拉曼光谱技术

拉曼光谱技术
拉曼光谱技术

拉曼光谱

OVERVIEW

1. Raman spectra give information on molecular vibrations and are obtained from changes in the frequency of light observed in a scattering experiment (inelastic scattering).

2. The physical picture arises from considering changes in polarizability (induced dipole moment) that arise if a vibration occurs during the time the electrons are oscillating in response to the applied radiation.

3. The gross selection rule is that the vibrational motion must produce a change in the polarizability of the molecule.

4. The anisotropy of the polarization of the scattering can be measured. Comparison of the spectra polarized perpendicular and parallel to the incident radiation gives information on the symmetry of the vibrational motions.

5. Raman spectra can be obtained in water. This is a major advantage over infrared spectra.

6. Resonance Raman spectra result when the wavelength of the exciting light falls within an electronic absorption band of a chromophore in the molecule. Some vibrations associated with such a chromophore may be enhanced by factors of 1000 or more.

7. The experimental parameters of a band in a spectrum are its position ( ) (which is independent of the frequency of the exciting light), its intensity (which is directly proportional to concentration), and its polarization.

8. The main biological applications of conventional Raman are very similar to those for infrared. Resonance Raman affords a means of probing selective sites in molecules. For example, in metalloproteins, Raman can give information on the nature of the ligand directly attached to the metal.

6.1 引言

拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。拉曼光谱的突出优点是可以很容易地测量含水的样品,而且拉曼散射光可以在紫外和可见光波段量测。由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。

拉曼光谱得名于印度物理学家拉曼(Raman)。1928年,拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。拉曼因此获得诺贝尔奖。

当一束入射光通过样品时,在各个方向上都发生散射。拉曼光谱仪收集和检测与入射光成直角的散射光。由于收集和检测的散射光强度非常低,因此拉曼光谱的应用和发展受到很大限制。六十年代激光开始广泛应用,拉曼光谱仪以激光作光源,光的单色性和强度都大大提高,拉曼散射仪的信号强度因而大大提高,拉曼光谱技术得以迅速发展,应用领域遍及物理,材料,化学,生物等学科,并已成为光谱学的一个分支?拉曼光谱学。

6.2拉曼光谱原理

6.2.1光的散射:

入射光通过样品后,除了被吸收的光之外,大部分沿入射方向穿过样品,一小部分光则改变方向,发生散射。一部分散射光的波长与入射光波长相同,这种散射称为瑞利散射(Rayleigh scattering)。1899年,瑞利从实验中得出结论:晴天时天空呈兰色的原因是大气分子对阳光的散射。瑞利还证实:散射光的强度与波长的四次方成反比。这就是瑞利散射定律。由于组成白光的各种颜色的光中,兰光的波长最短,因而散射光强度最大。天空因而呈现兰色。

瑞利当时并没有考虑到散射光的频率变化。他认为散射光与入射光的频率是相同的。所以后来把与入射光波长相同的散射称为瑞利散射,而把波长与入射光不同的散射称为拉曼散射。

6.2.2拉曼散射的产生

6.2.2.1 机械力学的解释

光由光子组成,这是光的微粒性。光子与样品分子间的相互作用,可以用光子与样品分子之间的碰撞来解释。

光照射样品时,光子和样品分子之间发生碰撞。如果碰撞时只是运动方向改变而未发生能量交换即发生了弹性碰撞,则光子的能量不变。由E=hν,能量不变频率也就不变。这就是瑞利散射产生的原因。如果光子和样品分子间发生非弹性碰撞,即光子除改变运动方向外还有能量的改变,一部分能量碰撞时在光子和样品之间发生交换,光子的能量有所增减,则光的频率发生改变。

6.2.2.2 从能级之间的跃迁来分析

光子和样品分子之间的作用也可以从能级之间的跃迁来分析。

Figure 9.1 Processes leading to normal, preresonance, and resonance Raman scattering. (For comparison, the processes involved in IR and fluorescence are shown.) The horizontal lines represent different vibrational energy levels in the two electronic states. The Raman scattering spectrum is also indicated. Note that the intensity of the Stokes lines is greater than that of the anti-Stokes

P240 Fig 9.1

样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞利散射。如果样品分子回到电子能级基态中的较高振动能级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为Stokes线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为anti-Stokes线。Stokes线和anti-Stokes线位于瑞利谱线两侧,间距相等,如图9.1所示。

Stokes线和anti-Stokes线统称为拉曼谱线。由于振动能级间距还是比较大的,因此,根据波尔兹曼定律,在室温下,分子绝大多数处于振动能级基态,所以Stokes线的强度远远强于anti-Stokes线。拉曼光谱仪一般记录的都只是Stokes线。

6.2.2.3 从光的波动性来分析

由于光同时具有波动性,因此也可以从光的波动性分析拉曼散射的产生:电磁波的交变电场可以用E=E0cos(2πν't)表示,其中E是任意时刻t的电场强度,E0为交变电场的振幅,ν'为频率。样品分子的电荷分布在交变电场的作用下会发生变形,其正电荷和负电荷的中心会发生位置上的相对移动或分离,产生诱导偶极矩μ,μ=αE,其中E为入射光的交变电场强度,α是分子的极化率(polarizability)。分子极化率是衡量分子在电场作用下电荷分布发生改变的难易程度或诱导偶极矩(induced dipole moment)的大小,也就是单位电场强度诱导产生的偶极矩的大小。

如果分子的振动引起分子极化率的改变,则分子具有拉曼活性。

以双原子分子为例,设分子极化率α随分子振动而变化,则α可按台劳级数展开。忽略高次项,可得到:

α=α0+(dα/dq)0q

式中α0是分子在平衡位置时的极化率,q=r-r e,是双原子分子核间距r与平衡位置时核间距r0的差。(dα/dq)0表示平衡位置上α对q的导数。

由μ=αE=[α0+(dα/dq)0q]E0cos(2πν't)

