各种吸波材料的比较DOC

各种吸波材料的比较DOC
各种吸波材料的比较DOC

各种吸波材料的比较

Christopher L Holloway

沙斐翻译

一前言

最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸(5.08cm)。在2.4~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为-40dB。

目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为-60dB。然而可使用的频率范围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。

电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。

电-厚锥体的最佳性能的获得,依靠锥体内渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。

半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率范围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(0.91-1.83m)。显然在30MHz的频率上,厚度不可能是几个波长。因此暗室的频率范围被限制在90-1000MHz。

30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度

<1

4

λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技

术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。

在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。

最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率范围。一般说来渗碳加载对电-厚和电-薄材料的要求是不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。

60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸波性能和空气比较接近,在空气-瓦片界面反射很小,入射波直接渗入瓦片。又因为瓦片对磁场损耗大,所以渗入波被吸收。如有穿过瓦片的,则被金属板反射,重又回到瓦片,被再次吸收。如还有穿出瓦片回到空气中的,则可以象锥型和楔型吸波材料那样,调节瓦片厚度,在一定的较窄的频率范围内使其与瓦片直接反射到空气中的那一部分相抵消。

近年来,薄锥和楔(200-1000MHz )+铁氧体瓦+介质层(30-600MHz )构成了超小型宽带“混合”吸波材料在30-1000MHz 获得了很好的性能【14】【15】。

本文将叙述吸波材料的反射率,包括全锥、绞锥、楔、铁氧体瓦、铁氧体格混合吸波材料,将讨论它们的优缺点及其应用。

二.吸波材料的反射率

反射系数(reflection coefficient ) r

i

E E Γ=

(1) 反射率(reflectivity )1020log ()R =?Γ (dB ) (2) 对各种暗室需要什么样的吸波材料,反射率如何,与暗室大小、形状、用途有关。最可靠方法是先进行预测分析。【16】-【20】叙述了在暗室内部进行麦克斯韦方程式的全三维解法。这里绘出一般指导表格,是根据以往的设计和实践总结出来的。

表一 吸波材料反射率的一般指导表格

由表可知:

吸波材料在斜入射时的反射率劣于正入射,所以暗室越窄长,对吸波材料的反射率要求越高(例,3m 法和110m 法比较)。

对吸波材料的反射率要求,发射>抗扰度>军标。因为,NSA 是与开阔场地的理论值相比较,要求较严。NSA 规定4dB ±的允许值中只有1dB ±是给暗室场地的。抗扰度对均匀场要求是室内场互相比较要求低一些,军标原本就没有硬性规定,测试距离又是1m ,所以要求更低些。

对于斜入射反射率的测试,原先的大测试装置【7】-【10】只能用作正入射测试(30-1000MHz ),如果用拱形架测试【26】【27】斜入射也只能测>600MHz 以上频段。美国NIST (in Boulder CO )已开发了一种装置,利用时域测量方法,可以测量30-1000MHz 的斜入射

反射率【28】-【30】。

三.聚氨酯锥型吸波材料

锥的反射率已经可以很精确地用数值模型来计算,已采用有限元法、矩量法和有限差分技术【16】【17】【31】-【39】。这些技术计算精度高,但太精深,耗时长。【4】-【6】和【40】中研究了低频段(即锥或楔型吸波材料的顶点之间的距离小于波长的频段)电磁波的相互作用,提出利用“均质化方法”把横截面为周期性变化的结构,看成是横截面是均匀的介质,从而可以用大家熟知的Riccati 方程式的数字解法来求出平面波入射到该介质上的反射率。【4】【6】【14】【37】和【39】计算了锥型顶点间距小于1/2波长时的反射率。计算结果和实测很符合。

Riccati 方程解法等效于计算一个分层区域的综合反射率,但是它需要一个微分方程的数值解法。然而,分层区域的反射率本可以用经典传输线方法得到【41】。本文将使用分层方法计算。

根据“均质化方法”,电波在锥型吸波材料区域中的传播可以看成波在平面分层区域中传播。平面分层垂直于锥的轴向,设为Z 。每层由周期性分布的吸波方块组成,如果吸波方块阵的周期小于波长和趋肤效应,于是各层可以被模拟为单轴向异性的材料,材料特性由【5】【40】给出。

(1)(1)2()1(1)(1)2()

1(1)(1)z o a z o a

a o t o o a a o t o o a g g g g g g g g g g εεεμμμεεεεεεμμμμμμ=-+=-+??-=+??++-?

???-=+??

++-?

? (3) 式中,

o ε o μ真空中的参数

a ε a μ 吸波材料的实际参数 z ε z μ各层 z 方向的参数(轴向) t ε t μ各层X 、Y 方向的参数(横向)

()2

z

g L =(注:当z L =时,z

t a ε

εε==,z t a μμμ==)

(3)式中,z ε、z μ是精确的

t ε、t μ是近似的,称为 Hashin-Shtrikman 公式【42】

以上方程精度为5%【43】。

平面波入射到一个轴向异性的分层区域时,各层的有效ε和μ由【5】【40】给出。

()2sin o o eff y z eff x

μεθ

εθεμμμ=-

= 对于垂直极化 ( TE ) (4)

式中,θ为入射角

()2sin o o eff y z eff x

μεθ

μθμεεε=-

= 对于平行极化 ( TM ) (5)

所谓垂直极化(TE )是指电场与入射面垂直; 平行极化(TM )是指电场与入射面平行。

图1 标准聚氨酯锥(氨基甲酸酯urethane )示意图

【41】(利用经典传输线理论)Kong 给出了分层区域的综合反射率

()201

oz o j k d e θΓ=

Γ

1001110

2()220121201111z z z z j k k d j k d j k d e e e +??-??Γ??++

Γ?? ?

Γ?

?

()()211

1121

2()22122112111z z n n z z j k k d j k d j k d n n e e e --+-??-??Γ??++???+

Γ?? ?Γ??

()()()1

112()21221111nz n n z nz n

nz n j k k d n n j k d nt j k d n n e e e

---+--??-??Γ????++Γ?? ?Γ?

? (6)

式中n d 是指从区0和区1到区n 和区1n +的总距离。()1n n -Γ是区1n -和区n 间的反射

系数,由下式给出:

()()()11111n n n n n n

p p ----Γ=

+ (7)

()()()111nz n z n n nz n z

k p k μμ---=

对于TE 波

()()()111nz n z n n nz n z

k p k εε---=

对于TM 波

式中nz k 是Z 方向区n 的传播常数,由下式给出

()

nz k θ?= (8)

本文计算反射率时所用的材料参数来自于“附录”,请查阅。 图2,正入射时的反射率,锥为:

1.22(4) 1.02(40.16)()0.2(7.87)()m ft m in L m in D =+

图3,正入射时的反射率直径为:

2.44(8) 2.10(82.67)()0.34(1

3.33)()m ft m in L m in D =+

渗碳加载10%、26%、34%,频率30

——1000MHz 8ft 锥比4ft 锥的反射率至少低10dB 。

图2 1.22m (4ft) 聚氨酯锥阵、三种不同渗碳加载的正入射反射率

图2和图3显示4ft 锥最佳渗碳加载为34%,8ft 锥为26%。锥的作用象阻抗匹配网络。渗碳负载量决定锥的有效特性阻抗。碳负载过高则阻抗变化(从自由空间到吸波材料基座)太陡峭,引起入射波从锥尖附近区域反射。反之,渗碳负载过低,则入射波透入锥体后不被

