吸波材料现状和应用 超经典

吸波材料现状和应用 超经典
吸波材料现状和应用 超经典

吸波材料的发展现状

一.

1.目前吸波材料分类较多,现大致分成下面4种:

1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。

按吸波原理

吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。

按材料的损耗机理

吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。

按研究时期

可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。

2.无机吸波剂

铁系吸波剂

金属铁微粉

金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。

多晶铁纤维

多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。

铁氧体

铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。

碳系吸波剂

石墨、乙炔炭黑

据报道乙炔炭黑属介电型吸收剂,由于其粒径为纳米级,不仅能吸收电磁波,还能有效抑制红外辐射;石墨在二战期间就被用来充填在飞机蒙皮的夹层中吸收雷达波,由于其密度低,也常被用来充填在蜂窝夹层结构中。导电炭黑还被用来与高分子材料复合,调节高分子复合材料的导电率,达到吸波效果,但石墨、乙炔炭黑作为高温吸收剂的缺点是高温抗氧化性差。

碳纤维

碳纤维是由有机纤维或低分子烃气体原料加热所形成的纤维状碳材料,它是不完全的石墨结晶沿纤维轴向排列的物质,其碳含量为90%以上。随碳化温度的升高,碳纤维结构由乱层结构向三维石墨结构转化,层间距减小,电导率逐步增大,易形成雷达波的强反射体,如高温处理的石墨纤维。低温处理的碳纤维,结构疏松散乱,是电磁波的吸收体,是良导电性的电损耗材料。因此,只有经过特殊处理的碳纤维才能吸收雷达波。

碳纳米管

在1991年发现碳纳米管(CNTS)以来,众多研究者对它的纳米和微型器件的研究更加重视。碳纳米管作为导电物质,其特殊的物理和化学性能使得它广泛的被用作吸波材料。在用适量稀土氧化物改性,并与环氧树脂充分混和制成复合吸波材料后,碳纳米管的吸波性能可大幅提高。

陶瓷系吸波剂

用于高速飞行器组件上的雷达吸波材料要承受长时间高温工作的特点,而陶瓷材料具有优良的力学性能和热物理性能,特别是耐高温、强度高、蠕变低、膨胀系数小、耐腐蚀性强和化学稳定性好,同时又具有吸波功能,能满足隐身的要求,因此已被广泛用作吸收剂。陶瓷吸波材料主要代表有碳化硅吸波材料、碳化硅复合吸波材料。

碳化硅

在陶瓷吸波材料中,碳化硅是制作多波段吸波材料的主要组分,有实现轻质、薄层、宽频带和多频段吸收的可能,应用前景广阔。

碳化硅-碳纤维材料综合了SiC耐高温氧化和碳纤维的高强度与导电优点而成为一类新型陶瓷纤维材料,它的损耗效应综合了介电损耗和磁损耗,这是由于该纤维是以β-SiC型微晶与自由状态的x(x可以是C、N、Pe、Ni、Co、Zr单独一种或同时

多种元素)成混晶状态。通过聚碳硅烷与沥青共混纺丝,然后将其硫化使之成为热不熔化体,在N

气流下以200~250℃/h的升温速度加热至1000~1200℃,烧结一

2

定时间,转化为SiC-C纤维。这种纤维具有吸收雷达波的功能,经过与环氧树脂复合制成平板,衰减-10 dB的频带宽度超过10 GHz。

3 有机物为主体吸波剂

导电高分子类吸波材料

导电高分子是由具有共轭π键的高分子通过电化学或化学“掺杂”使其由绝缘体转变为导体的一类高分子材料,其导电机理一般认为是掺杂导电高分子的载流子是孤子、极化子和双极化子等。目前,导电聚合物型吸波涂层尚处于实验室研究阶段,单一的导电聚合物的吸波频率较窄,其吸波性能依赖于导电聚合物的主链结构、室温电导率、掺杂剂性质、微观形貌、涂层厚度、涂层结构等因素.提高材料的吸收率和展宽频带是导电高聚物吸波材料的研究与发展重点。

视黄基席夫碱类吸波材料

视黄基席夫碱盐具有吸收无线电波的特异性能,在国防建设和军事领域都有非常重要的意义。1987年美国研制出一种非铁氧体基吸波材料,它就是由多种视黄基席夫碱盐组成的含双键的聚合物,其吸波性能良好,质量仅为铁氧体的1/10,对雷达波的衰减可达80%以上,特定类型的视黄基席夫碱盐可吸收特定的雷达波波长,因此通过对这些特定的视黄基席夫碱盐进行搭配、组合,从而达到宽频的吸波效果。这一报道引起了人们对席夫碱研究的重视,为视黄基席夫碱的研究开辟了新的领域。

4 其他吸波材料简介

等离子体吸波材料

等离子体隐身技术是20世纪60年代就开始探索,近几年才有新发展的新兴隐身技术,

是利用等离子体回避探测系统的两种技术。目前产生隐身等离子体的方法主要有两种:一种是在飞机的特定部位(如强散射区)涂一层放射性同位素,对雷达波进行吸收;另一种是在低温下,通过电源以高频和高压的形式提供的高能量产生间隙放电、沿面放电等形式,将气体介质激活,电离形成等离子体。等离子隐形主要有两种形式:一种是等离子隐形涂料:以放射性同位素210钋、90锶为原料,在高速飞行状态下,使飞行器表面在空气层电离时,形成一层等离子来吸收微波、红外线等其吸收性。能在1~20GHz范围内反射率可达-17dB。

手性吸波材料

手性材料是指与其镜像不存在几何对称性,且不能使用任何方法使其与镜像重合

的材料。研究表明,具有手性结构的材料能够减少入射电磁波的反射并能吸收电

磁波,手性吸波材料是近年来开发的新型吸波材料。20世纪90年代初国内将手性

吸波材料附于金属表面的试验结果表明:它与一般吸波材料相比,具有吸波频率高、吸收频带宽的优点,并可通过调节旋波参量来改善吸波特性。在提高吸收性能、

扩展吸波带宽方面具有很大潜能。

智能化吸波材料

智能材料是近年来发展起来的新型的高科技材料,它是将驱动件和传感件紧密融

合在结构中,同时也将控制电路、逻辑电路、信号处理器、功率放大器等集成在

结构中,通过机械、热、光、化学、电、磁等激励和控制,使智能材料不仅具有

承受载荷的能力,还具有识别、分析、处理及控制等多种功能,并能进行数据的

传输和多种参数的检测,而且还能动作,具有改变结构的应力分布、形状、电磁场、光学性能、化学性能等多种功能,从而使结构材料本身具有自诊断、自适应、自学习、自修复、自增值、自衰减等能力。智能材料这种能够根据外界环境变化

调节自身的结构和性能,并对环境做出最佳响应为隐身材料的设计提供了一种全

新的思路和方法,使智能隐身目标的实现成为可能。

目前对吸波材料的研究方向主要集中在以下几个方面。

⑴发展能强吸收的吸波材料。强吸收仍然是吸波材料追求的主要目标,它是吸波材料的最基本要求;

⑵发展能兼容米波、厘米波、毫米波及红外光等多波段的宽频吸波材料;

⑶发展质量轻、厚度薄不影响飞行器机动性能的吸波材料;

⑷发展具有耐高温、耐腐蚀等适应复杂环境的能力,并且具有较高的可维护性和较长使用寿命的吸波材料。

为达到上述目的,今后应加强以下几个方面的研究工作:

(1) 铁系吸波剂。如何在不显着影响电磁性能的前提下,与导电高分子材料复合制得复合吸波剂,并进行多层结构的设计,使其达到轻质、宽频和吸收强的特点;

(2)碳系吸波剂。作为轻质吸波剂,其与强吸收性能材料的复合及其纳米化是其发展的主要方向;

(3)陶瓷类吸波剂。作为耐高温、高强度吸波剂已越来越受到人们的注意,在保持其耐高温特性的前提下,与磁性金属、碳系吸波剂的复合、纳米陶瓷吸波剂的研究等将是吸波材料研究的主要方向;

(4)导电高分子吸波剂作为新型轻质吸波剂将越来越受到人们地重视,就如何在一定导电情况下,促使其具有一定的磁性能,具有电磁损耗;加强与无机复合吸波材料的研究将是以后发展的重点;

(5)迫切需要开发新型吸波材料以满足探测技术的发展对隐形物体的威胁。现阶段我们正在探讨一种新型的含双噻唑基、二茂铁基的席夫碱的电磁性能,通过对其电磁性能的研究来和隐身技术所需参数进行匹配,达到吸波效果。这对目前提出的吸波材料需要满足轻质的要求具有极大的应用价值。

<<吸波材料简介>>

二.1.铁氧体磁性吸波材料

铁氧体磁性吸波材料是一种复介质材料, 对电磁波的吸收既有介电特性方面的极化效应又有磁损耗效应。具有吸收率高、涂层薄和频带宽等优点,被广泛应用于雷达吸波材料领域。铁氧体磁性吸波材料的不足之处是其复介电常数实部和复磁导率实部较小, 密度大, 饱和磁化强度低, 居里温度低及高温稳定性差, 因此应用范围受到限制。