根据前面红外原理中所推得的方程d2q/dt2= -kq/μ的解q=q0cos2πνt

可以有

μ=[α0+(dα/dq)0q0cos2απνt]E0cos2πν't

=α0E0cos2πν't+q0E0(dα/dq)0cos2πνtcos2πν't

=α0E0cos2πν't

+(1/2)q0E0(dα/dq)0[cos2π(ν'+ν)t+cos2π(ν'-ν)t]

式中前一项α0E0cos2πν't对应于样品分子产生的波长未变化的散射即瑞利散射,第二项反映分子极化率随分子振动而改变(即(dα/dq)0不为零)时分子产生的与入射光频率不同的散射光。散射光与入射光频率的差值即分子的振动频率,这就是拉曼散射。

红外吸收的光频率是分子的振动频率,拉曼散射光与入射光的频率差也反映了分子振动能级之间的差。

6.2.3 拉曼散射的选择定则(参考书P242)

外加交变电磁场作用于分子内的原子核和核外电子,可以使分子电荷分布的形状发生畸变,产生诱导偶极矩。极化率是分子在外加交变电磁场作用下产生诱导偶极矩大小的一种度量。极化率高,表明分子电荷分布容易发生变化。

μ= αE

如果分子的振动过程中分子极化率也发生变化,则分子能对电磁波产生拉曼散射,称分子有拉曼活性。有红外活性的分子振动过程中有偶极矩的变化,而有拉曼活性的分子振动时伴随着分子极化率的改变。因此,具有固有偶极矩的极化基团,一般有明显的红外活性,而非极化基团没有明显的红外活性。拉曼光谱恰恰与红外光谱具有互补性。凡是具有对称中心的分子或基团,如果有红外活性,则没有拉曼活性;反之,如果没有红外活性,则拉曼活性比较明显。(This is another important principle of vibrational spectroscopy, the rule of mutual exclusion. This rule states that for any molecule containing a true inversion center of symmetry, the infrared active vibrations are Raman inactive and vice versa.)

一般分子或基团多数是没有对称中心的,因而很多基团常常同时具有红外和拉曼活性。当然,具体到某个基团的某个振动,红外活性和拉曼活性强弱可能有所不同。有的基团如乙烯分子的扭曲振动,则既无红外活性又无拉曼活性。

下图显示了甲苯的红外谱和拉曼谱。可以看到:在某些频率处两者是吻合的,而在另

一些频率上,只有一种谱上有峰。

FIGURE 1.12. Comparison of IR (top) and Raman (bottom) spectra of toluene. Some lines appear at the same frequency in both the IR and the Raman spectrum. However, some lines show in the IR but not in the Raman spectrum. The intensities of the IR lines arc different from those of the Raman lines, although many of them appear at the same frequency. This reflects the difference in selectivity of two fundamentally different processes.

例. 包含两个相同原子的双原子分子的红外活性和拉曼活性如何? (参考书P242例9.2)

答:具有红外活性的分子振动必须引起分子固有偶极矩的变化。对于含两个相同原子的分子来说,由于它没有固有偶极矩,因此这个振动不可能发生固有偶极矩的变化,这个振动没有红外活性。但是在分子振动过程中,分子会变形,这就会引起电子相对于核的分布的变化。分子的极化率会反映这种变形,因而在分子振动中极化率会发生变化,这种振动因此有拉曼活性。

例. CO2的拉曼光谱(参考书P242例9.3)。

Figure 9.2

CO2有四个基本的振动模式,但其中只有一个有拉曼活性,为什麽?

答:二氧化碳的对称伸缩振动改变了核和电子的相对位置,因而分子的极化率也发生改变,分子具有拉曼活性。在不对称伸缩振动中,一个键的伸展效果被另一个键的收缩抵消了,因此极化率总体上没有变化。另外两种振动模式也是如此。这里要注意的是:具有拉曼活性的振动是无红外活性的。事实上,如果一个分子具有对称中心,则具有红外活性的振动没有拉曼活性。反之,具有拉曼活性的振动没有红外活性。

6.2拉曼谱的量测及参数

RAMAN INSTRUMENTATION

6.2.1拉曼谱仪:

Types of Instrumentation and Trends in the 1990s

Raman instrumentation has an interesting heritage, and in some ways the technique has seen more changes, and more diversity than any other analytical technique. This may be due to two aspects of its evolution?one technical and the other perception versus acceptance. The Raman effect is extremely weak, and Raman spectroscopy has obviously gained over the years by technology that improves signal and detectability. Not all these technological "breakthroughs" follow the same developmental trail. Secondly, the technique is in some ways too closely-related to infrared spectroscopy, and is treated as a poor relative.

Raman spectroscopy, in practical terms and for specific applications, can be demonstrated to have considerable advantages over infrared spectroscopy. However, as a general analytical technique, it is difficult to demonstrate that it offers any net advantages. And, it has been seen to have some clear disadvantages, in particular the common interference from broad-band sample fluorescence, which can totally mask the spectrum. Consequently, when people justify the purchase of new laboratory instrumentation, the safe decision tends to be infrared spectroscopy, which is well established, and has evolved consistently over the past 40+ years. With Raman, there is less practical history, and the instrument platforms are constantly changing. Today, there are a couple of technology choices which are not necessarily mutually exclusive?there are pros and cons to the selection. When it comes to a specific application, however, it can be easy to demonstrate whether Raman or infrared is the better choice.

There are currently two main technological approaches to the design of Raman instrumentation ? a monochromator or spectrograph-based CCD system and FT-Raman. As mentioned above, because of practical and technical constraints, these two approaches do not necessarily produce exactly the same end result. Qualitatively, both generate the same fundamental spectrum for a given material, however, the overall appearance of the spectrum or the impact of the sample, may be different. This section will provide an overview of instrumentation as it exists in the 1990s, and it will provide a general discussion of the trends and applications.