吸收,从而被金属墙反射。图4和图5是正入射和45

入射时的反射率,长度分别为4ft 和8ft ,渗碳加载为26%(典型值)。

图3 2.44m (8ft) 聚氨酯锥阵、三种不同渗碳加载的正入射反射率

图4的反射率(4ft 锥)符合军标和抗扰度要求,在70-1000MHz 符合辐射测试要求。这符合【3】German 报告的结果,该报告叙述了35个半电波暗室,暗室使用锥体厚度

0.9(3)~2.0(6.6)

m ft m ft 测得NSA 在90MHz 以上与开阔场地基本相符。

图4 1.22m (4ft) 聚氨酯锥阵、26%渗碳加载0

和45

斜入射时的反射率

图5的反射率(8ft 锥)符合军标、抗扰度和3m 法辐射测试要求(40~1000MHz )可

见,锥体厚度以加一倍后,使40-70MHz 频段也符合了辐射测试要求。

Holloway 和Kuester 【6】和Gibbons 【44】曾经证明在3m 半暗室安装8ft (2.44m )甚至6ft (1.83m )的锥体就可以在30-1000MHz 内使NSA 达到4dB ±的要求,只要适当地调整锥长L ,而仍保证8L D ft +=,这时渗碳负载为典型值26%。图6显示了调整的结果,L 的调整在30-40MHz 内对反射率的影响很大。

0 和45 斜入射时的反射率

图5 2.44m (8ft) 聚氨酯锥阵、26%渗碳加载

L)、26%渗碳加载的正入射反射率图6 2.44m (8ft) 聚氨酯锥阵、各种倾斜长度(

图7 2.44m (8ft) 聚氨酯锥阵、L=2.08m (6.82ft)、26%渗碳加载的

0 和45 斜入射反射率

图7显示了8ft 锥当 2.08(6.82)L m ft =时,26%渗碳负载时无论是正入射和斜入射都符合军标、抗扰度、3m 法(30-1000MHz )辐射测试的要求。

图8 聚氨酯绞锥图示

四 绞锥(TWISTED URETHANE RYRMIDS )

绞锥即把锥体转45

组成锥体群,如图8所示,可以节省材料。其有效材料特性如下【43】:

()00z a g εεεε=+-

()()()()()()1

2

1

11ln 1111ln 11t m f f f f εε-?????---?+?-?? ? ??--++?-?????

? (9)

式中

1

2

z

L<:0

m

εε

=、2z

f

L

=、

2

2

z

g

L

??

= ?

??

a

ε

ε

?=

1

2

z

L>:m a

εε

=、21z

f

L

??

=-

?

??、

2

12

L z

g

L

-

??

=- ?

??

a

ε

ε

?=

图9和图10分别为4ft(1.22m)和8ft(2.44m)绞锥,26%渗碳负载的正入射和40 入射时的反射率,计算方法仍可采用第三节的分层法。

由图9可以看出

4ft绞锥符合军标,但抗扰度和3m法辐射值在135-1000MHz中符合要求;

8ft绞锥符合军标,但抗扰度和3m法辐射值在70-1000MHz中符合要求;

虽然绞锥不如正规锥体好(图4,图5),但Gibbons【44】显示采用不同几何形状和渗碳负载,绞锥可以优化而获得与标准锥同样的反射率。Gibbons还叙述了用2.74m (9ft) 绞锥可以达到军标、抗扰度、3m法、10m法的要求。

图9 1.22m(4ft) 聚氨酯绞锥、26%渗碳加载

0 和45 入射的反射率

图10 2.44m(8ft) 聚氨酯绞锥、26%渗碳加载0 和45 入射的反射率

五.铁氧体瓦和格

铁氧体瓦可以用经典传输线方程来建模。背后为金属墙的铁氧体瓦的反射率为

Z Z ηη

-Γ=+ (10) 式中

η

= (11) 2211d d

e Z

e γγη---=+ (12)

式中d 为瓦厚度,γ式体传播常数

j γ?= (13) 铁氧体格(亦成华夫格)见图11,也可用【5】所述的“均质化”方法建模,但与锥体

不同的是有效

ε,μ不随波的传播变化(即与轴向无关),而且材质是空气和铁氧体。

图 11 铁氧体格(华夫格)结构图示

Nakamura 和Hirasawa 【45】进行了相同周期结构的数值分析发现Hashin-Shtrikman 上

界(最大化)(由【42】【43】给出)与铁氧体格的周期性结构的有效材料特性相关性很大,所以铁氧体格的横材料特性可以近似为:

00112112a a

a a

g

t a g

g t a g

εεεμμμεεμμ-+--+-=+

=+

(14)

式中:2

2a

g p

=

(格的尺寸),填充系数

a μ、a ε 为铁氧体材料的实际复参数

z ε、z μ与(3)式相同,即

()()0011z a z a

g g g g εεεμμμ=-+=-+ (3)

式中2

2

a

g p =。

以上横截面参数可以代入(12)式求得铁氧体格的反射率。如果(14)中的材料参数与Keller 定标理论互相交换(?)则(3)就得到了(Hashin-Shtrikman 下界,由【42】【43】给出)。

图12 6.38mm (0.25in) 铁氧体瓦0

和45

入射的反射率

图12为铁氧体瓦(材料特性见附录)的反射率,600MHz 以下性能很好,600MHz 以上就变坏,可符合军标、抗扰度和3m 法(<600MHz )。

铁氧体格的反射率与填充系数g 密切相关,格比瓦的好处在于g 可以改变,使反射率最小点落在所需频率上。格的频率范围可以超过瓦,只要精心设计厚度d 、填充系数g 、铁氧体材料特性。图13显示了18mm 厚,g=0.725的格的最佳反射率(材料参数见【47】),正入射和45o入射,反射率符合军标、抗扰度、3m 法(30~1000MHz )。

图13 18mm 厚,g=0.725的格、7%渗碳加载的0

和45 入射的反射率

图14 聚氨酯锥和铁氧体瓦混合吸波材料图示

六.混合吸波材料

小锥体在200MHz以上有很小的反射率,而铁氧体瓦在600MHz以下有较好的性能,所以可把二者结合起来,从而在全频段都可达到较好的反射率,称混合吸波材料。

分析混合吸波材料时,可用(3)的有效材料特性分析锥体,用第五节的方法分析瓦。图15显示正入射时的反射率,混合吸波材料0.616m (2.02ft) =0.61m (2ft) 锥(7%,26%渗碳加载)+6mm (0.24in) 铁氧体瓦。图中又画出了单锥单瓦的反射率。由图可知,7% 锥和瓦的组合可以符合全频段反射率的需要。单锥单瓦都不行,26%锥和瓦的组合200MHz 以下也不符合,这就可以看出锥和瓦组合时匹配的重要性。图16是7% 锥和瓦的组合时正入射和45o斜射时的反射率,符合全频段要求。

图15 0.612m (2.02ft)锥/铁氧体瓦混合吸波材料(瓦厚6mm)的正入射反射率

混合吸波材料也可由绞锥和瓦组成,反射率计算可用(9)式的有效材料特性参数。0.61m (2ft)绞锥和6mm (0.24in) 瓦的组合,反射率和图15、16非常接近。

图16 图15 0.616m (2.02ft)锥/铁氧体瓦混合吸波材料(瓦厚6mm )

0 和45 入射的反射率

图15和16的反射率是由商用锥和瓦计算得到的,10m 法所需的低反射率可以通过系统的改变材料特性和尺寸的方法获得。

七.楔和瓦混合吸波材料

楔的模型在【6】【40】中叙述,对于特殊的极化情况楔比锥更好,于是人们想到在混合吸波材料中把楔的方向交叉安排,如图17所示,可能使性能更好。

图 17 楔交叉阵图示

【5】【40】给出了楔的有效材料特性参数如下:

()()11101110

11x a

x

a

g g g g εεεμμμ

------=-+=-+ (15) 式中z

g L

= ,

a ε、a μ为楔的实际复参数。

上述(15)式是对应于楔安排在同一方向的情况,Nevard and Keller 【48】给出了楔方向交叉安排时的修正,指出周期对的2维异性介质的电导率σ是位置的函数,可由下式给出

eff σ= (16)

同理可认为:

t t εμ== (17)

把(15)代入(17)即可得每层的有效特性参数,然后用第三节的分层法可计算吸波材料的反射率。

图18 0.61m(2ft)交叉安置的楔,10%渗碳负载,与6.38mm(0.25in)铁氧体瓦组成的混合吸波材料的0

和45

入射

的反射率

图19 铁氧体瓦/介质混合材料的图示

图18显示了0.61m(2ft)交叉安置的楔,10%渗碳负载,与6.38mm(0.25in)铁氧体瓦组成的混合吸波材料的反射率,包括正入射和45o斜射。这些反射率符合军标,但抗扰度和3m 法仅在300~1000MHz 符合。然而,通过优化材料特性和楔的尺寸,可以满足全频段需要【15】。

八.瓦和介质层

图12、13显示铁氧体瓦和格在600~1000MHz 时的反射率恶化,但只要在铁氧体和金属板之间加一层介质,如图19所示,就可以解决该问题,使反射率减小。

图20显示了5.0mm (0.2in) 瓦背面加9.53mm (3/8in)、12.7mm (1/2in) 和19.05mm (3/4in)厚的商用胶合板,设介电常数为2.0时的正入射的反射率。由图可知这种组合在600MHz 以上的反射率没有恶化。

图21显示了瓦/介质层对不同瓦厚度的正入射的反射率,瓦厚度影响反射率并且影响最

小值的发生频率。介质层厚1.27cm (1/2in),瓦厚4、5、6、7mm。

图20 5.0mm (0.2in) 瓦、各种厚度的介质层组成的的混合吸波材料正入射的反射率

图21 介质层厚1.27cm (1/2in)、各种厚度的铁氧体瓦组成的混合吸波材料正入射的反射率

图22 5mm (0.2) 瓦加1.27cm (1/2in) 胶合板0 和45 入射时的反射率

图22显示了正入射和45o斜射时的反射率,瓦厚5mm (0.2in),介质厚1.27cm (1/2in)。仍不符合3m法要求。

九.锥加瓦加介质层

瓦加介质层的斜射特性可以通过锥加瓦加介质层来改善,如图23所示。图24是这种混合吸波材料的正入射和45o斜射时的反射率。图中小锥为0.64m(2ft),7%渗碳加载,加6mm(0.24in)瓦和1.27cm(1/2in)的胶合板,反射率可以符合军标,抗扰度和3m法辐射要求。图25中尺寸相同,但小锥碳负载为26%,可以看出低频段30~200MHz反射率加大,说明碳负载过大,使入射波被锥体反射而不是被瓦吸收。

图23 锥/铁氧体/介质层混合吸波材料的图示

图24 0.61m (2ft) 锥(7%渗碳加载)+6mm (0.24in) 瓦+1.27cm (1/2in) 胶合板的混合吸波材料的反射率

图25 0.61m (2ft) 锥(26%渗碳加载)+6mm (0.24) 铁氧体瓦+1.27cm (1/2in) 胶合板的混合吸波材料的反射率

图26 锥/铁氧体/介质层(在锥和铁氧体间加入三层氨基甲酸乙酯(urethane))

的混合吸波材料的反射率

可以进一步改善这种结构,即再在锥和瓦之间加若干层聚氨脂材料。图26是小锥加三层不同材料特性和厚度的聚氨脂层加瓦加介质层的正入射和45o斜射的反射率。如各部分调节得好,符合10m法要求也不成问题。

十.各种吸波材料的布置

典型的标准锥和绞锥在100~1000MHz有较低的反射率,他们的厚度至少大于λ/4。铁氧体瓦在30~600MHz性能较好,他们的组合可在30~1000MHz宽带范围内获得良好的反射特性。

锥体的斜射反射率比铁氧体瓦小,因为锥体可以看成分层结构,每层都有不同的材料特性,对于斜射波就象一个阻抗交换网络。这种机理已经被用来设计对某些特殊角度具有最优性能的吸波材料。【50】叙述了一种吸波材料可以获得非常好的斜射反射性能,吸波材料使用多层不同厚度和介电常数的介电层。比较图12、15和16可以看出,锥/瓦,比单瓦的性

能有所改善。

瓦的高频性能可以在瓦和金属墙间简单插入一块介质层来改善,图20、22说明反射率在600MHz以上低于-20dB。【51】-【54】指出采用多层设计可以获得更宽的频率性能。

介质层能调节吸波材料使之改善高频性能,通过改变介质层和瓦的厚度吸波材料可以调节到针对某个频段改善反射特性,如果想抑止某个尺寸的暗室中发生不需要的谐振频率,这一点很重要。图22、24说明在瓦/介质层前放一个小锥,在500-1000MHz反射率变坏,但30-80MHz性能却得到改善。

从本文给出的结果来看,不同的吸波材料的性能变化很大,那么“对一个特定的暗室,应该采用什么样的吸波材料?”该问题无确定答案,但对于常用的一些暗室(军标、抗扰度、发射),以下将给出一些选择吸波材料的指南:

军标测量用暗室是三者中最易符合的,要求是(见表1)正入射反射率在50MHz-250MHz为-6dB,250MHz以上为-10dB。如果暗室测量在1GHz以下,仅使用铁氧体瓦就可满足要求。注意对某些商用铁氧体瓦,可能需要一层介质层(例胶合板)来提高1GHz附近的性能。目前有些军标暗室要求30Hz-18GHz,则需使用商用混合吸波材料,以满足宽带要求,这时铁氧体瓦和锥体的匹配应十分注意。铁氧体在1GHz以下工作良好,小锥体在1GHz以上工作良好。但当二者组合时,如不注意“匹配”则1~5GHz可能发生很大的反射。

抗扰度测量暗室根据表1,正入射反射率在80-1000MHz时应小于-18dB。小锥(标准或绞锥)和瓦的组合可以符合要求。图20表明瓦/介质层也可满足要求,而且由于没有小锥可以省钱。抗扰度暗室的频率上限可以扩展到3GHz,锥/瓦结果可以达到3GHz、-18dB 反射率的要求,更重要的是瓦/介质层结构只要适当选择瓦厚和介质层厚度也可达到要求。有些新的开发中的铁氧体格也可能达到要求。

三者中最困难的是用于辐射测量用的暗室。根据表1,45 斜入射的反射率3m法要求

-12dB,10m要求-15dB。单瓦或瓦/介质层都无法满足要求,因为它们的斜射特性很差。所以一般才用长锥体或小锥/瓦/介质层的吸波材料。由于长锥体价格贵,常采用后者。图24、26显示这种混合吸波材料在全频段具有很好的斜射特性。很多暗室都安装这种吸波材料。