2.金属微粉磁性吸波材料

通常所指的金属微粉的粒度为0. 5~20μm。金属微粉吸波材料具有居里温度高、温度

稳定性好、在磁性材料中磁化强度最高、微波磁导率较大、介电常数较高等优点, 因此

在吸波材料领域得到广泛应用。它主要是通过磁滞损耗、涡流损耗等方式吸收电磁波。

目前主要使用的金属微粉的尺寸通常是1~10μm, 对于金属微粉磁性吸波材料的研究主

要集中在其合金及其化合物方面, 并且取得了较好的效果。

虽然对于磁性金属微粉吸波性能的研究取得了较好的效果和应用, 但是由于磁性金

属微粉的密度大, 抗氧化、耐酸碱能力差, 远不如铁氧体; 磁性金属微粉的填充率不会

很高, 电阻率低, 介电常数较高且频谱特性差、低频段吸收性能较差等原因, 磁性金属

微粉向纳米尺度和复合化的研究将会是今后的一个重要研究方向。

3. 多晶金属纤维磁性吸波材料

多晶金属纤维磁性吸波材料的吸波机理是涡流损耗和磁滞损耗, 此外它还是一种良导体, 具有较强的介电损耗吸收性能, 在外界交变电场的作用下, 纤维内的电子产生振动, 将

电磁能部分转化为热能。多晶铁纤维具有独特的形状各向异性, 可在很宽的频带内实现

高吸收, 质量比传统的金属微粉材料减轻40%~60%, 克服了大多数磁性材料的严重缺陷。多晶铁纤维吸波材料具有重量轻、面密度小(可降至~2kg/m2) 、频带宽(4~18GHz) 的优点, 并且可以通过调节纤维的长度、直径、排列方式、分散剂的含量等调节材料的电磁

参数。

4. 纳米磁性吸波材料

纳米材料是指材料尺寸为纳米级( 通常为1~100nm) 。纳米材料独特的结构使其具有隧

道效应、量子效应、小尺寸效应和界面效应等特点。将纳米材料作为吸收剂制成涂料, 不仅能很好地吸收电磁波, 而且涂层薄, 吸收频带宽。目前研究的主要方向有纳米磁性薄

膜吸波材料、纳米金属与合金吸波材料、纳米陶瓷吸波材料、纳米氧化物吸波材料、纳

米复合吸波材料等。

王磊等, 磁性吸波材料的研究进展及展望[J].电工材料,2011,2:38-40.

三.

1.金属超细微粉吸波材料

金属超细微粉是指粒度在10 μm 甚至1 μm 以下的粉末。它一方面由于粒子的细化使组成粒子的原子数大大减少,活性大大增加,在微波辐射下,分子、电子运动加剧,促进

磁化,使电磁能转化为热能。另一方面,具有铁磁性的金属超细微粉具有较大的磁导率,与高频电磁波有强烈的电磁相互作用,从理论上讲应该具有高效吸波性能。

2. 多晶铁磁性金属纤维

多晶铁纤维吸收剂包括Fe、Co、Ni 及其合金纤维吸收剂,是一种轻质的磁性雷达波吸收材料。多晶铁纤维具有独特的形状各向异性和复合损耗机理(磁损耗和介电损耗),具

有质量轻、频带宽和斜入射性能好的优点,以及可通过调节纤维的长度、直径及排列方式调节吸波体的电磁参数,是一种值得研究的吸波材料。

3.电介质陶瓷吸波材料

目前国内外研制开发的陶瓷类吸波材料主要有碳化硅、氮化硅、氧化铝、硼硅酸铝材料或纤维,特别是碳化硅纤维或材料。

4. 导电高分子材料

与其他吸波材料相比,导电高分子材料具有密度小(只有铁氧体的1/5)的特点,通过掺杂调节电导率来控制其吸波性能,国外报道在毫米波段具有–10dB 和 GHz 的带宽。

5. 手性吸波材料

手性是指一种物体与其镜像不存在几何对称性且不能通过任何操作使物体与镜像相重合的现象。手性材料与普通吸波材料相比有两个优势:一是调整手性参数比调整介电参数和磁导率容易。在其中传播的电磁波只能是左旋或右旋的圆偏振波,其优势在于调节手性参数就可以调节阻抗匹配。二是手性材料的频率敏感性比介常数和磁导率小,易于实现宽频吸收。以MnZn 铁氧体与树脂的复合物为基质,以片式电感为手性掺杂体,可制备手性复合吸波材料,用网络分析仪在30~1 000 MHz 时测定了材料的透过衰减,均超过了10 dB,表现出较好的吸波效果。

邱琴等,电磁吸波材料研究进展[J]。电子元件与材料,2009,28(8):79-81.

四. 目前研究与应用比较多的有铁氧体吸波材料、金属微粉吸波材料、纳米吸波材料、多晶铁纤维吸波材料、导电高聚物吸波材料、手性吸波材料、等离子体型吸波材料及光学透明吸波材料等。

光学透明吸波材料

根据雷达波不透过原理, 可分为吸收型和反射型2大类, 其中反射型应用较为广泛。吸收型光学透明吸波材料要求雷达波完全损耗在透明薄膜之中, 不发生反射也不透过透明件。目前主要有透明导电高聚物和电路模拟型吸波材料2种。

赵灵智, 胡社军等.吸波材料的吸波原理及其研究进展[J].现代防御技术,2007,35(1):29-31.

五.

1.碳纤维结构吸波材料

碳纤维复合材料具有高强、高模和轻质的优点,不仅广泛应用于一般飞行器和导弹,在隐身兵器中也日益显露头角。

2.稀土吸波材料

近年来,国内部分学者对稀土吸波材料的研究较为活跃,稀土吸波材料的研究主要集中在用稀土元素对铁氧体进行改性和以稀土材料为基制备电磁波吸收材料等方面。

3. 水泥基吸波材料

目前研究的水泥基电磁屏蔽材料大部分是为了有效地抑制电磁波的辐射、泄漏、干扰和改善电磁环境,故这类水泥基复合材料主要以反射型电磁屏蔽材料为主。

4. 放射性同位素吸波材料

在涂料中加人放射性同位素,利用其放射出的高能射线使目标附近的局部空间发生电离,产生一

个等离子屏,形成含有大量的自由电子并与自由空间相匹配的等离子体区,可以吸收频带相当宽的电磁波。所用的同位素主要有Po-210、Cm-242和Sr-9O等。

5.电路模拟(CA)吸波材料

该技术是在合适的基底材料上涂覆导电的薄窄条、网络、十字型或更复杂的几何图形,或在复合材料内部埋人导电高分子材料形成电阻网络,实现阻抗匹配及损耗,以取代Salisbury屏幕或Jaumann吸收体中的绝缘材料层,从而实现高效吸收雷达波。这种吸波材料在给定的体积范围内,能产生高于较简单类型吸波材料的性能,但对每一种应用,都必须运用等效电路或用二维周期介质理论在计算机上进行特定的匹配设计,而且设计计算比较麻烦。

郭小芳,王长征,吴世洋.吸波材料的研究现状与发展趋势[J].甘肃冶金,2010,32(4):48-50.

六.

FeSiAl合金从1932年诞生以来,国内外学者对此进行了不断的研究,由于其硬而脆,耐磨,最早用作磁头铁芯,不过近年来,日本TOKIN公司研究人shigeyoshi Yoshida等用水雾法得到FeSiAl球形颗粒,然后分别进行了100h和180h的砂磨,得到扁平状的微粉,这种微粉的显着特点是有很大的长径比(微粉某一长径与厚度之比),且微粉的厚度也小于GHz频段时的趋肤深度,发现了在GHz频段时有“双峰”频散的特性,磁导率虚部在很宽的频段内都保持较高的值.

国内浙江大学硅材料国家重点实验室研究了用熔融纺丝法制备的FeSiAl合金微粉的结构和电磁特性,在70h球磨后有很大的长径比.

另外,还有很多学者用其他方法,主要是机械合金法(MA法),得到FeSiAl,FeAl或FeSi合金粉,详细研究其合金化过程,合金粉结构,有序度等.

总之,国内外学者对FeSiAl合金的结构和电磁特性进行了大量的研究,包括雾化粉球磨成扁平状微粉,或直接用Fe粉Al粉和Si粉通过机械球磨的方式得到合金,或研究FeSiAl薄膜的特性,也研究了二元系的结构,形成机理及电磁特性等,采用一种新的制备方式或适当的工艺,获得性能优异的纳米晶片状微粉是这种材料的发展趋势之一,同时,结合适当的理论进行实验结果的分析,研究微粉的电子结构

与成分,球磨时间等的关系,为这种材料发展提供理论指导.

周廷栋. FeSiAl片状微粉的制备、结构及性能研究[D].成都:电子科技大学,2009.

七.磁性金属电磁波吸收剂的研究现状

l) 单元磁性金属粉

目前研究较多的单元磁性金属粉吸收剂主要有两类: 一类是羰基金属粉, 如羰基Fe 、羰基Ni、羰基Co 等, 其粒度在μm之间, 目前大多使用拨基Fe 粉。

(2) 多元合金化磁性金属粉

磁性金属的多元化是避免单元金属缺点, 实现宽频吸收目标的方法之一。也报道了核/ 壳结构的多元金属粉体,。(3) 陶瓷基核/ 壳结构纳米磁性金属颗粒膜

(4) 纳米磁性金属薄膜材料

(5) 磁性金属纤维

景茂祥,沈湘黔.纳米磁性金属电磁波吸收剂的研究进展及展[J].磁性金属物测定

仪,2005,19(12):14-16.

