地获得满意的近似解。 (3)系统集成方法 人类的智能活动中既有逻辑思维又有形象思维,单独使用符号主义方法或连接机制方法都不能完整地解决智能模拟问题。因此,把二种方法结合在一起综合研究,是模拟智能研究的一条必由之路。系统集成方法兼有符号主义方法和连接机制方法的特征。 集成模式有二种。第一种模式是结合,符号主义方法与连接机制方法均保持独立的结构,但密切合作,任何一方都可以把自己不能解决的问题转交给另一方。第二种模式是统一,将符号主义方法与连接机制方法有机地统一到一个系统中,既有逻辑思维的功能,又有形象思维的功能。 2人工智能技术在建筑行业中的应用 研究者们把人工智能技术与建筑行业各专业领域知识相结合,使得人工智能技术在建筑行业中取得了非常广泛的应用。已有许多专家系统、决策支持系统应用在建筑行业取得了很好的经济效益和社会效益。下面针对建筑规划、建筑结构、给水排水、建筑电气、暖通空调、建筑材料及建筑工程管理等建筑行业中的各专业领域,分别阐述人工智能技术的应用。

(完整版)机器视觉思考题及其答案

什么是机器视觉技术?试论述其基本概念和目的。 答:机器视觉技术是是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉技术最大的特点是速度快、信息量大、功能多。 机器视觉是用机器代替人眼来完成观测和判断,常用于大批量生产过程汇总的产品质量检测,不适合人的危险环境和人眼视觉难以满足的场合。机器视觉可以大大提高检测精度和速度,从而提高生产效率,并且可以避免人眼视觉检测所带来的偏差和误差。 机器视觉系统一般由哪几部分组成?试详细论述之。 答:机器视觉系统主要包括三大部分:图像获取、图像处理和识别、输出显示或控制。 图像获取:是将被检测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据。该部分主要包括,照明系统、图像聚焦光学系统、图像敏感元件(主要是CCD和CMOS)采集物体影像。 图像处理和识别:视觉信息的处理主要包括滤波去噪、图像增强、平滑、边缘锐化、分割、图像识别与理解等内容。经过图像处理后,图像的质量得到提高,既改善了图像的视觉效果又便于计算机对图像进行分析、处理和识别。 输出显示或控制:主要是将分析结果输出到显示器或控制机构等输出设备。 试论述机器视觉技术的现状和发展前景。 答:。机器视觉技术的现状:机器视觉是近20~30年出现的新技术,由于其固有的柔性好、非接触、快速等特点,在各个领域得到很广泛的应用,如航空航天、工业、军事、民用等等领域。 发展前景:随着光学传感器、信息技术、信号处理、人工智能、模式识别研究的不断深入和计算机性价比的不断提高,机器视觉技术越来越成熟,特别是市面上已经有针对机器视觉系统开发的企业提供配套的软硬件服务,相信越来越多的客户会选择机器视觉系统代替人力进行工作,既便于管理又节省了成本。价格持续下降、功能逐渐增多、成品小型化、集成产品增多。 机器视觉技术在很多领域已得到广泛的应用。请给出机器视觉技术应用的三个实例并叙述之。答:一、在激光焊接中的应用。通过机器视觉系统,实时跟踪焊缝位置,实现实时控制,防止偏离焊缝,造成产品报废。 二、在火车轮对检测中的应用,通过机器视觉系统抓拍轮对图像,找出轮对中有缺陷的轮对,提高检测精度和速度,提高效率。 三、大批量生产过程中的质量检查,通过机器视觉系统,对生产过程中的产品进行质量检查跟踪,提高生产效率和准确度。 什么是傅里叶变换,分别绘出一维和二维的连续及离散傅里叶变换的数学表达式。论述图像傅立叶变换的基本概念、作用和目的。 答:傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。 一维连续函数的傅里叶变换为: 一维离散傅里叶变换为: 二维连续函数的傅里叶变换为: 二维离散傅里叶变换为: 图像傅立叶变换的基本概念:傅立叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图