有些暗室使用大的交叉楔型混合吸波材料。铁氧体格可以符合3m法要求(见图13),然而还没见可以符合10m法要求的格。

目前有一些新的吸波材料结构正在开发用于EMC 暗室。例如中空锥体【36】和薄瓷层【51】-【54】。最有意思的一种正在研发的吸波材料是chiral材料【55】-【57】,把手性chiral)吸波材料(译注:手性材料(chiral material)——是指一种物体与其镜像不存在几何对称性且不能通过任何操作使之与其镜像相重合的现象,具有手性特性。)30-1000MHz目前还不太成熟,但把它和本文中的其他吸波材料结构相结合,就有能力在很宽的频率范围中具有很低的反射率。

十一结论

本文给出了用于军标、抗扰度、辐射测量暗室的吸波材料的一般反射率要求。目的是选择合适的吸波材料。但该要求仅是通用指南,暗室的特性与其尺寸有关。例如尺寸的改变就可以改变室内的谐振频率,这可能改变抗扰度的要求。又例如,暗室变宽一点则对辐射暗室斜入射的要求可能松一点。符合这些要求并不能完全保证暗室指标合格,最可靠的办法是在建造暗室前进行暗室内部麦克思韦方程式的三维分析。

本文所绘的反射率都是由锥、斜模型、铁氧体格和交叉楔模型计算得到。这些模型比较简单可以在一般计算机上完成。本文研究的各种不同吸波材料都基于商用材料,如果这些结

构合材料性能可以改变,则可能获得更好的结果。

附录

表2是用于本文计算的铁氧体瓦的材料特性参数。表3是聚氨酯吸波材料的材料特性参数,它们都是商用材料参数可从厂家得到。

参考资料

【4】-【6】【40】均质化方法(分层法)精确计算锥体的反射特性

【7】-【10】大测试装置测量“小型宽带吸波材料”的反射特性

【6】渗碳加载对电-厚、电-薄材料的不同要求

【14】【15】混合吸波材料(锥+瓦+介质层)

【16】-【20】暗室内部麦克斯韦方程的三维解法

【26】【27】用拱形架测试斜入射反射率(>600MHz)

【28】-【30】NIST利用时域法测量斜入射反射率(30-1000MHz)

【16】【17】,【31】-【39】采用有限元法、矩量法、有限差分法计算锥的反射率

时的反射率

【4】【6】【14】【37】【39】计算锥顶间距小于2

【41】用经典传输线方法计算分层区域的反射率

【5】【40】【42】【43】单轴向异性材料的特性计算

【3】35个半电波暗室使用不同长度锥测得的NSA结构

【6】【44】3m法暗室中使用8ft锥并调整锥长后测得的NSA结果【43】【44】绞锥的计算

【47】铁氧体的材料参数

【5】【6】【40】楔的计算

【48】【15】楔+瓦的计算

【50】-【54】多层设计的混合吸波材料计算

【36】中空锥体(新型)

【55】-【57】chiral材料

吸波材料知识介绍系列

吸波材料知识介绍系列—————之一 吸波材料简介 在解决高频电磁干扰问题上,完全采用屏蔽的解决方式越来越不能满足要求了。因为诸多设备中,端口的设置及通风、视窗等的需求使得实际的屏蔽措施不可能形成像法拉第电笼那样的全屏蔽电笼,端口尺寸问题是设备高频化的一大威胁。另外,困扰人们的还有另外一个问题,在设备实施了有效的屏蔽后,对外干扰问题虽然解决了,但电磁波干扰问题在屏蔽系统内部仍然存在,甚至因为屏蔽导致干扰加剧,甚至引发设备不能正常工作。这些都是屏蔽存在的问题,也正是因为这些问题的存在,吸波材料有了用武之地。 吸波材料是指能够有效吸收入射电磁波并使其散射衰减的一类材料,它通过材料的各种不同的损耗机制将入射电磁波转化成热能或者是其它能量形式而达到吸收电磁波目的。不同于屏蔽解决方案,其功效性在于减少干扰电磁波的数量。既可以单独使用吸收电磁波,也可以和屏蔽体系配合,提高设备高频功效。 目前常用的吸波材料可以对付的电磁干扰频段范围从0.72GHz到40GHz。当然应用在更高和更低频段上的吸波材料也是有的。吸波材料大体可以分成涂层型、板材型和结构型;从吸波机理上可以分成电吸收型、磁吸收型;从结构上可以分为吸收型、干涉型和谐振型等吸波结构。吸波材料的吸波效果是由介质内部各种电磁机制来决定,如电介质的德拜弛豫、共振吸收、界面弛豫磁介质畴壁的共振弛豫、电子扩散和微涡流等。 吸波材料的损耗机制大致可以分为以下几类:其一,电阻型损耗,此类吸收机制与材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。其二,电介质损耗,它是一类与电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。其三,磁损耗,此类吸收机制是一类与铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是与磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是目前吸波材料研究的一大热点。由于篇幅所限,本文对吸波材料的损耗机制仅做了最为简约的叙述,对其详述及其结构设计及结构对吸波效能的影响等方面将在以后的文章中做出解释。 总之,高速发展的新科技正引领着世界范围内的各行各类电气、电子设备向高频化、小型化方向发展,高频EMI问题必将越发突显,吸波材料必然有越来越广阔的应用空间。

透波材料介绍

透波材料介绍 一、透波材料:能透过电磁波且几乎不改变电磁波的性质(包括能量)的材料 我们以不同性能的高分子材料为基体,通过填充、共混微波陶瓷介质和复合纤维等手段,在保证材料有良好承受机械力和其它性能的同时,调节材料的介电常数和耗散因数,得到透波率能够满足我们的使用要求的复合材料。 在实际运用中,介电常数和耗散因数是衡量透波材料透波能力的两个重要指标,根据透波材料的使用环境,还需要考虑除透波率外的其它性能,如长时间的耐高温性能、高刚性、尺寸稳定、阻燃、韧性、化学腐蚀、耐磨、自润滑、耐老化等。 二、应用: 隐身技术:避免入射电磁波大量反射,从而避开敌方雷达的探测; 无线电领域:利于微波-毫米波信号的接收、传输、放大、混频、发射等许多环节; 1、雷达罩和天线罩应用: 为保证雷达或天线在各种复杂环境中的正常使用, 雷达罩或天线罩用复合材料必须具备比强度高、透波率高等性能,同时在设计上也需要考虑良好的防振动和抗老化能力。 A、我们具有国内先进的透波率(90%-99%)改性复合材料的电性能设计能力和经验; B、透波材料的低介电常数和低介质损耗是满足其使用要求的必要条件; C、拥有高耗散因数的材料不仅对无线电传输不利,同时会将电磁能转换为不利的热能。其技术难点主要是材料的透波率,长时间的交替耐高、低温性能,户外老化等。 1)气象雷达罩 2)薄壁结构地面天线罩 3)移动通讯基站天线罩 4)车载天线罩 5)各种天线包封 树脂基体的主要性能(介电常数) 树脂品种密度(g/cm3)弯曲强度 (Mpa) 弯曲模量 (Gpa) 介电常数 (106HZ) 正切损耗 (10GHz) PPS 1.36-1.4352-145 3.7-4.0 3.00.0006 PEEK 1.32110-210 3.8-9.1 3.2-3.30.0033 LCP 1.38-1.40 3.0-3.2 ASA 1.06-1.148-155 1.7-3.0 3.2-3.50.028环氧树脂 1.3097 3.8 3.00.020酚醛树脂 1.3092 3.5 3.20.020不饱和聚脂 树脂 1.2985 3.2 3.00.018乙烯基树脂 1.3090 3.5 2.90.018双马来酰亚 1.30150 3.7 3.00.014