吸波材料的应用

一. 1. 军事隐身领域

军事隐身领域乃吸波材料最重要的应用领域。随着军事高新技术的飞速发展,世界各国防御体系的探测、跟踪、攻击能力越来越强,陆、海、空各兵种地面军事目标的生存能力以及武器系统的突防能力日益受到严重威胁,为此,必将大力发展隐身技术。隐身技术分为外形隐身和材料隐身两个方面,其中材料隐身就是指在军事目标上大量使用吸波材料来

衰减入射雷达波,减小雷达散射截面。这必将促进吸波材料的应用和发展。目前,吸波材料已被广泛应用在飞机隐身、舰船隐身飞行导弹隐身以及坦克隐身等领域。

2. 广播、电视发射台的电磁辐射防护

广播、电视发射台对周围区域会造成较强的场强。利用对电磁辐射的吸收特性,在辐射频率较高的波段,使用合适的吸收型涂料,覆盖建筑物,以衰减室内场强。另外,该涂料兼具屏蔽性能,是一种屏蔽吸收型涂料,在10 MHz~1. 5 GHz范围有20 ~30 dB的屏蔽性能。

3. 工业、科学和医疗设备电磁辐射的防护

工业、科学和医疗设备等在工作过程中会产生大量的电磁辐射,如果处理不当,不仅会对自身的工作环境造成损害,同时也会对周围的设备造成干扰。最明显的例子就是机器内的二次杂波问题。二次杂波往往会带来机器、设备的程序紊乱,致使科学实验、医疗检测结果等出现较大的偏差,从而给科研、生产带来很大阻力,甚至会威胁到人的生命安全。另外,这些设备发出的电磁辐射也会对操作人员的身体健康带来危害。因此,对工业、科

学和医疗设备进行电磁辐射防护十分必要。

4. 家用电器的电磁辐射防护

所有的电器(如电冰箱、电视机等) ,在使用过程中都会发出电磁辐射,只是由于电

磁波是一种无形的物质,因为电磁波是看不见,摸不着的能量物质,又无时不有、无处不在,因此更具有危险性和危害性,我们觉察不到而已。随着3C认证的实施,对电磁辐射防护的

要求也越来越高,其实,象家用电器的电磁辐射,采取防护措施并不是什么难事,只是在生

产制作过程中,加一道简单的工序———喷涂吸波材料而已,不过,对吸波涂料的选择要

根据其频段来决定。

5. 手机、电脑的电磁辐射防护

在科技发展的今天,手机、电脑给人们带来方便的同时,也带来了不容忽视的电磁辐

射危害。为了尽可能地减少手机、电脑对人体,尤其是头部的辐射,除了尽可能地减少手

机的辐射功率及保证使用手机时不要让它与人体接触,还应考虑其他防护措施,手机的辐

射频率为800~1 800 MHz,电脑也会产生几百兆的电磁波,如果在生产过程中,能够在手机外壳、电脑机箱、电脑显示器内侧喷涂具有吸收功能的吸波涂料,将多余电磁波吸收,就

不会再有电磁辐射的危害问题。

6. 办公、居住区的电磁辐射防护

吸波材料在民用产品上的应用不仅仅只有这些,很快吸波材料会应用到您的日常生活当中,例如您的办公、居室内喷涂吸波材料,就不会再有电磁辐射的危害问题,它将您的办公、居室内的家用电器、办公设备辐射出的电磁波电子雾吸收转换成无害的物质,同时将外界的电磁波大部分吸收隔离,那将是一个非常干净的电磁环境空间。

杨国栋,康永,孟前进.微波吸波材料的研究进展[J].应用化学,2010,39(4):587-588.

二.民用领域成为吸波材料新的应用领域,主要有以下几类。

(1) 微波暗室材料,把碳系导电材料或铁氧体材料制成棱锥形或楔形,可用于建筑无反射

的微波暗室,来替代开阔场地以进行电磁干扰性能的测试。

(2) 电磁防护材料, 可以把吸波材料用在手机、电视、计算机、服装等上面,以减少电磁波辐射对人体的伤害。

(3) 建筑吸波材料,把具有吸波功能的混凝土材料用于建筑行业,以减少高大建筑物的电

波反射作用,提高广播、电视播放质量。

(4) 把吸波材料用在微电机及其他电子设备上,以减少电磁干扰引起的电子电器失误。

(5) 把吸波材料用在波导或同轴衰减器的吸收负载上,作为微波衰减器,具有良好的吸收

性能和稳定性。

郑长进,李家俊等.吸波材料的设计和应用前景[J].宇航材料工艺,2004,5:3-4.

三. 吸波材料在手机辐射防护中的作用

用FDTD数值模拟的方法,建立了涂敷吸波材料的手机与人体相互作用的计算模型。

比较了使用吸波材料对降低手机辐射剂量SAR值的作用,并分析了其对手机通信性能的影响。结果表明:使用吸波材料可以明显降低手机对人体的辐射。

宋治国,周晓明,刘伟.吸波材料在手机辐射防护中的作用[J]. EMC材料应用,2009. 四.吸波材料在手机电磁兼容设计中的应用

手机在工作时,会不断往外发射电磁波,最大功率可以达到2w,这对周围环境的影响是

很大的。比如,在手机通话的过程中,如果与固定电话距离较近,且固定电话也在通话,那么,我们经常会在固定电话的手柄中听到“滋滋滋”的声音,非常刺耳,这就是典型的手机对固定电话的干扰现象。因此,为避免手机在工作时对周围环境的干扰,必须对手机工作时的一些不必要的辐(spuriousemission)进行限制。吸波材料在解决手机产品的电磁兼容设计问题时是很有效的。随着电子产品的小型化、多功能化、数字化发展以及工作频率的不断

提升,吸波材料,尤其是具有不导电性能的铁氧体吸波材料,在这些产品的电磁兼容设计方面,将可发挥

越来越大的作用。

王国强.吸波材料及其在手机电磁兼容设计中的应用[J].设计与实现.2010,18:64-65. 五.磁性吸波材料的应用分为军民两个方面。

就其军用而言,例如铁氧体吸波材料已广泛应用于隐身技术中,具有吸收强、频带较宽及成本低的特点,但它也具有大密度、高温特性较差的缺点。用磁介质吸波材料制作的微波暗室可广泛的应用于电子设备的干扰、雷达或通信设备的天线导弹、飞机和卫星等特性阻抗耦合度的测量、宇航员用背肩式天线方向图的

测量、宇宙飞船安装测试和调整等;此外磁介质吸波材料在改善机载、舰载雷达设备的兼容性,使整机性能提高等方面亦有着广阔空间。在各种军用装备的表面上涂覆磁介质吸波材料,则可以消除雷达对该装备的跟踪,从而使这些军用装备容易突破敌方雷达的防区,克敌制胜,既是反雷达侦察的一种有力手段,又是军用装备免遭红外和激光制导武器击毁的一种途径。此外吸波材料还可用于隐蔽着陆等机场导航设备及其它地面终端设备、舰船桅杆、甲板、潜艇的潜望镜支架或通气管道等设备。

在民用方面来说,我们知道电磁辐射通过热效应、非热效应、累积效应对人体造成直接和间接的伤害,将吸波材料应用于家电产品比如电视、音响、电脑、游戏机、微波炉、VCD 机、手提电话等上面,可使其电磁波泄漏降到国家卫生安全限值以下(小于38 微瓦/每平方厘米),确保人们身体健康。将其应用于高功率雷达、微波医疗器、微波破碎机,则能防止它们的电磁辐射泄漏,保护操作人员免受电磁辐射的伤害。

电动汽车工业作为当今汽车工业的发展方向,已被各大汽车制造业商提到全球经济战略议程上来。然而电动机取代内燃机虽然解决了汽车尾气的化学污染,但由于使用电动机而产生的物理污染——电磁污染也同样是人类必须解决的棘手问题。磁介质吸波材料应用则使得电子化汽车、电动汽车变得更先进、更安全、更符合环保的要求。目前用于降低电磁波干扰的器件和吸波材料的产量正与日俱增,新产品也不断涌现。

余声明.磁性吸波材料与应用[J].国际电子变压器,2009:100-102.

六.