人工智能技术在建筑领域的应用

人工智能技术在建筑领域的应用 摘要:所谓人工智能技术,是指一门由控制论、计算机科学、神经生理学、信息论、心理学等学科相互渗透所和发展所形成的综合性学科。随着该学科的不断发展,其在建筑领域的应用范围也不断扩大,极大的促进了我国建筑行业从传统运作走向现代管理和经营。文章首先对人工智能技术进行了简要介绍,并从五个方面对该技术在建筑领域的应用进行了讨论。 关键词:人工智能;建筑领域;计算机;应用。 1 引言 所谓人工智能技术,是指一门由控制论、计算机科学、神经生理学、信息论、心理学等学科相互渗透所和发展所形成的综合性学科。虽然学术界对于人工智能的定义在经过长久的争论之后仍然没有得出一个准确的定义,但是从本质上来看,人工智能技术就是通过研究和制造人工智能系统和机器来模拟人类智能行为,从而使人类智能得到延伸的一门学科。该学科通过计算机来完成智能系统的构建,并以此来实现定理的自动证明、程序的自动射击、语言的自动理解、模式的自动识别等智能活动。由于研究者对于人工智能的理解存在差异,所以就形成了不同的人工智能研究途径,其主要有三种,分别是联接主义途径、符号主义途径和行为主义途径。 其中,联接主义途径于1943年提出,它主要通过神经元来对脑模型和神经网络模型进行研究,不过目前仍处于基础性的研究阶段。符号主义途径是基于物理符号系统假设提出的,从上世纪30年代开始应用于智能行为的描述中,目前很多的自然语言理解系统、专家系统都是基于该观点研制的。行为主义途径的支持者则认为人工智能源于控制论,在该理论的指导下,研究人员于上世纪80年代成功构建了智能机器人系统,布鲁克斯的六足行走机器人是其中的杰出代表。 2 人工智能技术在建筑领域的应用 2.1 在建筑设计中的应用 在过去相当长的一段时间内,建筑设计师们都通过AutoCAD软件来完成有关绘图工作,但是这并不能从真正意义上体现出建筑设计,设计师们的灵感、创意、创新也无法通过AutoCAD得到更加全面的体现。随着人工智能技术在建筑设计行业中应用的不断深入,现在的设计师中的绝大多数都开始应用能够在设计全称提供二维图形描述和三维空间表现的理论及技术来完成日常工作,不仅提高了工作效率,也使得建筑设计的特点得到了更好的体现。 例如,Arch2010就是一款基于AutoCAD2002—2010平台的,专为建筑

机器视觉与人工智能的特点说明

一、机器视觉的定义 机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。 互联网的高速发展,使得物流业走势迅猛,不仅是每年一度的京东购物节和淘宝节让物流人员高压负重,喘不过气,就连现在的日常外卖派送,超市派送也使得快递人员人手不断速增,美团外卖布局无人物流,京东机器人物流拣货已开始应用,机器人工作,为人们的生活带来了巨大的便利性。机器人逐渐成为市场的宠儿。 如今,我们的身边已然充斥着各种类型的机器人,在制造、运输、生活等各领域起着非常重要的作用。比如机器人代步车,扫地机器人等。而让这些机器人拥有一双“智慧”双眼的正是机器视觉技术,得益于机器人产业的规划发展,机器视觉技术的应用就有非常广阔的空间。 机器视觉的定义机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉基于仿生的角度发展而来,比如模拟眼睛是通过视觉传感器进行图像采集,并在获取之后由图像处理系统进行图像处理和识别。 二、机器视觉的分类 机器视觉主要分为三类: 单目视觉技术,即安装单个摄像机进行图像采集,一般只能获取到二维图像。单目视觉广泛应用于智能机器人领域。然而,由于该技术受限于较低图像精度以及数据稳定性的问题,因此需要和超声、红外等其它类型传感器共同工作。 双目视觉技术,是一种模拟人类双眼处理环境信息的方式,通过两个摄像机从外界采集一副或者多幅不同视角的图像,从而建立被测物体的三维坐标。双目视觉技术大致分为机械臂视觉控制、移动机器人视觉控制、无人机无人船视觉控制等方向。 多目视觉技术,是指采用了多个摄像机以减少盲区,降低错误检测的机率。该技术主要用于物体的运动测量工作。在机械臂手眼协调方面,多目视觉技术能够克服物体捕捉的盲区,使机械臂进行抓取更加有效。在工业机器人进行装配领域,多目视觉也能够精确识别和定位被测物体,进而提高装配机器人的智能程度和定位精度。 三、机器视觉的应用 机器视觉的应用主要有检测和机器人视觉两个方面:

浅谈人工智能在建筑设计中的应用

浅谈人工智能在建筑设计中的应用 发表时间:2018-12-25T16:37:55.303Z 来源:《建筑学研究前沿》2018年第27期作者:刘继项 [导读] 这项技术本身也在不断发展和完善,只要我们使用得当,稳妥发展,人工智能必将给我们的生活带来许多便利。 北京中厦建筑设计研究院有限公司天津分公司天津西青 300000 摘要:当下人工智能的技术加持已经成为传统行业变革的重要突破口,应用领域不断扩大,工作效率日益提升。人工智能应用于传统行业必将带来发展的新机遇、新挑战,推动行业的革新和结构转型,也会带来行业形式和服务形式的变化。随着建筑产业规模的不断扩大,对技术要求的迫切,作为我国国民经济重要支柱行业的建筑业也开始了与人工智能的融合发展,提高决策、设计和管理的综合效率,推动建筑产业的良性循环,完成产业升级。文章对人工智能在建筑设计中的应用进行了分析。 关键词:人工智能;建筑设计;应用 1导言 人工智能的出现和这一技术成就在近年来越来越受到了人们的关注与重视,甚至还有人将人工智能与原子能技术、空间技术并称为二十世纪以来的三大重要科技成就。人工智能实际就是一项研究如何对智能计算机或智能系统进行构建,从而使其对人类智能进行模拟或是延伸的学科。但是由于这门技术的发展时间比较短,所以人们对其认识也比较有限,不能正确认识到其积极作用,这也在很大程度上限制了建筑设计行业领域的发展。 2人工智能技术概述 人工智能技术是一门极其复杂的系统学科,主要是用来模拟、研究和扩展人工智能的相关理论与方法,使机器能够胜任需要人脑才能完成的复杂工作。人工智能主要包括计算机技术、控制技术、心理学、语音技术等,是多学科为基础的一门系统学科。同时需要广泛应用数理模型及理论,促进人工智能技术的快速发展。就目前人工智能技术的应用研究来看,要实现人工智能技术主要有以下三种方法: 2.1传统编程方法 传统编程方法基于数理逻辑推理,模拟人类的行为。使用经典的逻辑证明理论运行的有效性,模拟出复杂的结果,并从众多的结果中选择合适的应对策略,这种方法是应用于整体规划以及搜索相应信息的最佳算法。满足某个场景条件下就执行某个行为,并且将结果进行表示,不需要进行大量的细节算法。 2.2机器学习 机器学习是人工智能的核心,主要是通过在前期的学习实验中掌握改进算法的能力,模拟人的学习行为,不断完善自身性能。与传统编程方法最大的不同是机器学习可以模拟人类的感知,判断场景。比较常用的机器学习方法有决策树法、集成学习方法、聚类算法等。机器学习算法与传统的数理逻辑规则不同,它需要输入大量的经验数据,将这些经验数据加以归纳和总结算法,通过计算机的训练之后,形成一个模型。 2.3深度学习方法 深度学习方法的实现主要是通过结合硬件和软件。硬件层面的APU(即人工智能处理单元,仿生芯片),通过SDK端口结合软件层面大规模并行处理的算法。能够通过高低层次的组合来获得更加具有特征性的属性,这样能够有效发现数据的分布特点并将它们结合起来。深度学习是目前人工智能领域的焦点,它能够模拟人脑神经网络的学习路径,通过模拟人的思维方式,而对于诸多工况进行最优的决策处理。 3人工智能在建筑设计中的应用 3.1人工智能技术在城市规划和建筑设计的应用 在城市规划和建筑设计的过程中,充满了规划师和建筑师对于方案的诸多思考和协调。当前人工智能技术已经可以可靠地应用于城市规划和建筑设计的前期工作。在2016年,由建筑师、软件工程师、数学学家等行业专家组成的小库科技在深圳成立。第一个人工智能建筑师xkool已经成功研制,2017年6月3日发布了第一个内测版。它结合了大数据处理、人工智能技术、机器学习技术等多种先进的功能,并且能够将先进的算法输入到自身的记忆之中,能够在操作过程中利用算法优化,呈现自己的思维。它是第一款应用于实践层面上的人工智能的建筑设计系统,能够有效帮助进入开发商实现建筑规划的完整性分析,配合建筑规划师以及建筑设计师完成前期的设计工作,根据产品的性能介绍,人工智能技术能够进入设计阶段的前2/3的内容,甚至包括概念设计。根据产品的案例介绍,小库xkool原型已经成功地在深圳南山区的深圳湾生态科技城项目于概念设计阶段参与了项目的辅助设计。相关研究学者在对于AI技术的认知和理解、以及相关理论研究的基础之上,将人工智能技术利用于建筑设计过程中,降低设计过程中的设计成本、加快效率、提高整个方案的设计质量并为方案的成型在短时间内带来更多的可能。包括周边环境的分析研究、场地的使用、建筑形态上的优化和建筑风格的取舍。 3.2神经网络模型 神经网络是指由大量的、简单的处理单元相互联接而形成的复杂网络系统,特别适合同时出现的多个因素和条件的、不精确和模糊的信息处理,其中尤为突出的是自学习功能,依据其基本原理建立的人工神经网络模型在系统辨识、模式识别、智能控制等领域有着巨大的发展前景。目前,智能建筑管理中涉及的信息智能化处理、图像处理、语音识别、系统功能设计、自学习等,均借助神经网络模型得到了一定程度的发展。较之于信息化和数字化建筑,智能建筑要求具备更“聪明”的管理能力,以建筑设备的管理为例,智能系统需要保证不同类别设备单体和整体运行的稳定安全、协调有序;各系统能够根据外界条件的变化,对运行模式进行自动调节;调节后各系统之间保持协调性,避免某个分系统调节后与整体脱节,无法自我修复;降低仿真过程中的内部复杂程度,提升系统的控制速度和控制精度;具备一定的自学习能力,提高系统的应用效率。神经网络模型是实现上述功能的关键技术。 3.3模块的结构化 建立一个大型的、较复杂的控制系统时,便捷的方法是将系统分解成一个个独立的部分,承担不同的功能,每一个独立的部分就是一个模块,而将各个模块进行有机组合,就是模块的结构化。智能建筑是传统建筑的升级,包括了传统建筑固有的功能,也集成了现代信息技术,为保证各个系统及其功能模块能够更好的发挥作用,需要应用人工智能对所有功能模块进行重组,实现模块的结构化,使建筑的功

相关文档
最新文档