The greatest technological difficulty for Raman spectroscopy has been the weakness of the Raman spectral signal, compared to the magnitude of the main excitation wavelength. The intensity of a particular Raman line can be in the range 10-6 to 10-10 of the main excitation line (possibly even as low as 10-12). The issues are: how to measure such a low signal in the presence of a dominant signal, how to remove effectively the interference from the dominant signal, and, if possible how to enhance the weaker signal. One approach to increasing the absolute intensity of the signal is to increase the power of the source ? the laser power. While this may be possible, it does not remove the fundamental dynamic range problem, or the interference problem, which only becomes worse with increased laser power. For years, the traditional Raman instruments featured scanning monochromators. The important criteria for the monochromator design were to minimize straylight, to enable the very weak signals to be measured, and to design for maximum Rayleigh line rejection. The original solution was to use more than one monochromator, with commercial systems being based on double and triple monochromators. While these had the desired optical properties, the use of up to three monochromators made these instruments mechanically complex, and severely limited the optical throughput of the instrument (down to 5% or less overall efficiency).

典型的拉曼谱仪装置图如下图所示。

(A.T.Tu, FIGURE 2.5.) Essential parts of a Raman spectrometer. Normally the scattered light at 90? is examined.(instfig.pcx)

由于散射效率大约为10-6~10-7,所以通常使用激光器作为光源,通过滤片和聚焦镜投

射到样品上。这时光向各个方向散射。散射光包括瑞利散射(弹性散射)和拉曼散射(非弹性散射)。弹性光散射强度比拉曼散射高出103以上,所以色散系统必须精心设计,消除种种杂散光。为了达到高分辨率,一般采用双联或三联单色仪作为分光系统。一般在与入射光成90

度的方向上接收散射光,采用光电倍增管作为接收器,然后经过信号处理电子系统和计算机,从显示屏或记录仪输出。输出参数为各个波数上的散射光绝对值,散射光波数的绝对值和拉曼波数(即入射光与散射光的波数差),可以直接显示在屏幕上。

With the introduction of laser line rejection filters, and in particular the holographic notch filters, the need for the second and third monochromators was effectively eliminated. A side benefit of the use of these rejection filters and the elimination of the additional monochromators, was the associated reduction in instrument size.

The next significant technology boost was provided by the move towards detector arrays?initially with intensified photodiode arrays, and more recently with the cooled CCD (charge-coupled device) arrays. With such devices, the need to scan the monochromator mechanically is removed.The result is a high efficiency spectrographic system with no moving parts. Today, the limitations of the technology are the cost of high-performance spectroscopic CCD array cameras, and the overhead associated with cooling. However, with major advances in imaging technologies in the 1990s there has been a corresponding expansion in CCD technology. As a result, it is anticipated that CCD devices with improved performance and lower costs will continue to become available. The trades that have to be made with a CCD device are spectral range versus spectral band width, and the impact of the signal cut-off between 1000 and 1100 nm for silicon. These issues will be discussed in greater detail, later.

With the gains in performance experienced with FTIR instrumentation compared to dispersive infrared instruments, there has been a natural desire to determine whether or not the same level of performance can be achieved for Raman spectroscopy. Originally, this experiment was considered to be impractical because of noise considerations and the extraordinarily large dynamic range involved between the excitation (Rayleigh) line and the Raman signals. However, with the advent of the laser line rejection filters mentioned above, Hirschfeld and Chase demonstrated the feasibility of FT-Raman spectroscopy. Original experiments were performed with the 647.1 nm line of a Krypton gas laser, and with a silicon detector. However, the real justification for the move to FT-Raman spectroscopy was the ability to use near-infrared lasers. Moving from visible to NIR excitation helped to remove one of the major interferences encountered with Raman spectroscopy?the occurrence of broadband fluorescence.This, plus the expected gain in performance from the multiplex advantage, offered by Fourier spectroscopy, made the technique of FT-Raman an attractive alternative to the conventional dispersive-based methods of measurement.A second, practical advantage for a user is that Raman can be performed on an existing FTIR instrument, without significant redesign.In fact, most of the major FTIR vendors offer Raman as an accessory for their high-end instruments. In most cases, the 1064 nm line of the Nd:YAG laser, operating with powers of up to 4 W, are used for excitation. Following the success of the FT-Raman accessories, some dedicated FT-Ramans instruments were produced, with notable gains in performance linked to the optimization of the optical system.In particular, gains

were experienced by the use of high reflectivity optics,the reduction in the number of optical elements, and the use of high sensitivity detectors, matched to the laser image.

Figure 22 Schematic diagram of a FT-Raman Spectrometer

One of the major applications of Raman spectroscopy has been microscopy, with the benefits of the spatial resolution of the laser light source.Raman microscopy gained popularity in the mid 1970s from the pioneering work of Delhaye, et al. and by the introduction of the MOLE by Instruments SA. Later, following the gain in popularity of infrared microscopy, with microscope accessories optimized for commercial FTIR instruments, a parallel implementation was made for FT-Raman. Likewise, commercial Raman microscopes are offered either as accessories or as dedicated systems for use with CCD-based technology. An important recent development is in the area of Raman spectroscopic imaging microscopy, a two-dimensional experiment, where the Raman spectrum is scanned with an AOTF device, and the main image is generated by a CCD array. This technology is expected to have significant impact on studies in materials science, in polymer chemistry, and in the area of biological and medical research.

One of the major benefits of Raman spectroscopy is the fact that the primary measurement involves visible or NIR radiation. This permits the use of conventional glass or quartz optics for imaging. Furthermore, it opens up the opportunity to use optical fibers for remote sampling. In such an arrangement, a single fiber is used for the transmission of laser radiation to the sample, and second fiber, or a series of fibers (Figure 19), transmits the Raman scattered radiation back to the spectrometer.

Figure 19 Schematic diagram of a Raman fiber-optic sampling probe featuring a fiber-optic

Bundle

The construction of the sample-light interface in this case is very important to maximize the coupling between the laser and the sample, and the subsequent collection of the scattered radiation. Silica fibers are normally used, which can transmit visible or near infrared radiation over relatively long distances without significant light loss. Usually, the Raman spectrum from silica is very weak, however, over the distance covered by optical fibers, the contribution can be significant. To overcome this problem, sampling probes featuring optical filtering in the measurement head are utilized. An example of such a probe head is shown in Figure 20.