1、隐身技术

2、改善整机性能

如在雷达或通信设备机身、天线和周围一切干扰物上涂复吸收材料,则可使它们更灵敏、更准确地发现敌方目标;在雷达抛物线天线开口的四周壁上涂复吸收材料,可减少副瓣对主瓣的干扰和增大发射天线的作用距离,对接收天线则起到降低假目标反射的干扰作用;在卫星通信系统中应用吸收材料,将避免通信

线路间的干扰,改善星载通信机和地面站的灵敏度,从而提高通信质量。

3、安全保护

由于高功率雷达、通信机、微波加热等设备的应用,防止电磁辐射或泄漏、保护操作人员的身体健康是一个全新而复杂的课题,吸收材料就可达到这一目的。

4、微波暗室

由吸收体装饰的壁面构成的空间称为微波暗室。在暗室内可形成等效无反射的自由空间(无噪音区),从四周反射回来的电磁波要比直射电磁能量小得多,并可忽略不计。

<<吸波材料及其应用>>

六. 美、日、韩吸波材料的发展与应用

二战之后的美国试图研制一种能摆脱雷达追踪的隐身战机、隐身导弹、等隐形武器,在这些隐形武器表面所涂覆的正是吸波材料,与此同时吸波材料在民用领域也作出了重要贡献—如美国的3M吸波材料。

日本人为吸波材料的研究奠定了坚实基础,由于二战后的日本受到《和平宪法》规定不能发展核武器以及一些重武器的制约,所以到目前为止日本都没有一款真正意义上的隐形战斗机,日本的吸波材料自然在军事工程上难以崭露头角,所以日本的吸波材料便投向了民族工业领域、吸波材料在电器EMC领域终于有了用武之地,以大同、NEC、TDK 为招牌的吸波材料企业其盛名响彻世界,多数的电子企业指定使用日本的吸波材料,尽管它价格不菲,但其性能极其稳定,品质卓越赢得客户信赖。

韩国吸波材料的研发最近几年取得了长足发展,其作用主要体现在民用领域,高集成化、轻薄便携式、高智能化的电子产品的发展为韩国吸波材料的发展起到了推动作用,韩国吸波材料也正从原来的树脂型向纳米材料、复合材料型方向发展,磁导率高、适用频带宽、轻薄、耐温等技术是韩国吸波材料发展的主导方向,随着市场需求量的增大,韩国的吸波材料也走向了作坊小规模生产模式,尽管小但究其经营管理模式和先进技术来说,还是具有相当优势的,韩国吸波材料由于其技术品质好,性价比高等优势,其产品近销大陆、港、台、远销欧美,韩国吸波材料厚度一般在, , ,, mm,1MHz磁透率u ˊ=60~80(±10%),吸收衰减大、反射衰减小、,而赢得了市场人气。

<<美、日、韩、国产吸波材料的发展与应用>>

七.城市内高楼林立,高大的建筑反射电磁波会造成重影。将吸波材料应用于建筑材料中,可使这个问题迎刃而解。而吸波材料制作的微波暗室可广泛地应用于雷达、通信和航空航天领域。此外,吸波材料在改善机载、航载雷达设备的兼容性,提高整机性能等方面也有着广阔的应用空间。

在各种雷达目标的表面,涂覆吸波材料用以减少武器系统的有效反射截面,从

而使这些武器易于突破敌方雷达的防区,这是反雷达侦察的一种有力手段,也是减

少武器系统遭受红外制导导弹和激光武器攻击的一种方法。

吸波材料还可用于着落灯等机场导航设备,航船桅杆、甲板,潜艇的潜望镜支

架或通气管道等。

将吸波材料应用于各类电子产品,如电视、LED显示屏、音响、VCD机、电脑、数码相机、游戏机、微波炉、移动电话中,可以使电磁波泄露降到国家卫生安全限值(10微瓦每平方厘米)以下,确保人体健康。

将其应用于高功率雷达、微波暗室、微波医疗器、微波破碎机、电子兼容的吸收屏蔽,能保护操作人员免受电磁波辐射的伤害。

吸波材料系列产品应用频率为10MHz~10GHz,根据不同的应用频率,调正吸收剂的配伍,制成不同厚度的电磁波吸收贴片,广泛应用于移动装置、显示装置、计算机、数字设备、电子产品等抗电磁辐射干扰、微波暗室、屏蔽箱、微波辐射防护技术领域吸波材料具有较高的介电常数和磁导率以及较大的损耗因子。

在日常生活中,如智能支付手机、POS机、各种智能卡、RFID射频卡、RFID读写器、读卡器、各种智能门禁、WIF,天线等,几乎遍及大街小巷的每个人。

<<吸波材料简介、应用_及未来发展趋势>>

GHz铁氧体电磁波吸收材料的研究

GHz铁氧体电磁波吸收材料的研究 范学伟1 姚敏琪1 舒 扬1 王 倩1 张晓宁2 (1 北矿磁材科技股份有限公司,北京 100067) (2 北京工业大学新型功能材料教育部重点实验室,北京 100022) 文 摘 鉴于民用吸波材料市场的日益增加,用传统粉末冶金的方法制备了铁氧体吸收剂粉体,并测定了其内禀磁性能和电磁参数。采用吸收剂粉体与氯化聚乙烯复合的方法轧制出不同厚度的胶板,测定了10 MH z~1.8GH z电磁波吸收性能及厚度的影响,复合胶板在400MH z~1.8GH z频段显示良好的吸收性能。降低吸收剂粉体的填充率有利于展宽频带,复合胶板在2GH z~10GH z频带的测试结果表明,反射系数小于-5dB的带宽达到3.6GH z,对应吸收率大于70%。样品的吸波性能已经具有一定的实用性。 关键词 电磁波吸收材料,铁氧体,电磁参数,吸收性能 Ferrite Electromagnetic Wave Absorbers in GH z Range Fan Xuewei1 Y ao Minqi1 Shu Y ang1 Wang Qian1 Zhang X iaoning2 (1 BG RI M M Magnetic Materials and T echnology C o.,Ltd.,Beijing 100067) (2 K ey Lab.of Advanced Functional Materials of the S tate Education C ommission,Beijing P olytechnic University,Beijing 100022) Abstract With the increase of products for civil use,electromagnetic wave abs orber powders have been prepared through conventional powder metallurgy method.The intrinsic magnetic properties and the electromagnetic parameters of them are als o determined.C om posite materials from the powders and CPE are obtained to test their abs orbing properties, which are fairly g ood in the400MH z to1.8GH z range.It is helpful for reducing abs orber content to widen frequency range.The abs orption rate of this com posite material exceeds70%in the3.6GH z frequency range width.An abs orption efficiency of sam ples has shown s ome certain practicability. K ey w ords Electromagnetic wave abs orber,Ferrite,Electromagnetic parameter,Abs orption efficiency 1 引言 始于二战期间[1]的军事隐身目的的电磁波吸波材料,在电子信息技术飞速发展的今天,重新吸引了人们的注意力。由于可以获得更高的传输速率,使用GH z范围频率的电磁波进行数据传输增长得很快。例如,移动通信和局域网(LAN)系统就使用1 GH z~5GH z的电磁波[2];M D-80民航机机身上有20个天线,用于通信、导航、雷达等系统,其分别的工作频谱范围从10kH z直至9.2GH z[3]。然而,由此引发的电磁干扰(E MI)问题也日趋严重,最直接解决问题的办法之一就是利用吸波材料,使有害电磁波转化为热能被消解。随着中国加入WT O后面临的世界范围的电磁兼容(E MC)标准的强制实施,以及人们对居住所处的电磁环境的高度关注,吸波材料在民用方面,如防止高层建筑物反射电磁波引起的电视重影[4]、E MC暗室以及解决高频设备引起的设备内部和设备之间的干扰等方面[5]具有广泛的应用前景。 收稿日期:2003-06-30;修回日期:2003-08-18 范学伟,1973年出生,博士,从事永磁材料及吸波材料的研究开发工作

吸波材料现状和应用——整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

磁性吸波材料与应用

磁性吸波材料与应用 Magnetic Electromagnetic Wave Absorbing Materials and Applications 余声明 中国西南应用磁学研究所四川绵阳105信箱621000 摘要 本文论述了磁性吸波材料的基本原理、种类、应用及其发展。关键词磁性吸波材料应用发展 1前言 隐身技术是一门新兴边缘科学,涉及多个学科与技术领域,应用十分广泛。从各种武器装备、飞行器的隐身到现代电子信息设备的抗干扰系统都是不可缺少的实用技术和组成部分。 就武器而言,隐身技术是通过降低电器、武器或飞行器的光、电、热可探性而达到隐身目的的一种技术;或者说是采用多种技术措施,降低对外来信号(光、电、磁波、红外线等)的反射,使反射信号与它所处的背景信号难以区别,最大限度地减弱自身的特征信号,以达到自身隐蔽的效果。隐身技术可分为有源隐身技术和无源隐身技术。所谓有源是利用计算机分析外来探测信号,并及时主动发射相应的干扰信号,以达到自身的隐蔽。而无源隐身技术是一种被动隐身技术,它包括隐身结构技术和隐身材料技术。隐身结构技术是在尽量不影响功能的条件下降低自身特征信号,并设法减少雷达反射截面积,这在军事上显得特别重要。可见隐身结构技术和隐身材料技术是隐身技术不可分割的两部分,而隐身材料在实现隐身中起着重要作用,也是研究隐身技术的主要内容之一。 随着电子技术的飞速发展,电子产品特别是移动通讯、计算机、家用电器的普及,人们生存环境遭受到电磁波严重污染,城市高层建筑的增多又引起电子环境的恶化,如何降低电磁波干扰已成为全世界电子行业普遍关注的问题。隐身材料也是解决电子产品抗电磁干扰的有效方法之一。 隐身材料又称之为吸波材料,其作用把外来的电磁波能量转换为热能,降低反射波的强度,达到隐身或抗干扰的效果。按吸波材料损耗机理可分为:电阻型、电介质型和磁介质型。为了达到最佳的隐身效果,常常把多种吸波材料结合起来,构成复合型吸波材料,广泛用于雷达、航天、微波通讯及电子对抗、电子兼容的吸收屏蔽等领域。 本文专门介绍磁性介质主要是铁氧体吸波材料的概貌、应用情况及其发展。2磁性吸波材料 2.1吸波材料工作的基本原理 所谓吸波就是吸收电磁波,吸波材料的工作基本原理是: 对于一般材料,材料的介电常数ε与磁导率μ可写成以下复数形式: μ′′?μ′=με′′?ε′=ε??j ;j (1) 式中:ε′和μ′分别为吸波材料在电场或磁场作用下产生的极化和磁化强度的变量,而ε″为在外加磁场作用下,材料电偶矩产生重排引起损耗的度量,μ″为在外加磁场作用下,材料磁偶矩产生重排引起损耗的度量。对介质而言,承担着对电磁波吸波功能的是ε″和μ″,它们引起能量的损耗,损耗因子为tanδ可由下式表示: μ′ μ′′+ε′ε′′=δ+δ=δμεtan tan tan (2) 可见,tan δ随ε″和μ″的增大而增大。 设计吸波材料除了尽可能提高损耗外,还要考虑另一关键因素,即波阻抗匹配问题,使介质表面对波的反射系数(γ)为0或最小,电磁波入射到介质进而被吸收。反射系数γ的定义如式(3)所示: Zo Z Z Z in o in +?=γ(3)