吸波材料

吸波材料 姓名:王丽君 学院:纺织与材料工程学院 专业:材料工程 科目:材料表面与界面工程技术学号:13208520403408

吸波材料 摘要:介绍了吸波材料的吸波原理和吸波材料的分类,以及几种新型吸波材料,如铁氧体吸波材料,纳米吸波材料、手性材料、导电高分子吸波材料,耐高温陶瓷材料,并简单介绍了纳米复合材料的制备方法。 关键词:吸波材料;吸波原理;新型吸波材料;纳米复合材料的制备 信息化战争中,武器平台的高度信息化和电子化,使飞机、坦克、舰艇等所处的环境日益复杂。它们除受地面或空中的火力威胁和电子干扰外,其一举一动还处于红外、雷达、激光等探测器的严密监视之下,使其生存能力和战斗能力面临极大挑战,这样其隐身性能就显得尤为重要。 隐身技术主要涉及材料隐身和结构隐身两大方面。前者是使用吸波材料或涂料;后者是合理地设计武器外形,以提高隐蔽性。再此,不得不提及吸波材料。 1、吸波材料的吸波原理 吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 2、吸波材料的分类 目前吸波材料分类较多,现大致分成下面4种: (1) 按材料成型工艺和承载能力,可分为涂覆型吸波材料和结构型吸波材料。前者是将吸收剂(金属或合金粉末、铁氧体、导电纤维等)与粘合剂混合后,涂覆于目标表面形成吸波涂层;后者是具有承载和吸波的双重功能,通常是将吸收剂分散在层状结构材料中,或是采用强度高、透波性能好的高聚物复合材料(如玻璃钢、芳纶纤维复合材料等)为面板,蜂窝状、波纹体或角锥体为夹芯的复合结构。 (2) 按吸波原理,吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 (3) 按材料的损耗机理,吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 (4) 按研究时期,可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石

用于EMIRF吸波材料性能比较

用于EMI-RF吸波材料性能比较 用于EMI/RF吸波材料性能比较 中心议题:吸波材料测试装置的构造吸波材料测试方法 解决方案:环天线放置在相互垂直的位置相隔距离为环天线直径的二分之一利用表面电流减少装置测试 随着工程师们需要遵循的辐射电磁干扰(EMI)规范的不断增多,市场上开始出现各种类型的EMI吸波材料。一般而言,市场上所提供的这些吸波材料的厚度很薄并具有很好的外形柔韧性,再加上其背面带有粘合剂的设计使得我们能够很容易地将这些吸波材料应用到一些不符合电磁干扰和射频干扰(EMI/RFI)相关规范的产品表面。因此,选择合适的吸波材料就成为符合EMI/RFI相关规范、维护系统性能完好的一个关键因素。在10MHz到3000MHz的频率范围内,大部分吸波材料都会采用加入有损耗的磁性材料(例如,羰基铁或者铁氧体粉末等)的方式来削弱其表面电流。这些表面电流源于有害EMI和导体的相互作用, 而且它们的出现还会导致电磁场的二次辐射,因此为了保证产品符合相关规范,通常都会设法降低该表面电流。除此之外,这些表面电流还可能会对其它电路造成干扰,妨碍系统的正常运行。比较不同生产厂家提供的吸波材料的性能需要花 费大量的金钱和时间。考虑到EMI测试试验室每天几千美元的费用,试错试验(trialanderrortesting)的次数必须被限制到最少。因此,通过携带若干种可能会使用到的吸波材料到EMI试验室进行测试以确定效果最好的一种材料的方法已经被证明是一种非常昂贵的解决方法。而本文所介绍的这种简单的表面电流减小测试装置(SCRF)则允许我们对各种吸波材料样品的性能进行快速、简单的比较,从而缩小吸波材料的选择范围,确定某频率范围内具体EMI问题所需的性能最好的一种或两种吸波材料。SCRF装置主要由两个经过静电屏蔽的磁场环形天线构成,而且通过将它们小心地放置在相互垂直的位置上可以在相关频率范围内获得70dB甚至更高的隔离度。SCRF中的一个环形天线被连接到射频(RF)扫频源,而另一个环形天线则被连接到RF扫频接收机。如果将一块与产品壳体

透波材料介绍

透波材料介绍 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

透波材料介绍 一、透波材料:能透过电磁波且几乎不改变电磁波的性质(包括能量)的材料 我们以不同性能的高分子材料为基体,通过填充、共混微波陶瓷介质和复合纤维等手段,在保证材料有良好承受机械力和其它性能的同时,调节材料的介电常数和耗散因数,得到透波率能够满足我们的使用要求的复合材料。 在实际运用中,介电常数和耗散因数是衡量透波材料透波能力的两个重要指标,根据透波材料的使用环境,还需要考虑除透波率外的其它性能,如长时间的耐高温性能、高刚性、尺寸稳定、阻燃、韧性、化学腐蚀、耐磨、自润滑、耐老化等。 二、应用: 隐身技术:避免入射电磁波大量反射,从而避开敌方雷达的探测; 无线电领域:利于微波-毫米波信号的接收、传输、放大、混频、发射等许多环节; 1、雷达罩和天线罩应用: 为保证雷达或天线在各种复杂环境中的正常使用, 雷达罩或天线罩用复合材料必须具备比强度高、透波率高等性能,同时在设计上也需要考虑良好的防振动和抗老化能力。 A、我们具有国内先进的透波率(90%-99%)改性复合材料的电性能设计能力和经验; B、透波材料的低介电常数和低介质损耗是满足其使用要求的必要条件; C、拥有高耗散因数的材料不仅对无线电传输不利,同时会将电磁能转换为不利的热能。其技术难点主要是材料的透波率,长时间的交替耐高、低温性能,户外老化等。 1)气象雷达罩 2)薄壁结构地面天线罩 3)移动通讯基站天线罩 4)车载天线罩 5)各种天线包封

吸波材料是一种能将电磁能转化为其它形式的能量或使电磁波因干涉而消失,从而达到吸波的目的。 1、目前各国军事上的隐身技术,主要就是使用各种吸波、透波材料,实现对雷达的隐形;采用红外遮挡与衰减装置、涂敷红外掩饰涂料等,以降低红外辐射强度,实现对红外探测器的隐身。 2、在可见光隐形上,目前的办法只是在兵器的表面涂抹迷彩,降低兵器与背景之间的反差,或歪曲兵器的外形等初级的方法。另外由于碳纳米管的微波吸收性能,碳纳米管也可以作为吸收剂,制成隐形材料。 3、在现代军事领域,需要先发制人和远发制人,导弹自然就发挥了越来越重要的作用,如何确保导弹能够精确打击目标和长距离隐蔽飞行,天线罩技术就成了主要的“瓶颈”之一。其技术难点主要是天线罩材料的透波率和长时间的耐高温性能。 4、芳纶纤维纸具有突出的强度重量比和刚性重量比,阻燃,质量轻,耐冲击,还可进一步加工成蜂窝结构板材,主要用于生产飞机、导弹、卫星宽频透波材料、刚性受力结构部件等,是目前国内外飞机及雷达罩夹层结构使用最多的夹芯材料,也适合于制作游艇、赛艇、高速列车及其他高性能要求的夹层结构。 5、车载天线罩的透波性能可满足移动车辆的使用要求。特点:增益高,图象,语音清晰,数据传输可靠,整体性能优良力、驱波性能好,能设计出外形美观小巧,安装方便,性能稳定,具有良好的防振动和抗老化能力的产品。 6、天线种类:各频点基站(高、中、底增益)全向、定向天线、军用天线、无线modem橡皮天线及弹簧螺旋天线、车载吸盘天线、室内分布天线(吸顶及壁挂天线)、机车列尾天线、230MHZ数传天线及环阵天线、2.4-5.8G抛物面扩频天线、单边带天线、短波、超短波天线、四环阵天线、MMDS微波天线。 7、天线设计的灵敏度要高:几乎能收到没有被遮挡的所有卫星信号、可靠性高。设计时也要考虑到电磁兼容性(EMC)等问题。中心频率为 1570MHZ,1575MHZ,1580MHZ,2450MHZ的、主要应用于全球定位系统(GPS) 8、透波材料的技术要求是要有很高的透波率,以保证敌雷达波能尽可能多地穿过并进入夹层中的等离子体被吸收掉。这种透波材料可以使用与雷达整流罩相同的玻璃钢材料制作,现有技术下这类玻璃钢可以达到95%-99%的透波率;对于军舰和战车而言,还可以用透波材料制成夹层吸波瓦并在内部罐充等离子体达到良好的隐形目的。 9、雷达天线罩材料是天线罩研制的重要基础,没有好的天线罩材料,再好的电性能设计也不会实现。天线罩是功能性复合材料结构件,天线罩材料要满足介电性能、力学性能、三防寿命、工艺性能、重量等要求。材料 。该指标直接影响天的介电性能指标主要有介电常数ε和损耗角正切tg δ 线罩的电性能,是选择材料的主要依据。损耗角正切tg 越大,电磁波能 δ 量在穿透天线罩过程中转化为热量而损耗的能量就越多。介电常数ε越大,则电磁波在空气与天线罩壁分界面上的反射就越大,这将增加镜象波