Figure 20 Schematic diagram of a Raman fiber-optic sampling probe featuring filter elements in the measurement head (Courtesy of Kaiser Optical Systems, Inc.)

As noted earlier, there are several important areas of application where Raman excels over infrared. Often, these are based on practical issues, such as the ability to use glass in the optical system,the lower Raman scattering of water, which permits the study of aqueous media, and the opportunity to have noncontact sampling. A secondary issue is that unlike mid-infrared spectroscopy, there is no interference from atmospheric water vapor or carbon dioxide.This, coupled to the scaling down in instrument size, the ability to perform remote measurements, and the availability of mechanically simple instruments, has made Raman a practical tool for process applications. Applications have ranged from raw material screening to reaction monitoring, with a major focus on the analysis of polymeric products.

6.2.2. 拉曼谱参数:(参考书P243-245)

拉曼谱的参数主要是谱峰的位置和强度。

6.2.2.1 谱峰(谱线)位置:

峰位是样品分子电子能级基态的振动态性质的一种反映。它是用入射光与散射光的波数差来表示的。峰位的移动与激发光的频率无关

6.2.2.2 强度:

Unlike the traditional infrared measurement, the Raman effect is an emission phenomenon, and is not constrained by the laws of absorption. The intensity of a recorded spectral feature is a linear function of the contribution of the Raman scattering center, and the intensity of the incident light source. The measured intensity function is not constant across a spectrum, and is constrained by the response of the detector at the absolute frequency (wavelength) of the point of measurement. Also, Raman scattering is not a linear effect, and varies as a function

of λ4, where λ is the absolute wavelength of the scattered radiation. While Raman intensity may be used analytically to measure the concentration of an analyte, it is necessary to standardize the output in terms of the incident light intensity, the detector response and the Raman scattering term, both as a function of the absolute measured wavelength.

拉曼散射强度与产生谱线的特定物质的浓度有关,成正比例关系。而在红外谱中,谱的强度与样品浓度成指数关系。)样品分子量也与拉曼散射有关,样品分子量增加,拉曼散射强度一般也会增加。对于一定的样品,强度I与入射光强度I0、散射光频率νs、分子极化率α有如下关系:

I=CI0νs4α2

这里C是一个常数。

在共振拉曼谱中,谱的加强是由于极化率α的增加引起的。

6.2.2.3 退偏比(depolarization ratio)

如参考书P242中所说,一个分子的电荷在某一个方向上可能比在另一个方向上容易变形,称这种分子的极化率各向异性;相反,则称为各向同性。把一个朝向与偏振光平行的偏振片放在偏振光的路径上,则偏振光可以通过偏振片。若偏振片转动90度,则偏振光不能通过偏振片。

如果一个分子位于原点0,对入射光进行散射。下图只表示了沿Y方向散射的射向观测者的光。对于高度对称的分子如CH4和SF6而言,极化率是各向同性的。当这类分子的完全对称的振动模式(例如CH4中C-H键的伸缩振动)与在XZ平面上偏振的入射光相互作用时,散射光将在YZ平面上偏振。这样,当一个偏振片平行于YZ平面放置时,只有这个平面上的散射光能够通过。这部分光的强度称为I∥。若偏振片转动90度,则YZ平面上的光将无法通过。偏振片处于这个位置时测得的散射光强度称为I⊥。

ρ=I⊥/I∥

定义为退偏比。对于CH4的对称C-H伸缩振动来说,退偏比ρ=0。

(A.T. Tu FIGURE 1.32.) The intensity of scattered tight can be measured two different ways. (A) Light comes through a parallel-oriented polarizer and is parallel to the incident light (I//). (B) Light comes through a perpendicularly oriented polarizer and is perpendicular to the incident light (I⊥). The ratio of I// to I⊥ is called the depolarization ratio, and it is related to symmetry of vibrational modes.

大多数分子的对称程度比CH4或SF6小,因此,极化率是各向异性的。一般来说,分子散射的光在XZ和ZY平面上都有偏振。在平行于入射光偏振方向的方向上(如图中的Z方向),测到的散射光强度与垂直于入射光偏振方向的方向(如图中所示的X方向)上测得的强度是不同的,但其比值一般不为零。

如果入射光是平面偏振光,则退偏比

ρ= I⊥/I∥=3α2a/(45α i +4α2a)

其中α i是极化率的各向同性部分,αa是极化率的各向异性部分,I⊥是垂直于入射光的方向上偏振的散射光强度,I∥是平行于入射光的方向上偏振的散射光强度。

对于平面偏振光来说,退偏比与振动的不对称程度有关,其值在0到3/4之间。任何分子的不完全对称的振动,其退偏比ρ为3/4(αi =0)。对于完全对称的振动,ρ≤3/4。上面提到的CH4的例子中,退偏比为。但一般来说,ρ值在0到3/4之间,其大小取决于分子极化性质的变化和分子键的对称性。一个完全对称的振动在进行任何对称操作后不变,这些对称操作只是交换了分子中对等原子的平衡位置。因此,退偏比的量测可以提供有关分子对称性的信息,而且有助于拉曼谱线的指认。

6.2.3增强拉曼光谱:

There are some enhanced Raman methods, which for some compounds produce significantly intensified Raman spectra, and which overcome some aspects of this dichotomy. Two such techniques are resonance Raman(参考书P243)and surface-enhanced Raman spectroscopy (SERS). One other Raman-based technique worthy of mention is coherent anti-Stokes Raman spectroscopy (CARS)further discussion of this technique is beyond the scope of this book.