碳纤维吸波材料的研究进展_吴红焕

碳纤维吸波材料的研究进展 吴红焕,王晓艳,张 玲,朱冬梅,周万城 (西北工业大学凝固技术国家重点实验室,西安710072) 摘要 通过对碳纤维在复合材料中吸波性能的研究,得出通过控制碳纤维的长度和含量,以及采用化学掺杂或异型截面是得到频带宽、厚度薄、质量轻、吸收强结构吸波材料的有效方法,同时大力开展螺旋碳纤维和碳纳米管的研究是加快进展的新方向。 关键词 碳纤维 吸波材料 碳纳米管 化学掺杂 中图分类号:TQ342+.742 文献标识码:A Present Development of Absorbing Composites Containing C arbon Fibers WU Honghuan,WAN G Xiaoyan,ZHAN G Ling,ZHU Dongmei,ZHOU Wancheng (State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an710072) Abstract The characteristic and transforming methods of short carbon fibers are discussed in this paper,in2 cluding additive lengths,contents,adulteration and non2circular section.Controlling the length and content of carbon fibers and exploiting adulteration and non2circular section are effective methods to get“wide,thin,light,strong”structure absorbing materials.At the same time,coiled carbon fibers and carbon nano2pipes are the new direction to ac2 celerate development. K ey w ords carbon fiber,absorbing material,CN Ts,chemical adulteration   0 前言 雷达吸波材料是指能吸收、衰减入射的电磁波,并将电磁能转换成热能而耗散掉,或使电磁波因干涉相消的一类材料。它由吸收剂与能透过雷达波的基体材料复合而成,经历了由单一纤维到混杂纤维、由次承力件到主承力件、由热固性树脂到热塑性树脂的发展过程[1~3]。除一般的吸波材料外,隐身用的特种碳纤维是制造吸波材料的关键。碳纤维结构吸波材料具有承载和减少雷达比反射面的双重功能,是功能与结构一体化的优良微波吸收材料。与其它吸波材料相比,它不仅具有硬度高、高温强度大、热膨胀系数小、热传导率高、耐蚀、抗氧化等特点,还具有质轻、吸收频带宽的优点。通过研究碳纤维的吸波性能和吸波机理,并对纤维吸收剂进行改性和结构设计,研制出高性能的碳纤维复合材料是现在研究的热点课题[4,5]。但目前国内对碳纤维吸波材料的理论研究与实际应用之间仍存在一定差距,亟需进一步突破。由于连续碳纤维对雷达波易产生强反射作用,而短切碳纤维在材料中随机分布,改善了这方面的性能,对雷达波有较好的吸收性能。本文从短切碳纤维的吸波性能出发,总结了碳纤维的吸波特性及改性措施。 1 短切碳纤维的吸波机理及影响因素 1.1 短切碳纤维的吸波性能及频响机理 连续碳纤维对雷达波产生强反射作用,主要是因为电磁场在碳纤维中形成了较大的连续传导电流。而短碳纤维在基体当中的吸波机理目前基本存在两种解释[6],一是认为短切碳纤维在吸波材料中起半波谐振子的作用。在短切碳纤维的近区存在似稳感应场,此感应场激起耗散电流,在周围基体作用下,耗散电流被衰减,从而使雷达波能量转换为其他形式的能量,主要为热能。另一说法认为在含短切碳纤维的吸波材料中,可以把短切碳纤维作为偶极子。短切碳纤维偶极子在电磁场的作用下会产生极化耗散电流,在周围基体作用下,耗散电流被衰减,从而使雷达波能量转换为其它形式的能量。 碳纤维吸波材料是一种介电型吸波材料,与磁性吸收剂相比,介电常数控制是吸收剂研究的重点和难点,而介电常数频散效应的控制则是宽频带吸收所必须追求的目标。因此,研究碳纤维吸波材料频响效应的机理至关重要。频响效应就是随着频率的增加,介电参数的实部、虚部下降,损耗增加的现象。其本质是在频率变化的过程中,电极化出现了极化的惯性或滞后性,以至于在不同频率电场中极化来不及响应电场的变化而出现的现象。根据电磁波理论,随着频率的增加,当电磁波在碳纤维导体表面产生涡流时,在导线截面上的电流分布将越来越向导线表面集中,即产生趋肤效应现象。趋肤效应越明显,产生的涡流损耗越相应地增加,从而导致电磁波的消耗。电磁波在碳纤维之间传播时,除了涡流损耗外,在每束碳纤维之间的部分电磁波还会经散射发生类似相位对消现象引起损耗增加[7]。 1.2 添加最佳长度和含量的探索 邢丽英等[8]研究了掺混短碳纤维的复合材料在电磁波作用下某些宏观物理量的响应特性。结果表明,调整纤维长度及含量可在很宽范围内改变材料的电磁参数与衰减量;不同长度的短碳纤维在介质中的最佳填充量不同,当纤维的长度接近传输  吴红焕:女,1982年生,硕士,主要从事碳纤维结构吸波材料研究 Tel:029********* E2mail:whh—8278@https://www.360docs.net/doc/d58379602.html,

吸波材料

吸波材料 姓名:王丽君 学院:纺织与材料工程学院 专业:材料工程 科目:材料表面与界面工程技术学号:13208520403408

吸波材料 摘要:介绍了吸波材料的吸波原理和吸波材料的分类,以及几种新型吸波材料,如铁氧体吸波材料,纳米吸波材料、手性材料、导电高分子吸波材料,耐高温陶瓷材料,并简单介绍了纳米复合材料的制备方法。 关键词:吸波材料;吸波原理;新型吸波材料;纳米复合材料的制备 信息化战争中,武器平台的高度信息化和电子化,使飞机、坦克、舰艇等所处的环境日益复杂。它们除受地面或空中的火力威胁和电子干扰外,其一举一动还处于红外、雷达、激光等探测器的严密监视之下,使其生存能力和战斗能力面临极大挑战,这样其隐身性能就显得尤为重要。 隐身技术主要涉及材料隐身和结构隐身两大方面。前者是使用吸波材料或涂料;后者是合理地设计武器外形,以提高隐蔽性。再此,不得不提及吸波材料。 1、吸波材料的吸波原理 吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 2、吸波材料的分类 目前吸波材料分类较多,现大致分成下面4种: (1) 按材料成型工艺和承载能力,可分为涂覆型吸波材料和结构型吸波材料。前者是将吸收剂(金属或合金粉末、铁氧体、导电纤维等)与粘合剂混合后,涂覆于目标表面形成吸波涂层;后者是具有承载和吸波的双重功能,通常是将吸收剂分散在层状结构材料中,或是采用强度高、透波性能好的高聚物复合材料(如玻璃钢、芳纶纤维复合材料等)为面板,蜂窝状、波纹体或角锥体为夹芯的复合结构。 (2) 按吸波原理,吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 (3) 按材料的损耗机理,吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 (4) 按研究时期,可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石