气凝胶硅橡胶吸波复合材料的设计

BeFe12O19气凝胶硅橡胶吸波复合材料的设计BeFe12O19气凝胶硅橡胶吸波复合材料的设计 摘要 吸波材料是一种具有广泛的应用场合的重要功能材料,能吸收或者大幅减弱投射到它表面的电磁波能量。铁氧体吸波材料是目前应用范围最广的吸波材料。 为了梳理铁氧体吸波复合材料的研究进展,本文首先介绍了吸波材料的吸波机理。然后依据吸波机理、材料的成型工艺和承载能力以及化学组成对吸波材料分类,并以此为线索介绍了目前广泛被研究报道的吸波材料。 铁氧体材料从吸波机理上分类,属于吸收型吸波材料。进一步依据电磁损耗机理分类,属于以磁损耗为主的双复介质吸波材料。关于其发展动态,可以总结为三方面: (1)目前尖晶石型铁氧体和磁铅石型铁氧体开发较多,特别是磁铅石型铁氧体。但是近年来也有一些石榴石型铁氧体的掺杂改性研究。 (2)铁氧体的粒径、形貌、相组成、晶体结构均会影响其吸波性能。为了提高铁氧体材料的介电性能,目前有大量将其与介电性能良好的吸波材料复合的研究。 (3)目前关于改善铁氧体材料密度和低频波段吸波性能的研究很多,但改善其高温性能的研究则陷入了瓶颈。 同时,本文对粒径和吸波材料基体对铁氧体吸波材料的吸波性能的影响进行了数据分析。现有研究成果表明: (1)在一定范围内,粒径与铁氧体材料的吸波性能总体表现为负相关。 (2)吸波材料基体的特性,会影响吸波材料的吸波性能,可以通过助剂进行调节。通过设计特殊的吸波结构,能有效提高吸波复合材料的吸波性能。 最后,本文立足于现有的研究基础,设计了将硅橡胶与钡铁氧体气凝胶通过物

理共混方法制备具有吸波性能的钡铁氧体气凝胶/硅橡胶复合材料的研究方案。预期将通过傅立叶红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、比表面积分析仪(BET)对钡铁氧体气凝胶及复合材料的结构与形貌进行分析与表征,通过万能试验机、差示扫描量热(DSC)、热重分析(TG)、矢量网络分析仪对复合材料的热力学性能与吸波性能进行研究。 关键词:吸波材料;硅橡胶;BaFe 12 O 19 气凝胶;复合材料;力学性能;热性能;吸波性能 第1章绪论 1.1研究背景 电磁干扰对军事安全和民用电子信息领域的影响越来越严重[1~4],高性能吸波与防护材料已经成为了当前电磁材料领域研制和开发的重点之一。吸波材料作为一种重要的军事功能材料,其作用是减弱或消除雷达、红外线等对目标的探测能力,以达到战场隐身提高自身生存力的目的。 铁氧体类吸波材料由于既有亚铁磁性又有介电特性,因而兼具磁性和介电两种材料的损耗特点。此外,铁氧体具有较高的相对磁导率和较低的制备成本,即使在低频、薄厚度的情况下仍有良好的吸波性能,因此从50年代至今广泛应用于雷达吸波领域中。 但是随着现代战争对武器装备设计要求的不断提高,传统的铁氧体类吸波材料 图1-1第四代隐身飞机

吸波材料简介

吸波材料简介 1、定义 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 2、吸波原理分类 吸波材料的损耗机制大致可以分为以下几类: 其一,电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。 其二,电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。 其三,磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。 3、材料种类 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 吸波材料按材料分类主要分为: 铁氧体吸波材料,是利用磁性材料的高频下损耗和磁导率的散射来吸收电磁波的能力。 金属超微粉吸波材料,金属材料因居里点高(770K)而耐高温,Ms可达铁氧体的3-4倍,金属自然共振频率比铁氧体高得多,有更好的吸收性能,但是块

各种吸波材料的比较

Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸()。在~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为 -40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为 -60dB。然而可使用的频率范围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体内渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率范围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(-)。显然在30MHz 的频率上,厚度不可能是几个波长。因此暗室的频率范围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率范围。一般说来渗碳加载对电-厚和电-薄材料的要求是不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸波性能和空气比较接近,在空气-瓦片界面反射很小,入射波直接渗入瓦片。又因为瓦片对磁场损耗大,所以渗入波被吸收。如有穿过瓦片的,则被金属板反射,重又回到瓦片,被再次吸收。如还有穿出瓦片回到空气中的,则可以象锥型和楔型吸波材料那样,调节瓦片厚度,在一定的较窄的频率范围内使其与瓦片直接反射到空气中的那一部分相抵消。 近年来,薄锥和楔(200-1000MHz)+铁氧体瓦+介质层(30-600MHz)构成了超小型