Resonance Raman is particularly interesting because it can turn Raman into a highly specific probe for certain functional groups or chemical sites. Resonance Raman occurs when the laser excitation frequency coincides with an electronic absorption band. In this case, the vibrations associated with the absorbing chromophore are enhanced by as much as 103 to 106 times the normal Raman intensity. These intensified Raman lines are linked to the specific chromophore site and functional groups or sites, within the molecule, that interact with the chromophoric group. The early resonance Raman experiments were with the visible lines of the argon ion laser, and this obviously constrained the technique to a limited set of colored compounds. Of these, the work with the heme chromophore of the hemeglobin molecule were the most significant. It is possible to observe the influence of external molecular ligands, such as oxygen, carbon monoxide and cyanide, on the critical heme site, free of interference from the remaining of the protein structures. Moving to shorter wavelengths from the visible towards, and into the ultraviolet regions might, at first site, seem to be impractical because one normally equates high levels of native fluorescence with the use of UV excitation. However, many compounds absorb in the ultraviolet spectral region, and so there is a high probability for the resonance Raman effect to occur. Also, it has been observed that below 260 nm excitation that there is virtually no interference from fluorescence. One of the main issues here has been the appropriate selection of a laser operating in the UV range. One approach is to use a dye laser pumped by a Nd:YAG or a XeCI excimer laser, coupled to frequency doubling and tripling crystals to provide a wavelength selectable range of 200 to 750 nm (Nd:YAG) and 206-950 nm (excimer). Both these laser systems provide a pulsed laser output. A practical

alternative, where continuous wavelength tuning is not a requirement, is an

intracavity frequency doubled argon ion laser which provides continuous output of five excitation lines in range 230 nm to 260 nm.

当入射光引起分子中电荷的平移时,则发生散射。电荷的平移通过分子极化率反映出来。

散射的强度与极化率的平方成正比。

当激发光的频率接近且小于两个电子能级之间的频率差时,则产生所谓的preresonance,

当激发光的频率等于两个电子能级之间的频率差时,则会发生共振,这时产生很大的电子电

荷频移或分子变形的概率很高,这时就会产生对光的吸收。这也说明对于某些振动,当入射

光接近或等于某个吸收跃迁频率时,极化率会变得比较大。这种振动称为共振加强的

(resonance enhanced)振动。这种加强取决于电子跃迁的强度及振动的对称性。如果只有一个单一的电子态,则振动加强必须是对称的。即这种振动不能改变分子的对称性。如果某个被激发的生色团有不止一个电子跃迁,则振动的对称性就不那么重要了。

共振拉曼谱典型的增强倍数是102~103,因此共振拉曼谱在10-4 mol?dm-3或更低的样品

浓度下即可测得。这样,共振拉曼谱就提供了一种以接近紫外光谱的灵敏度选择性地探测生

色团振动频率的手段。

共振拉曼在研究生物大分子的结构和功能时很有用,多生物分子都含有能给出共振拉曼

谱的基团,如类胡萝卜素、黄素、视紫红质、各种含铜与铁的化合物、叶绿素等。共振拉曼

谱仪的使用范围主要受到激光光源频率有限这一现实情况的限制。

As noted, another technique that provides an enhanced Raman spectral output is SERS ? surface-enhanced Raman spectroscopy. Unlike resonance Raman, the laser wavelength is not important, unless aqueous-based measurements are made with near-infrared excitation. As the name implies, the measurement is specific in nature, and somewhat limited in application to surfaces or interfaces. Most studies of SERS have been performed on electrode surfaces. An signal enhancement, in the order of 106is observed for adsorbed species on certain metallic electrode surfaces, notably metals such as gold, silver, platinum and to some extent copper.The original experiments involved calomel (Hg2C12) on a mercury surface, and later work involved organics, such as pyridine adsorbed on roughened silver electrode surfaces. The enhancement phenomenon is not restricted to electrodes, and similar effects have been observed for other substrates involving metals, such as colloidal suspensions of metals and metals deposited or embedded in oxides. A critical factor in all the experiments is the surface roughness, which is nominally at the atomic scale. The origin of the enhancement is believed to be associated with an increased electric field in the region of the molecule under study. Although experiments involving charged metal surfaces might appear to be limited, the phenomenon does open up interesting applications in the area of metallic corrosion, the study of batteries materials, and new electrolytic studies in the contested area of cold fusion.

6.3拉曼光谱的特点和应用

6.3.1. 优缺点:

Advantages and Disadvantages of Vibrational Spectroscopy

Raman and infrared spectroscopy for protein and nucleic acid structure analysis have the following notable advantages:

1. Raman and infrared spectroscopy are nondestructive techniques. Ordinarily the sample may be recovered and assayed for biological activity after spectroscopic examination.

2. Raman and infrared methods are applicable to samples of virtually any morphological form. For proteins and nucleic acids, this includes solutions (aqueous and nonaqueous), suspensions, precipitates, gels, films, fibers, single crystals, and polycrystalline and amorphous solids. Data obtained from a given sample in one morphological state are generally transferable to another morphological state of the same sample. This has important practical benefits-for example, in comparing the molecular structure of a protein in the crystal with that prevailing in solution.

3. A small sample volume is required for these methods. Approximately 1μl is sufficient for conventional Raman spectroscopy and approximately 10 μl for Fourier transform infrared spectroscopy. This represents an advantage over many other structural methods, including X-ray crystallography and magnetic resonance spectroscopy.

4. Raman scattering and infrared absorption processes occur on a time scale that is very short (≈10-15sec) in comparison to the time scales of fluorescence (> 10-9sec) and nuclear magnetic resonance phenomena ((≈ 10-6 sec). Thus, vibrational spectroscopy is suitable for time-resolved studies of biological processes that are inaccessible by fluorescence and magnetic resonance methods.

5. There exists a large database of infrared and Raman spectra of proteins, nucleic acids, and their constituents, for which reliable band assignments, normal mode analyses, and spectra-structure correlations have been made. This facilitates interpretation of the often complex vibrational spectra obtained from proteins, nucleic acids, and their complexes.

The following advantages are specific to Raman spectroscopy:

1. Both H2O and D2O generate very weak Raman scattering, thus producing relatively little interference with the Raman spectrum of the dissolved solute. This constitutes a significant advantage over infrared absorption spectroscopy, where both H2O and D2O are highly problematic solvents. The innocuous Raman characteristics of H2O and D2O likewise facilitate the exploitation of Raman spectroscopy for monitoring hydrogen isotope exchange processes in proteins, nucleic acids, and their assemblies. Similarly, hydrogen isotope exchanges can be employed in the Raman effect for purposes of measuring isotope shifts to establish or confirm definitive vibrational spectroscopic assignments.