用于EMIRF吸波材料性能比较

用于EMI-RF吸波材料性能比较 用于EMI/RF吸波材料性能比较 中心议题:吸波材料测试装置的构造吸波材料测试方法 解决方案:环天线放置在相互垂直的位置相隔距离为环天线直径的二分之一利用表面电流减少装置测试 随着工程师们需要遵循的辐射电磁干扰(EMI)规范的不断增多,市场上开始出现各种类型的EMI吸波材料。一般而言,市场上所提供的这些吸波材料的厚度很薄并具有很好的外形柔韧性,再加上其背面带有粘合剂的设计使得我们能够很容易地将这些吸波材料应用到一些不符合电磁干扰和射频干扰(EMI/RFI)相关规范的产品表面。因此,选择合适的吸波材料就成为符合EMI/RFI相关规范、维护系统性能完好的一个关键因素。在10MHz到3000MHz的频率范围内,大部分吸波材料都会采用加入有损耗的磁性材料(例如,羰基铁或者铁氧体粉末等)的方式来削弱其表面电流。这些表面电流源于有害EMI和导体的相互作用, 而且它们的出现还会导致电磁场的二次辐射,因此为了保证产品符合相关规范,通常都会设法降低该表面电流。除此之外,这些表面电流还可能会对其它电路造成干扰,妨碍系统的正常运行。比较不同生产厂家提供的吸波材料的性能需要花 费大量的金钱和时间。考虑到EMI测试试验室每天几千美元的费用,试错试验(trialanderrortesting)的次数必须被限制到最少。因此,通过携带若干种可能会使用到的吸波材料到EMI试验室进行测试以确定效果最好的一种材料的方法已经被证明是一种非常昂贵的解决方法。而本文所介绍的这种简单的表面电流减小测试装置(SCRF)则允许我们对各种吸波材料样品的性能进行快速、简单的比较,从而缩小吸波材料的选择范围,确定某频率范围内具体EMI问题所需的性能最好的一种或两种吸波材料。SCRF装置主要由两个经过静电屏蔽的磁场环形天线构成,而且通过将它们小心地放置在相互垂直的位置上可以在相关频率范围内获得70dB甚至更高的隔离度。SCRF中的一个环形天线被连接到射频(RF)扫频源,而另一个环形天线则被连接到RF扫频接收机。如果将一块与产品壳体

各种吸波材料的比较

Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸()。在~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为 -40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为 -60dB。然而可使用的频率范围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体内渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率范围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(-)。显然在30MHz 的频率上,厚度不可能是几个波长。因此暗室的频率范围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率范围。一般说来渗碳加载对电-厚和电-薄材料的要求是不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸波性能和空气比较接近,在空气-瓦片界面反射很小,入射波直接渗入瓦片。又因为瓦片对磁场损耗大,所以渗入波被吸收。如有穿过瓦片的,则被金属板反射,重又回到瓦片,被再次吸收。如还有穿出瓦片回到空气中的,则可以象锥型和楔型吸波材料那样,调节瓦片厚度,在一定的较窄的频率范围内使其与瓦片直接反射到空气中的那一部分相抵消。 近年来,薄锥和楔(200-1000MHz)+铁氧体瓦+介质层(30-600MHz)构成了超小型

高温吸波材料研究应用现状

高温吸波材料研究应用现状(转帖) 高温, 转帖, 应用, 研究 隐身技术是通过控制和降低武器系统的特征信号,使其难以被探测、识别、跟踪和攻击的技术。现代及未来战争中,雷达是探测目标最可靠的手段,隐身技术的研究以雷达隐身为重点[1]。武器系统的隐身能力可以通过外形设计和使用隐身材料来实现,但对外形的过多要求会引起空气动力性能的下降,并导致装容空间的减小和其他损失,所以开展吸波材料的研究 成为隐身技术的关键。 按照吸波材料的结构形式,可将它分为涂料型吸波材料、贴片型吸波材料、吸波腻子、吸波复合材料等[2]。对于吸波/承载一体化吸波材料即结构吸波材料,兼顾了承载和吸波双重功能,不额外增加重量,且材料本身在力学性能和吸波性能上具有较强的可设计性,从而具有较强的实用价值。按照吸波机理可以将吸波材料分为磁损耗型吸波材料、介电损耗型吸波材料和“双复”型吸波材料3类。在飞机的尾喷管等高温部位,其工作温度往往在700℃以上,大部分磁性吸收剂由于居里温度较低而失去吸波性能,致使高温吸波材料仅依靠电损耗机制来吸收雷达波。国外对耐高温吸波材料虽然已进行了较多的研究,但由于涉及军事应用,没有详细报道。从文献分析可以发现,陶瓷基复合材料是国外研制高温吸波材料的主要方向。本文简述了国外高温结构吸波材料基体和吸收剂的研究应用进展,并展望了高温吸波材料的 发展方向。 高温吸波材料基体 为满足低反射、高吸收以及宽频带吸收的要求,吸波材料往往被设计成双层或多层结构,即吸波材料由阻抗变换层和吸收层组成,并通过优化设计使其具有较好的吸波性能。优化设计结果表明,阻抗变换层具有较低的介电常数时,有利于雷达波进入吸波材料内部,从而表现出较好的吸波性能。另外,吸收层中吸收剂的介电常数往往较大,为了使吸收层介电常数不致太大,基体的介电常数不能太大。作为高温结构吸波材料的基体,还应具有较强的承载能力和易烧结制备性。由于材料在高温和常温下工作,基体还应具有较低的热膨胀系数及较强的耐热冲击性,此外,还应考虑到基体与吸收剂的匹配问题。 当前研究较多的高温吸波材料基体可分为两类:(1)陶瓷基体,如Si3N4、Al2O3、AlN、莫来石、堇青石等;(2)耐高温玻璃基体,如LAS玻璃、磷酸盐玻璃、MAS玻璃等。其性能如 表1所示[3-10]。 高温吸波材料用吸收剂 高温吸波材料主要靠吸收剂对电磁波进行吸收。性能优良的吸收剂要求高效吸收、宽带吸收且密度较小。对于耐高温吸收剂来说,控制其介电常数和损耗是关键。目前,国内外研究和 应用较多的耐高温吸收剂主要有以下几类。 1 碳化硅 碳化硅是当前国外研究最为广泛的耐高温吸收剂,其突出优点是具有优良的力学性能、高强度和良好的电性能。另外,碳化硅具有极其优异的耐高温性能,这是普通吸收剂所不具备的。

纳米吸波材料

纳米吸波材料 0930402090 杨苏清 现代科学技术迅速发展,无形无迹的电磁波充斥着人们的生活空间,严重的电磁污染给地球的生态环境带来了严重的破坏,因此,研制开发新型吸波材料已经成为当今社会的热点;同时,随着现代军事技术的不断发展,战争越来越信息化,立体化,雷达探测技术的不断发展,现代军队为提高自身的生存和突防能力,也越来越多的应用到隐身技术,而作为隐身技术关键的吸波材料也成为各国军事科技力量研究和开发的重点和热点。 一、纳米吸波材料原理及特性 纳米材料是指特征尺寸在1~100nm的材料。纳米材料由于其自身结构上的特征而具有小尺寸效应、表面界面效应、量子尺寸效应以及宏观量子隧道效应,因而与同组分的常规材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,在微波吸收方面显示出很好的发展前景。吸波材料是指能够吸收投射到它表面当今电磁波能量,并通过材料的介质损耗使电磁波能量转化为其他形式的能量的一类材料。 当一个微粒的尺寸小到纳米量级时,它的微观结构和性能既不同于原子、分子的微观体系,也不同于显示本征性质的大颗粒材料宏观体系,而是介于二者之间的一个过渡体系。纳米微粒尺寸小,比表面积大,具有很高的表面能,从而对其化学性质有很大影响。实验证明,粒子分散度提高到一定程度后,随着粒子直径的减小,位于粒子表面的原子数与总原子数的比值急剧增大,当粒径降为5nm 时,表面原子所占比例可达50%。由于表面原子数增加,微粒内原子数减少,使能带中的电子能级发生分裂,分裂后的能级间隔正处于微波的能量范围内(l×l0-2-l×lO-5eV),从而导致新的吸波通道。一方面,纳米微粒尺寸远小于雷达波波长,对雷达波的透过率大大高于常规材料,这就大大降低了对雷达波的反射率;另一方面,纳米材料的比表面积比常规微粒大3~4个数量级,对雷达波和红外光波的吸收率也比常规材料高得多。此外,随着颗粒的细化,颗粒的表面效应和