透波复合材料

透波复合材料

1. 引言 利比亚战争中以美国为首的多国部队动用了大量先进的隐形战机和精确制导武器,如F16/F18、幻影2000、战斧式巡航导弹等,在短短几个小时内,就使得利比亚政府的通讯、交通、指挥等系统全部瘫痪。可见各类导弹在战场上发挥着重要的作用。 作为重要的透波部件,天线罩位于导弹头部,多为锥形或半球形,它既是弹体的结构件,又是无线电寻的制导系统的重要组成部分[1]。在导弹飞行过程中,它既要承受气动载荷、气动热等恶劣环境,又要作为发射和接收电磁波的通道,保证信号的正常传输,从而使导弹顺利完成制导和引爆等任务[1]。此外,为了减少导弹头部气动阻力,天线罩还必须具有合适的气动外形[1,2]。因此,天线罩能够保护导弹的制导、通讯、遥测、引爆等系统在恶劣环境条件下正常工作,是一种集承载、导流、透波、防热、耐蚀等多功能为一体的结构/功能部件[3,4]。 随着导弹飞行马赫数的不断提高,处于导弹气动力和气动热最大最高位置的天线罩需承受的温度和热冲击越来越高。新一代战术导弹的再入速度可高达几十个马赫,这使得导弹天线罩的工作环境日趋恶劣[5]。高温透波材料研究的滞后是制约导弹技术发展的瓶颈之一。因此,高马赫数导弹天线罩热透波材料必须具备良好的综合性能,归纳起来,主要有以下几点[6]: (1)力学性能优良。断裂强度和韧性高,可承受高马赫数导弹高速飞行时纵向过载和横向过载产生的剪力、弯矩和轴向力,且要具有一定的刚性,使其在受力时不易变形。 (2)介电性能优异。介电常数ε低,损耗角正切值tgδ小。通常情况下,在0.3~300GHz频率范围内,天线罩材料的适宜介电常数ε应小于4,损耗角正切tgδ在10-3数量级以下,这样才能获得较理想的透波性能和瞄准误差特性。 (3)抗热震性和耐热性好。天线罩必须承受由于气动加热引起的剧烈热冲击和高温环境,高马赫数导弹天线罩更要能承受2000oC以上的高温。 (4)经得起雨蚀、粒子蚀、辐射等恶劣环境条件。 (5)原料易得,易于加工,成本低廉等。 2. 热透波复合材料的分类 相比于纯陶瓷材料,陶瓷基复合材料的最大优势在于很高的抗热冲击性能和结构可靠性,特别适用于高超声速再入的热力载荷环境。主要有两类:二氧化硅复合材料为了大幅度提高热透波材料的抗热冲击性能,满足高速再入环境条件需求,20 世纪70 年代末至80 年代初,美国菲格福特公司 ( Philco-Ford) 和通用电器公司( General Electric) 首先开展了石英纤维增强二氧化硅热透波复合材料研究工作[7-8],发展了材料制备工艺,比较全面地评价了材

吸波材料现状和应用——整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

耐高温有机透波复合材料用基体树脂的研究进展

耐高温有机透波复合材料用基体树脂的研究进展 孙周强,顾嫒娟,袁 莉,梁国正 (苏州大学材料工程学院材料系,苏州215021) 摘要 耐高温有机透波复合材料是国家战略必需的关键材料,是一类集防热、透波、承载于一体的多功能介质 材料。树脂基体是决定复合材料性能的重要因素。综述了耐高温有机透波复合材料用高性能树脂基体的最新研究进展。 关键词 透波复合材料 耐热性 树脂 R esearch Progress in R esin Matrices of H eat 2resistant W ave 2transparent Organic Composites SUN Zhouqiang ,GU Aijuan ,YU AN Li ,L IAN G Guozheng (Department of Materials Engineering ,School of Material Engineering ,Soochow University ,Suzhou 215021)Abstract Heat resistant wave 2transparent composites are one of national key martial materials which have mul 2tif unctional characteristics including outstanding heat 2resistance and wave 2transparency as well as good mechanical properties.Properties of a composite are greatly dependent on the properties of its matrix ,so it is important to under 2stand the most recent progress of high performance matrices for heat resistant wave 2transparent composites.In this pa 2per ,the latest research advances in main high performance matrices are reviewed. K ey w ords wave 2transparent composites ,heat 2resistance ,resin  孙周强:男,硕士生,从事树脂基复合材料的研究 梁国正:联系人,男,教授/博导,主要从事高性能树脂及其复合材料的研究 0 引言 耐高温透波材料是高速精确制导航天器的基础,在导弹无 线电系统中得到广泛应用[1],其主要特点是具有突出的耐热性、优异的介电性能(低介电常数和介电损耗)和优良的力学性能。透波材料主要分为有机(高分子)与无机(陶瓷)两类,其中有机透波材料主要是纤维增强聚合物材料,该类材料具有优良的综合性能(包括工艺性、物理机械性能和价格),能够满足毫米波段和宽带特性要求的天线罩的使用要求[2]。众所周知,高性能树脂基体是制备耐高温透波材料的关键和基础[3]。然而,已有的高性能树脂均在不同程度上存在不足,工业和科技进步又对透波材料的性能提出了更高的要求,所以高性能树脂基体的研发一直是学术界和工业界的工作热点和重点。鉴于高性能树脂基体在耐高温透波材料中的重要地位,本文综述了耐高温有机透波材料用基体树脂的研究进展。 1 环氧(EP )树脂 EP 树脂自20世纪50年代问世以来,以其优良的粘结性、 力学性能和良好的工艺性而成为使用最广泛的树脂之一。但是,普通EP 树脂作为耐热透波复合材料基体还存在韧性差、耐 热性低、介电常数( ε)和损耗角正切(tan δ)大等缺点。因此,必须对普通EP 树脂进行改性。主要改性方法有与高性能热固性树脂共聚、热塑性树脂改性、新型环氧树脂的合成及纳米改性等。 氰酸酯(CE )和双马来酰亚胺(BMI )树脂是用于改性环氧 树脂的两种主要热固性树脂,均具有优良的耐热性和介电性能。CE 改性EP 树脂通过醚化反应降低体系极性基团的含量(图1),进而提高固化物的介电性能[4]。此外,CE 自身优异的性能以及EP 与CE 树脂在体系中形成互穿网络结构,使得CE 改性EP 体系具有比EP 树脂固化物更高的湿热性能和抗冲击性能[5] 。 图1 CE 与EP 的反应 Fig.1 R eactions in EP/CE system BM I 改性EP 一般是以二元胺作为载体,通过二元胺与BM I 的扩链反应所得到的中间体与环氧基团实现共聚,形成 兼有两者优点的网络结构(图2)。赵丽梅等[6]采用该方法对酚醛型EP 进行改性。研究结果表明,改性树脂具有良好 的力学性能,而热稳定性随着体系中BM I 含量的增加而增强。例如,当体系中BM I 含量分别为10%和35%时,改性 EP 体系分解15%的温度由330℃提高到405℃。Leu [7]用 双酚A 和环氧氯丙烷反应制得短支链环氧树脂SCER ,并将三烯丙基异氰酸酯与BM I 的反应产物(TB )加入到SCER 中,制得的改性EP 树脂具有优良的综合性能,且随体系中TB 含量的增加而增加。 ? 34?耐高温有机透波复合材料用基体树脂的研究进展/孙周强等

纳米吸波材料

纳米吸波材料 0930402090 杨苏清 现代科学技术迅速发展,无形无迹的电磁波充斥着人们的生活空间,严重的电磁污染给地球的生态环境带来了严重的破坏,因此,研制开发新型吸波材料已经成为当今社会的热点;同时,随着现代军事技术的不断发展,战争越来越信息化,立体化,雷达探测技术的不断发展,现代军队为提高自身的生存和突防能力,也越来越多的应用到隐身技术,而作为隐身技术关键的吸波材料也成为各国军事科技力量研究和开发的重点和热点。 一、纳米吸波材料原理及特性 纳米材料是指特征尺寸在1~100nm的材料。纳米材料由于其自身结构上的特征而具有小尺寸效应、表面界面效应、量子尺寸效应以及宏观量子隧道效应,因而与同组分的常规材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,在微波吸收方面显示出很好的发展前景。吸波材料是指能够吸收投射到它表面当今电磁波能量,并通过材料的介质损耗使电磁波能量转化为其他形式的能量的一类材料。 当一个微粒的尺寸小到纳米量级时,它的微观结构和性能既不同于原子、分子的微观体系,也不同于显示本征性质的大颗粒材料宏观体系,而是介于二者之间的一个过渡体系。纳米微粒尺寸小,比表面积大,具有很高的表面能,从而对其化学性质有很大影响。实验证明,粒子分散度提高到一定程度后,随着粒子直径的减小,位于粒子表面的原子数与总原子数的比值急剧增大,当粒径降为5nm 时,表面原子所占比例可达50%。由于表面原子数增加,微粒内原子数减少,使能带中的电子能级发生分裂,分裂后的能级间隔正处于微波的能量范围内(l×l0-2-l×lO-5eV),从而导致新的吸波通道。一方面,纳米微粒尺寸远小于雷达波波长,对雷达波的透过率大大高于常规材料,这就大大降低了对雷达波的反射率;另一方面,纳米材料的比表面积比常规微粒大3~4个数量级,对雷达波和红外光波的吸收率也比常规材料高得多。此外,随着颗粒的细化,颗粒的表面效应和