2. The fundamental selection rule for Raman spectroscopy, i.e., that relatively high Raman intensity accrues from molecular vibrations with which there is associated a large change in molecular polarizability, favors the electron-rich substituents of proteins and nucleic acids. Thus, the Raman spectrum of a typical protein is dominated by spectral bands assignable to main-chain peptide groups, aromatic side chains (Trp, Phe, Tyr), sulfur-containing side chains (Met, Cys), and side-chain carboxyls (Asp, Glu, Asn, Gln). Raman intensities associated with saturated hydrocarbon groups are intrinsically rather weak. However, the large numbers of such groups typically present in a protein result in a few relatively intense Raman bands associated with groups

frequencies of the methylene and methyl substituents. In the case of nucleic acids, the Raman spectra are dominated by bands attributable to vibrations of the backbone phosphate groups and of the purine and pyrimidine rings, especially in-plane skeletal stretching and exocyclic carbonyl stretching modes of the latter.

3. Raman intensities are enhanced dramatically (by several orders of magnitude) when the energy of the incident photon is selected in resonance with a molecular electronic transition of a protein or nucleic acid chromophore. This constitutes the resonance Raman (RR) effect. Therefore, structural information about the chromophore can be obtained by use of relatively dilute protein or nucleic acid solutions through the RR mechanism. This technique is particularly valuable for proteins containing chromophores that absorb in the visible (metalloproteins, retinal proteins, etc.) or near-ultraviolet (nucleotide-binding proteins, nucleoprotein complexes, etc.). Ultraviolet resonance Raman (UVRR) spectroscopy has found more extended use in applications to nucleic acids and nucleoprotein assemblies.

Vibrational spectroscopy for protein and nucleic acid structure analysis has the following notable disadvantages:

1. Although band resolution in vibrational spectra is superior to that achievable in electronic spectra of condensed phases, the spectral resolution of vibrational spectroscopy is still inferior to that of high-field magnetic resonance spectroscopy. Inadequate resolution is especially problematic in infrared spectra of proteins and nucleic acids and can severely limit the usefulness of the data. To overcome this limitation, the experimentalist may employ a strategy based on chemical or biological modification, such as isotope editing or site-directed mutagenesis.

2. The Raman process of inelastic light scattering is inherently weak compared to other light absorption and emission processes. Thus, considerable effort in sample purification and care in sample handling are necessary to avoid even minute traces of fluorescent impurities or other chromophores that may interfere with detection of the Raman scattering.

3. The inherent weakness of the Raman scattering mechanism in comparison to other mechanisms of interaction of radiation with matter also imposes a requirement for sophisticated and relatively costly instrumentation.

4. Although small sample volumes are sufficient for Raman and infrared analyses, relatively high solute concentrations are required ≈10-100μg/μl).

和红外谱相比,拉曼光谱有以下优点:

(1)一些在红外光谱中为弱吸收或强度变化的谱带,在拉曼光谱中可能成为强谱带,例如基团S-S、C=C、N=N、C≡C、C≡N、C=S、S-H、X=Y=Z、C=N=C、O=C=O等。环状化合物对称伸缩振动具有很强的拉曼谱线,用拉曼光谱来研究比较方便。

(2)拉曼光谱在低波数方向的测量范围较宽,常规测量范围为40~4000cm-1,有利于重原子的振动信息研究。

在低波数范围内,红外光谱的测量有困难。但拉曼光谱所测定的是?ν,因此可以选择

适当的激发光(ν')来把振动光谱移到便于测定的紫外、可见光区域。

(3)拉曼光谱样品大小形状可以多样,不必粉碎、研磨,不必透明。而且样品池或样品杯也可以采用玻璃材料,因为玻璃是弱拉曼散射体。

(4)拉曼光谱比较适于测试生物样品。生物样品一般含水,而水对红外光有很强的吸收,因此用红外光谱测试生物样品技术上要求较高。但拉曼光谱中水的吸收比较弱,因此是含水生物样品的理想检测手段。许多情况下,可以用拉曼光谱来检测活体中的生物物质。只要样品对激光能量吸收不强,测量时就不至造成样品结构上的变化。现在,一些拉曼谱仪上还有专门的显微附件,可以检测样品上微小区域内的物质组分和结构。

(5)拉曼光谱中没有倍频和组合频等红外谱中常见的干扰,因此拉曼光谱比红外光谱简单,容易分析。

(6)拉曼光谱的激发光和拉曼散射光在紫外-可见波段能量较红外光高,因此检测起来比红外光谱容易。

但拉曼光谱也有一些缺点:

(1)有些样品本身的发光本底较强,这样就使得拉曼光谱的信噪比受到影响。此外,样品分子量增加时拉曼光谱的信噪比也会降低。

(2)激光束焦点上能量集中,可能对样品造成损伤。

付力叶拉曼光谱仪的出现,在一定程度上克服了上述缺点,为拉曼光谱更广泛的应用提供了更有力的手段。

6.3.2 数据分析Analysis of Data

The successful application of vibrational spectroscopy in protein and nucleic acid analysis presumes definitive band assignments and requires a combination of experimental and theoretical approaches. Tactics employed toward this objective include

(1)comparison of Raman frequencies and intensities with corresponding infrared data when

available;

(2)determination of vibrational frequency shifts accompanying stable-isotope substitutions,

such as 1H→2H(D), 12C→13C, 14N→15N, and 16O→18O;

(3)evaluation of the effects of pH, temperature, and other environmental factors on the spectra;

(4)detailed and well-analyzed Raman and infrared spectra of smaller, more symmetrical

molecules that are structurally related to the biomolecular constituents;

(5)normal coordinate calculations;

(6)measurements of depolarization ratios of the Raman bands in isotropic solutions of the

molecules;

(7)collection and analysis of polarized spectra of oriented samples when feasible;

(8)measurement of Raman excitation profiles that correlate Raman intensities with laser

excitation wavelengths.