陶瓷吸波材料的研究进展_范跃农

《陶瓷学报》 JOURNAL OF CERAMICS 第31卷第1期2010年3月 Vol.31,No.1Mar.2010 文章编号:1000-2278(2010)01-0538-04 陶瓷吸波材料的研究进展 范跃农1, 2 龚荣洲2 (1.景德镇陶瓷学院,景德镇:333403,2.华中科技大学,武汉:430074) 摘要 简述了在当今世界能提高各类武器在战争中的生存能力、防卫能力和攻击能力的隐身技术,对其在现代高技术武器装备中的重要作用进行了肯定。对隐身技术中占重要地位的电磁波吸收材料的种类、吸波原理及吸波方式做了进一步阐述。重点讨论了陶瓷吸波材料的吸波原理、组成结构和方式,并着重介绍了几种最近几年陶瓷吸波材料的最新研究成果,列举了它们的吸波性能参数。最后,对陶瓷吸波材料发展方向进行了展望。关键词隐身技术,陶瓷,吸波材料,研究进展中图分类号:TQ174文献标识码:A 1引言 随着电子技术的发展,新型雷达、探测器及精密制导武器相继问世,军事空中防御能力和反导弹能力日益增强,使得武器系统,特别是大型作战武器,如飞机、导弹、舰艇、坦克等所面临的威胁越来越大,作为提高战争中的生存能力、 防卫能力和攻击能力的隐身技术,普遍受到世界各国的高度重视。 隐身技术是指降低目标的雷达、红外、激光、磁信号等特征,使其在一定范围内难以被探测,从而提高其生存能力的技术。 已经成为现代电子战争的重要组成部分,它伴随着武器攻击、防卫技术的发展而产生,其最终目的是使武器系统能在多个的频率范围,进行多方位的隐身。隐身技术发展的关键在于材料技术的发展,要求材料具有质量轻、适应性强的特点。为了适应未来战争的需要,世界各发达国家都在积极致力于开发新型高效的吸波材料,并对其吸波机理进行更进一步的研究[1]。 吸波材料是隐身技术中不可缺少的组成部分,隐身兵器主要依靠吸波材料来吸收和衰减雷达波以达到隐身的目的。 2吸波材料的分类 按照吸波材料的结构,可将其分为涂料型吸波材 料、贴片型吸波材料、吸波腻子、吸波复合材料等[2]。 按照吸波机理可以将吸波材料分为磁损耗型吸波材料、介电损耗型吸波材料和“双复”型吸波材料三类。 陶瓷吸波材料属于介电损耗型吸波材料,主要包括碳化硅、Si 3N 4、莫来石、钛酸钡、Al 2O 3、AlN 、堇青石、硼硅酸铝、粘土和炭黑等一类陶瓷材料,同铁氧体、复合金属粉末等比较,这一类材料的吸波性能好,而且还可以有效地减弱红外辐射信号,能有效损耗雷达波的能量。由于它们比重小、耐高温、介电常数随烧结温度有较大的变化范围,是制作多波段吸波材料的主要成分,有可能通过对显微结构和电磁参数的控制,来获得所希望的吸波效果。此外,由金属微粉和陶瓷微粉共烧而成的以金属为分散相,陶瓷为连续相的金属陶瓷也属于这一类。这一类材料对雷达波能量的吸收、转移主要以热能形式散发[3]。 要达到良好的吸波效果,必须具备以下两个条件:(l)入射来的电磁波要尽可能多地进入吸波材料而不被反射;(2)材料要能将电磁波损耗吸收掉[4]。因此, 收稿日期:2009-10-11通讯联系人:范跃农 DOI:10.13957/https://www.360docs.net/doc/d58379602.html,ki.tcxb.2009.04.022

吸波建筑材料的研究及应用进展

吸波建筑材料的研究及应用进展 发表时间:2014-12-25T08:58:25.343Z 来源:《防护工程》2014年第9期供稿作者:官举红 [导读] 随着科技的日益进步,电磁技术给人类创造了巨大的物质文明,但也把人们带进一个充满人造电磁辐射的环境里。 官举红 重庆热展建筑工程咨询服务中心重庆 400012 [摘要]随着现代科学技术的发展,吸波材料被广泛的应用于人体安全防护、微波暗室、通讯以及导航系统的电磁干扰等多方面。本文对吸波建筑材料的研究及应用进展进行了详细分析。 [关键词]建筑吸波材料;应用前景;发展趋势 一、前言 目前,微波吸收材料的发展越来越明显地呈现出功能上频谱兼容化、材料形态上低维化、材料设计上智能化超长化、材料组成上复合化、材料性能上多样化和材料应用上民用化的发展趋势。 二、开发研制新型建筑吸波材料的必要性 随着科技的日益进步,电磁技术给人类创造了巨大的物质文明,但也把人们带进一个充满人造电磁辐射的环境里。电磁辐射污染已经成为继大气污染、水污染和噪声污染之后的第四污染源[1],且随着电子、电信技术快速发展而日趋严重。常规电磁屏蔽的方法会带来电磁波的高反射,因此寻找低反射高吸收的材料成为吸波材料的研究热点。 民用方面,大功率电磁波发射塔、电台等向外界不断发射的电磁波,常常会带来通讯干扰、电子迷雾等问题。更为严重的是,数以百万计的人们由于长期暴露在来自电缆和家庭电器的电磁辐射中,患癌症和退化性疾病的危险正在增加,高频电磁波对生物肌体细胞、人体神经系统、循环系统、免疫、生殖和新陈代谢功能具有极强的辐射伤害。研究开发新型建筑吸波材料,为人们提供弱电磁辐射的居住及办公环境十分必要。 军事上,随着世界上许多国家对现代战争的第四战场——电磁战的深入研究,目前电磁战已主要应用于以下两个方面:一是在战争中对敌方进行大规模、高强度的持续电磁干扰,使得敌方的指挥、通讯等系统不能够正常运作;二是近些年来一些军事强国越来越重视对电磁武器的研究。目前,美国等国家已经研制出一种威力巨大的电磁武器——电磁炸弹。这种特殊的炸弹在爆炸时能够向周围空间辐射极强的脉冲电磁波,能够迅速使得敌方的电力通讯设施陷入瘫痪。由于以上原因,建筑吸波材料作为防电磁战中的重要一环越来越受到重视。如对于一些要害部门的建筑物、设备设施可以使用吸波建筑材料来防止敌方的电磁干扰或电磁武器的攻击。另外,为了更好地保护指挥机关、仓库等一些重要军事场所及设施,需在这些建筑物表面使用吸波材料来吸收电磁波以减小被敌方雷达探测到的可能性,从而提高它们的战场生存能力。因此,从民用与军用两方面考虑,有关非运动目标(如:大型建筑物、军事掩体、机场、雷达站等)建筑吸波材料的研究十分必要。 三、吸波材料的吸波机理 吸波涂料能够吸收投射到它表面的电磁波能量,并通过材料的损耗转变成热能等其他形式的能量。材料吸收电磁波的基本条件:1)电磁波射入材料时能最大限度地进入材料内部(匹配特性);2)进入材料内部的电磁波能迅速衰减掉(衰减特性)。损耗大小,可用电损耗因子和磁损耗因子来表征。对于单一组元的吸收体,阻抗匹配和强吸收之间存在矛盾,有必要进行材料多元复合,以便调节电磁参数,使它尽可能在匹配条件下,提高吸收损耗能力。 四、建筑吸波材料的应用前景 1.钢纤维混凝土 混凝土是用量最大、用途最广的建筑材料,吸波混凝土及功能、环保、结构于一体,在传统高耐久性的基础上赋予吸收电磁波的功能,符合高新技术改造传统材料的发展方向。在建筑工程中,厘米级的钢纤维与混凝土粘接性能好,复合基体能共同承受荷载,与普通同级的混凝土相比塑性、韧性显著增大,抗拉、抗弯性能也显著提高[3],但是关于厘米级的钢纤维掺入混凝土后的吸波性能研究未见有公开报道。华中科技大学的杨海燕等,研究了不同长度、不同占空比钢纤维混凝土对军用频率范围电磁波的吸收衰减特性,并分析了它们之间的关系。2-18GHz其最大吸收率达9.8dB,4dB带宽最高15.28GHz。 2.手性吸波混凝土 在近年的研究中发现,在混凝土中掺入晶须,试样干燥后试件外形出现弯曲;掺入,虽然改善了混凝土的吸波性能,但随着掺量的增大,试件出现脆裂。这表明仅靠调整混凝土的电解质损耗以及磁介质损耗,吸波性能的改善存在极限,同时还伴随了混凝土力学性能的降低甚至破坏。康青[4]提出在混凝土中掺入螺旋结构钢纤维线圈,即制得手性吸波混凝土,结合混凝土中的电损耗介质、磁损耗介质,建立手性吸波混凝土的理论模型,制备不同配合比的实验样品,研究电磁损耗机理及规律,获取优化的吸波混凝土设计方案。这样既克服了吸波混凝土改性中力学性能下降的难题,有增大了吸波混凝土的损耗机制。 3.碳纤维混凝土 研究了波纹型单纤维的吸波性能和能量耗散机理,推到了波纹型碳纤维混凝土结构能量耗散因子计算公式,并进行了能量耗散分析。对于碳纤维混凝土板,板厚,碳纤维弹性模量,纤维密度,碳纤维混凝土弹性模量,混凝土密度,实验结果表明,碳纤维在纤维混凝土中的体积分数为时,有较高的结构损耗因子,此后随着体积分数的增大,结构损耗因子也不会增高,甚至降低。 4.防辐射涂料 防辐射涂料一般是在普通涂料中加入吸波材料制成,并要求施工性能好、不易脱落且成本不能太高。目前相关的研究成果较多,如有专利采用含有铁、锌、钴、铜、锂等成分的原料预烧、球磨、热处理、粉磨后按照一定比例和普通涂料混合制备成环保型建筑吸波涂层,可吸收500MHz-5600MHz的电磁波。还有专利将吸波组分与其他环保手段结合起来,制备出多功能环保吸波建筑涂料。 五、吸波建筑材料的发展趋势 随着吸波建筑材料的应用不断扩大,人们对其性能要求也越来越高,已有的吸波建筑材料很难满足实际应用的要求。目前吸波建筑材料的研究主要有以下趋势。 1.宽频薄层吸波建筑材料 电子技术的迅速发展要求吸波建筑材料的工作频段越来越宽。目前的宽频吸波建筑材料主要应用在微波暗室,不但厚度大,而且成本很