各种吸波材料的比较

各种吸波材料的比较 Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸(5.08cm)。在2.4~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为-40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为-60dB。然而可使用的频率围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(0.91-1.83m)。显然在30MHz的频率上,厚度不可能是几个波长。因此暗室的频率围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率围。一般说来渗碳加载对电-厚和电-薄材料的要不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸

关于吸波材料的市场分析报告

关于吸波材料的市场分析报告 一、引言 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 在日益重要的隐身和电磁兼容(EMC)技术中,电磁波吸收材料的作用和地位十分突出,已成为现代军事中电子对抗的法宝和“秘密武器”,其工程应用主要在以下几个方面:隐身技术、改善整机性能、安全保护、微波暗室。此外,在手机外壳,微波行业也是应用非常广泛。 二、情况介绍 随着电子技术的飞速发展,电子产品正迅速向节能化、智能化、信息化、多系统、多功能及娱乐性等多元化方向发展。这些拥有各种个性化娱乐功能的电子产品的普及,在很大程度上丰富了人们的物质生活需要;但与此同时,也不可避免地带来了一些问题,尤其是电磁兼容(EMC)问题。电磁兼容问题的存在,往往使电子、电气设备或系统不能正常工作,性能降低,甚至受到损坏。为解决这些问题,全球各地区基本都设置了与电磁兼容相关的市场准入认证,用以保护本地区的电磁环境,如:北美的FCC、NEBC认证,欧盟的CE认证,日本的VCCEI认证,澳洲的C-TICK认证,台湾地区的BSMI认证,中国的3C认证等。 此外,由于消费类电子产品集成的功能越来越多,以手机为例,目前市场上一部智能手机,往往同时集成有GSM移动通信、蓝牙、Wi-Fi、摄像头等,另外还具有MP3、MP4等多媒体功能,,这使得手机的工作频率越来越高,系统内部各个子模块之间的互相干扰也变得很突出。 另外,目前国内外吸波涂料民用频段的应用还是空白点,(军用频段吸波涂料的应用美国、法国有先例)利用吸波原理的民用系列产品我们是首创,胶板类的吸波材料可以加工卷材是国内首创,吸波材料、吸波涂料的核心技术是材料的配伍,生产工艺简单,加工设备都是通用设备,一次性投资少。 吸波材料在手机电磁兼容设计中的应用 手机在工作时,会不断往外发射电磁波,最大功率可以达到2w,这对周围环境的影响是很大的。比如,在手机通话的过程中,如果与固定电话距离较近,且固定电话也在通话,那么,我们经常会在固定电话的手柄中听到“滋滋滋”的声音,

纳米吸波材料

00 杨苏清 现代科学技术迅速发展,无形无迹的电磁波充斥着人们的生活空间,严重的电磁污染给地球的生态环境带来了严重的破坏,因此,研制开发新型吸波材料已经成为当今社会的热点;同时,随着现代军事技术的不断发展,战争越来越信息化,立体化,雷达探测技术的不断发展,现代军队为提高自身的生存和突防能力,也越来越多的应用到隐身技术,而作为隐身技术关键的吸波材料也成为各国军事科技力量研究和开发的重点和热点。 一、纳米吸波材料原理及特性 纳米材料是指特征尺寸在1~100nm的材料。纳米材料由于其自身结构上的特征而具有小尺寸效应、表面界面效应、量子尺寸效应以及宏观量子隧道效应,因而与同组分的常规材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,在微波吸收方面显示出很好的发展前景。吸波材料是指能够吸收投射到它表面当今电磁波能量,并通过材料的介质损耗使电磁波能量转化为其他形式的能量的一类材料。 当一个微粒的尺寸小到纳米量级时,它的微观结构和性能既不同于原子、分子的微观体系,也不同于显示本征性质的大颗粒材料宏观体系,而是介于二者之间的一个过渡体系。纳米微粒尺寸小,比表面积大,具有很高的表面能,从而对其化学性质有很大影响。实验证明,粒子分散度提高到一定程度后,随着粒子直径的减小,位于粒子表面的原子数与总原子数的比值急剧增大,当粒径降为5nm 时,表面原子所占比例可达50%。由于表面原子数增加,微粒内原子数减少,使能带中的电子能级发生分裂,分裂后的能级间隔正处于微波的能量范围内(l×l0-2-l×lO-5eV),从而导致新的吸波通道。一方面,纳米微粒尺寸远小于雷达波波长,对雷达波的透过率大大高于常规材料,这就大大降低了对雷达波的反射率;另一方面,纳米材料的比表面积比常规微粒大3~4个数量级,对雷达波和红外光波的吸收率也比常规材料高得多。此外,随着颗粒的细化,颗粒的表面效应和量子尺寸效应变得突出,颗粒的界面极化和多重散射成为重要的吸波机

EMI-RF吸波材料性能分析

EMI/RF吸波材料性能分析 随着工程师们需要遵循的辐射电磁干扰(EMI)规范的不断增多,市场上开 始出现各种类型的EMI吸波材料。一般而言,市场上所提供的这些吸波材料的厚度很薄并具有很好的外形柔韧性,再加上其背面带有粘合剂的设计使得我们能够很容易地将这些吸波材料应用到一些不符合电磁干扰和射频干扰(EMI/RFI) 相关规范的产品表面。因此,选择合适的吸波材料就成为符合EMI/RFI相关规范、维护系统性能完好的一个关键因素。 在10MHz到3000MHz的频率范围内,大部分吸波材料都会采用加入有损耗的磁性材料(例如,羰基铁或者铁氧体粉末等)的方式来削弱其表面电流。这些表面电流源于有害EMI和导体的相互作用,而且它们的出现还会导致电磁场的二次辐射,因此为了保证产品符合相关规范,通常都会设法降低该表面电流。除此之外,这些表面电流还可能会对其它电路造成干扰,妨碍系统的正常运行。 比较不同生产厂家提供的吸波材料的性能需要花费大量的金钱和时间。考虑到EMI测试试验室每天几千美元的费用,试错试验(trialanderrortesting)的次数必须被限制到最少。因此,通过携带若干种可能会使用到的吸波材料到EMI试验室进行测试以确定效果最好的一种材料的方法已经被证明是一种非常昂贵的解决方法。而本文所介绍的这种简单的表面电流减小测试装置(SCRF)则允许我们对各种吸波材料样品的性能进行快速、简单的比较,从而缩小吸波材料的选择范围,确定某频率范围内具体EMI问题所需的性能最好的一种或两种吸波材料。 SCRF装置主要由两个经过静电屏蔽的磁场环形天线构成,而且通过将它们小心地放置在相互垂直的位置上可以在相关频率范围内获得70dB甚至更

相关文档
最新文档