Digitally computed difference spectra can facilitate the visualization of changes in vibrational

band intensities or frequencies accompanying changes in sample temperature, molecular environment, or the like. However, because the Raman spectrum is not an absorption spectrum, its intensities are not governed by the Beer-Lambert law, and the comparison of two independently recorded Raman spectra by subtraction can be subject to considerable uncertainty. This is dealt with by comparing intensities in the two spectra only after normalization of both the minuend and subtrahend to a reliable internal intensity standard. A normalization procedure should be deemed reliable only after careful consideration of the origin of the band in question, and preferably after validation on a suitable model system. In the absence of reliable internal normalization, a process of trial and error may be the only recourse for computation of a Raman difference spectrum. Similar concerns apply to the procedure of solvent correcting a vibrational spectrum (infrared or Raman). It should be kept in mind that the protein or nucleic acid solute may influence the structure of the aqueous solvent, and therefore its vibrational spectrum, as much as the water molecules may influence the structure of the dissolved biomolecule. Accordingly, it is virtually impossible to compensate completely a solution spectrum for contributions of the aqueous solvent by simply subtracting therefrom the spectrum of the pure solvent.

The computational power of microcomputers has ushered in an era of easy manipulation of all types of experimental data, including infrared and Raman spectra. A particularly popular procedure is the method of Fourier deconvolution, which is applied to enhance the resolution of overlapping bands. Also commonly employed is the method of least-squares curve fitting, which can be used to fit a complex bandshape to an arbitrary number of simpler band components. While the utility of such procedures cannot be questioned, considerable caution must be exercised in their application. The vibrational spectroscopist is well advised to avoid these computational approaches whenever the collection of additional experimental data can serve the same objective.

6.3.3.拉曼光谱在生物学中的应用

(ANTHONY T. TU eds.,RAMAN SPECTROSCOPY IN BIOLOGY: Principles and Applications, John WILEY & SONS, New York)

PART II. BIOLOGICAL MOLECULES

CHAPTER 3. PROTEINS

1.Peptide-Bond Vibrations 66

1.1. A mide A and B Bands 67

1.2. A mide I, II, and III Bands 68

1.3. A mide V, VI, and VII Bands 71

1.4. A mide IV Band 71

Secondary Structure (peptide-Backbone

Structure) 72

Conformational Analysis from Amide I and

III Bands 73

Comparison of Amide 1 and III Bands

78

2.3. O ther Structurally Sensitive Lines 80 The D- and L-Amino Acid Copolymers

81

2.5. R ight and Left-Handed α-Helices 82

2.6. D egree of polymerization 82

2.7. S olid and Aqueous Phases 83

2.8. E ffect of Protein on Water 84 Quantitative Estimation of Secondary

Structure 84

3. Side Chains 86

3.1. T yrosine 87

3.2. T ryptophan 89

3.3. P henylalamne 90

3.4. H istidine 91

3.5.Disulfide Bond 91

3.6. C-S 94

3.7. Sulfhydryl Group (-SH) 96

4. Preresonance Raman 97

5. IR and Raman 97

6. Low-Frequency Vibrations 99

6.1. Internal Vibrations 100

6.2. Intermolecular Vibrations 101

7. Raman-Spectra Background 103

8. Application 103

8.1. D enaturation 103

8.2. C hemical Modification 106

8.3. C omparison of Related Proteins 107

8.4. G lycoproteins 108

8.5. B lood Coagulation 108

References 109

CHAPTER 4. ENZYMES AND IMMUNOGLOBULINS

1. Enzyme Action 117

1.1. P apain 117

1.2. C hymotrypsin 120

1.3. C arboxypeptidase A 121

1.4. P eroxidase 123

1.5. T hymidylate Synthetase 123

1.6. O thers 124

2. Enzyme- Inhibitor Complexes 125

2.1. C hymotrypsin 125

2.2. C arbonic Anhydrase 125

2.3. T rypsin 127

2.4. O ther Enzymes 127

2.5. E nzyme-Drug Interaction 128

3. Isozymes 128

4. Immunology 129

4.1. A ntigen-Antibody Reactions 129

4.2. H apten-Antibody Interactions 129

4.3. C ryoglobulin 130

References 131

CHAPTER 5. NUCLEIC ACIDS

1. Background 134

1.1. T automerism 135

1.2. H ydrogen-Deuterium Exchange 135

1.3. O rigin of Base Vibrations 135

2. Principal Raman Lines 137

2.1. Aqueous Solution 13 8

2.2. In D20 141

3. Structurally Sensitive Lines 141

3.1. H eat Treatment 141

3.2. p H Treatment 141

3.3.P hosphodiester-Bond Vibrations 141

4. Conformational Analysis 145 ,

4.1.Double-Stranded Polynucleotides, DNA,

and RNA 145

4.2. U se of Phosphodiester Bands 145

4.3. M elting of Nucleic Acids 147

4.4.Base Stacking and Hydrogen Bonding

150

4.5. S ingle-Stranded Polynucleotides 151

4.6. G el Formation 152

5. Native RNA 153

5.1. Transfer RNA 153

5.2.Rjbosomal RNA 155

5.3.