吸波材料

吸波材料的用途与分类 从吸波材料的应用上来分类,它的用途可以分为,军用、商用以及民用,吸波材料的吸波实质是吸收或衰减入射的电磁波,并通过材料的介质损耗使电磁波能量转变成热能或其它形式的能量而耗散掉。吸波材料一般由基体材料(黏结剂)与吸收介质(吸收剂)复合而成。吸波材料可以分为电损耗型和磁损耗型,电损耗型材料主要靠介质的电子极化、离子极化、分子极化或界面极化来吸收、衰减电磁波。磁损耗型材料主要是靠磁滞损耗、畴壁共振和后效损耗等磁激化机制来引起电磁波的吸收和衰减。由于纳米晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,使纳米材料有许多不同于一般粗晶材料的性能。纳米微粒具有小尺寸效应、表面与界面效应、量子尺寸效应、介电效应和宏观量子隧道效应等。纳米材料之所以具有非常优良的吸波性能,主要是以下原因:首先,纳米材料具有高浓度晶界,晶界面原子的比表面积大、悬空键多、界面极化强,容易产生多重散射,在电磁场辐射作用下,由于纳米粒子的表面效应造成原子、电子运动的加剧而磁化,使电磁能更加有效地转化为热能,产生了强烈的吸波效应;其次,量子尺寸效应的存在使纳米粒子的电子能级发生分裂,分裂的能级间隔正处于微波的能级范围(10-2~10-5eV),从而成为纳米材料新的吸波通道;此外纳米离子具有较大的饱和磁感、高的磁滞损耗和矫顽力,使得纳米材料具有涡流损耗高、居里点及使用温度高、吸波频率宽等性能。纳米材料的这种结构特征使得纳米吸波材料具有吸收频带宽、兼容性好、质量轻和厚度薄等特点,易满足雷

达吸波材料“薄、轻、宽、强”的要求,是一种非常有发展前景的高性能、多功能吸收剂。随着现代军事技术的迅勐发展,世界各国的防御体系被敌方探测、跟踪和攻击的可能性越来越大,军事目标的生存能力和武器系统的突防能力受到了严重威胁。隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最重要、最有效的突防战术技术手段,并受到世界各国的高度重视。现代化战争对吸波材料的吸波性能要求越来越高,一般传统的吸波材料很难满足需要。由于结构和组成的特殊性,使得纳米吸波涂料成为隐身技术的新亮点。纳米材料是指三维尺寸中至少有一维为纳米尺寸的材料,如薄膜、纤维、超细粒子、多层膜、粒子膜及纳米微晶材料等,一般是由尺寸在1~100nm的物质组成的微粉体系。 随着电子化、信息化的高速发展,产业界对电磁干涉屏蔽和吸波材料的民用需求与日俱增,高度集成原件,与高频原件的应用,导致电子兼容性EMC问题难于解决,传统的屏蔽材料已经不能够解决现代电子信息条件下的电磁屏蔽,而且传统的屏蔽材料只能通过反射原理防止被骚扰,在许多特殊电磁环境中显得“无能为力”,那么在电子信息高度发展的今天,有没有什么更高端的产品来彻底解决电磁辐射,和电磁干扰(EMI)的问题?吸波材料的问世肯定的回答了这一问题,在国内来说,深圳市兆荣软磁材料有限公司,通过国防科大、北矿磁材等企事业的通力合作,研发出具有国内领先水平的薄片类,吸波材

新型纳米吸波涂层材料的研究进展

新型纳米吸波涂层材料的研究进展 : 1引言 随着现代军事技术的迅猛发展,世界各国的防御体系被敌方探测、跟踪和攻击的可能性越来越大,军事目标的生存能力和武器系统的突防能力受到了严重威胁。隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最重要、最有效的突防战术技术手段,并受到世界各国的高度重视。现代化战争对吸波材料的吸波性能要求越来越高,一般传统的吸波材料很难满足需要。由于结构和组成的特殊性,使得纳米吸波涂料成为隐身技术的新亮点。纳米材料是指三维尺寸中至少有一维为纳米尺寸的材料,如薄膜、纤维、超细粒子、多层膜、粒子膜及纳米微晶材料等,一

般是由尺寸在1~100nm的物质组成的微粉体系。 2纳米吸波涂层的吸波原理和结构特性 吸波材料的吸波实质是吸收或衰减入射的电磁 波,并通过材料的介质损耗使电磁波能量转变成热能或其它形式的能量而耗散掉。吸波材料一般由基体材料与吸收介质复合而成。吸波材料可以分为电损耗型和磁损耗型2类。电损耗型材料主要靠介质的电子极化、离子极化、分子极化或界面极化来吸收、衰减电磁波。磁损耗型材料主要是靠磁滞损耗、畴壁共振和后效损耗等磁激化机制来引起电磁波的吸收和衰减。由于纳米晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,使纳米材料有许多不同

于一般粗晶材料的性能。纳米微粒具有小尺寸效应、表面与界面效应、量子尺寸效应、介电效应和宏观量子隧道效应等。纳米材料之所以具有非常优良的吸波性能,主要是以下原因:首先,纳米材料具有高浓度晶界,晶界面原子的比表面积大、悬空键多、界面极化强,容易产生多重散射,在电磁场辐射作用下,由于纳米粒子的表面效应造成原子、电子运动的加剧而磁化,使电磁能更加有效地转化为热能,产生了强烈的吸波效应;其次,量子尺寸效应的存在使纳米粒子的电子能级发生分裂,分裂的能级间隔正处于微波的能级范围,从而成为纳米材料新的吸波通道;此外纳米离子具有较大的饱和磁感、高的磁滞损耗和矫顽力,使得纳米材料具有涡流损耗高、居里点及使用温度高、吸波频率宽等性能。纳米材料的这种结构特征使得纳米吸波材料具有吸收频带宽、兼容性好、质量轻和厚度薄等特点,易满足雷达吸波材料薄、轻、宽、强的要求,是一种非常有发展前景的高性能、多功能吸收剂。

磁波吸收材料

磁波吸收材料 2006-5-16 电磁波的频率范围是从3—30kHz的超长波到300GHz—3Thz的波长,可以综合利用电磁波的各种特性。由于kHz频带的电磁波可沿长距离、中距离的地面传播,故可用于飞机、船舶的无线电导航。MHz频带的电磁波能产生电离层反射现象,故可用于国际间远距离通信、携带电话(800MHz)、电视转播。GHz频带的电磁波要用于携带电话(1.5GHz)、低轨道卫得(LEO)用携带电话(1.6—2.5GHz)、船舶用雷达(9.4GHz)、卫星放送(11.7—12.0GHz)。目前,电磁波的危害已成为社会问题,从电路的设计是很难解决这个问题的,故电磁波吸收材料引人注目。电磁波吸收体以导电损耗、介电损耗、磁性损耗等分类,可分为导电吸收体、介电吸收体和磁性吸收体。一般都设计成阻抗匹配型电磁波吸收体。即在吸收材料的后面设置金属板,以在吸收体内部产生多次反射,控制反射波的振幅及相应,则可降低来自吸收体前面的总反射波。因为利用了材料仙部的多次反射,故必须满足材料常数、厚度等必要条件,即需要极薄(与电磁波的波长相比)的吸收体。在MHz频带常用的电磁波所用材料为尖晶石型铁氧体,为了防止在电视转播时出现双重图像(ghost)和噪声,因而多数采用阻抗器件。但是,尖晶石型铁氧体的各向异性磁场强度(HA)很小,所以在磁壁共鸣和自然共鸣时会产生相同的频率。如果把各种尖晶石型铁氧体磁粉用溶胶或树脂将它们制成复合材料,则可能开发出与高频相对应的电磁波吸收体。对于添加Co的NiZn铁氧体复合物,当匹配频率(fm)为10—15GHz时,匹配厚度(dm)为3—6mm。平面型(Y,Z型)六方晶系铁氧体的C轴方向与C面的各向异性磁场强度是很不相同的,C面以容易磁化为牲。用Y型铁氧体制作电磁波吸收体(带度为2.1GHz)时,要求dm=3.71mm,fm=6.7Ghz。根据Snoek理论,当饱和磁化率(Is)高时,则共鸣频率(fr)也高。当利用此尖晶石型铁氧的Is高2倍的金属软磁材料作电磁波吸收体时,则可获得优良的高频特性。把铁硅磁合金(Semdust)粉末用树脂使之复合化,将其加工成薄板状电磁干涉抑制体(与电磁波吸收体不同),在300MHz—3GHz下,得到-10dB—15dB的噪声衰减特性。由于把这把合金粉末加工成扁平形状并且具有磁的各向异性,故能与高频相对应。把FE-Si-Al合金粉末、碳酰(Garbonyl)与树脂制成复合材料,这种电磁波吸收体所对应的频率为数GHz。M型BaFe12O19铁氧体具有磁的各向异性,Ha=1.38MA m-1,fr=48.9GHz,它是可在GHz带宽下应用的电磁波吸收体。用各种金属离子置换Fe3+后所制出的M型铁氧体,显示出优良的电磁波吸收特性。

相关文档
最新文档