6. Reactions of Nucleic Acids 156

6.1. A lkylation 156

6.2. P olypeptides 157

6.3. M etal Ions 158

6.4. D rugs 163

7. Special Techmques 165

7.1. Preresonance and Resonance Raman

Spectroscopies 165

7.2. Others 167

References 167

CHAPTER 6. NUCLEOPROTEINS--VIRUS AND

CHROMOSOME

1. Viruses 174

1.1. Plant Viruses 175

1.2. Bacteriophages 180

2. Chromosome 182

2.1. Histones 182

2.2.DNA-Histone Interactions in Nucleosomes

183

2.3.References 185

CHAPTER 7. LIPIDS AND BIOLOGICAL MEMBRANES

1. Brief Review of Lipids and Membranes 187

2.Vibrations of Fatty Acids and Phospholipids

190

2.1. L ow-Frequency Vibrations 191

2.2. S tructurally Sensitive Raman Bands 191

2.3. U nsaturated Fatty Acids 199

2.4. P hase Transition (Melting Behavior) 201

2.5.Quantitative Estimation of Conformation

206

3. Interaction of Lipids 207

3.1. Lipid-Lipid Interactions 207

3.2. Lipid-Protein Interactions 209

3.3. Lipid-Ion Interactions 213

3.4. Lipid-Antibiotic Interactions 213

3.4.I nteractions with Other Compounds

218

4. Biological Membranes 219

4.1. E D, throcyte Membranes 219

4.2. S arcoplasmic Reticulum Membranes 223

4.3. S treplococcus faecalis Membrane 224

4.4. N erves 224

4.5. O ther Plasma Membranes 225

References 226

CHAPTER 8. CARBOHYDRATES

1. Assignment of Raman Bands 235

2. Glycosidic Linkage 235

2.1. IR Absorption Spectroscopy 235

2.2. Raman Spectroscopy 241

3. Functional Groups 242

3.1. O-H Vibrations 242

3.2. C-H Vibrations 244

3.3. N-H Vibrations 245

3.4. C arboxyl and Acetyl Groups 245

3.5. S ulfates 245

https://www.360docs.net/doc/2d2210643.html,parison of Solid and Aqueous Phases

248

5. Conformation 249

拉曼光谱的原理及应用.doc

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。(四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析 2、拉曼光谱与分子极化率的关系 分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积 诱导偶极矩与外电场的强度之比为分子的极化率 分子中两原子距离最大时,极化率也最大 拉曼散射强度与极化率成正比例 (六)应用激光光源的拉曼光谱法 应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有

拉曼光谱技术

拉曼光谱 OVERVIEW 1. Raman spectra give information on molecular vibrations and are obtained from changes in the frequency of light observed in a scattering experiment (inelastic scattering). 2. The physical picture arises from considering changes in polarizability (induced dipole moment) that arise if a vibration occurs during the time the electrons are oscillating in response to the applied radiation. 3. The gross selection rule is that the vibrational motion must produce a change in the polarizability of the molecule. 4. The anisotropy of the polarization of the scattering can be measured. Comparison of the spectra polarized perpendicular and parallel to the incident radiation gives information on the symmetry of the vibrational motions. 5. Raman spectra can be obtained in water. This is a major advantage over infrared spectra. 6. Resonance Raman spectra result when the wavelength of the exciting light falls within an electronic absorption band of a chromophore in the molecule. Some vibrations associated with such a chromophore may be enhanced by factors of 1000 or more. 7. The experimental parameters of a band in a spectrum are its position ( ) (which is independent of the frequency of the exciting light), its intensity (which is directly proportional to concentration), and its polarization. 8. The main biological applications of conventional Raman are very similar to those for infrared. Resonance Raman affords a means of probing selective sites in molecules. For example, in metalloproteins, Raman can give information on the nature of the ligand directly attached to the metal. 6.1 引言 拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。拉曼光谱的突出优点是可以很容易地测量含水的样品,而且拉曼散射光可以在紫外和可见光波段量测。由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。 拉曼光谱得名于印度物理学家拉曼(Raman)。1928年,拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。拉曼因此获得诺贝尔奖。

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

拉曼光谱技术综述

拉曼光谱技术综述 摘要:本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。 关键字:光谱分析、拉曼散射、激光、光子 1、拉曼光谱的发展简史 印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射,称之谓并合散射。然而到1940年,拉曼光谱的地位一落千丈。主要是因为拉曼效应太弱(约为入射光强的),人们难以观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落。1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率。成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rrin show公司相继推出,拉曼探针共焦激光拉曼光谱仪,由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,这样入射光的功率可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼光谱的应用范围更加广阔。 2、拉曼光谱简介:

拉曼光谱及其生物学应用

拉曼光谱及其生物学应用 朱加旺 20105450 一、拉曼光谱 1、拉曼光谱基本原理:拉曼散射属于光的散射,单色光子与分子发 生相互作用且发生非弹性碰撞时,二者之间有能量交换,此时, 光子不仅要改变运动方向,而且频率也会发生改变,这种散射称 为拉曼散射。在这种散射中,光子一部分能量转移到分子中,或 者分子的振动和转动能量传递给了光子,从而改变光子频率。 2、拉曼光谱的解释及研究意义 2.1 以经典理论解释拉曼散射时,认为分子以固有频率vi振动,极化率(见电极化率)也以vi为频率作周期性变化,在频率为v0的入射光作用下,v0与vi两种频率的耦合产生了v0、v0+vi和v0-vi3种频率。频率为v0的光即瑞利散射光,后两种频率对应拉曼散射谱线。拉曼散射的完善解释需用量子力学理论,不仅可解释散射光的频率差,还可解决强度和偏振等一类问题。 2.1.1特征拉曼频率:拉曼光谱中的振动频率是由原子团和化学键确定的,我们称之为特征拉曼频率。分子振动时,键长和键角要同时发生双变,当分子中的某个集团与分子中与其邻近的基团无耦合作用时,其振动的

频率和强度所反映的就是该基团独有的特征。由于分子是一个整体,其内部任何基团的振动都不可能完全独立的,手工同化学环境的影响,任意基团的振动频率都会发生微小的位移,这种频率位移的大小和方向就是基团化学环境变化的证据。因此,我们根据特征频率及其位移即可判定各种基团的存在与否及其化学环境的变化情况。特征拉曼频率在拉曼光谱分析中非常有用,现已总结出各类化学物的特征拉曼频率表,以供我们需要是比对和查找。 2.1.2共振拉曼散射:当一个化合物被入射光激发且及发现的频率处于该化合物的电子吸收谱带以内时,由于电子跃迁和分子振动的耦合,会使得某些拉曼普线的强度陡然增加,这个现象被称为共振拉曼散射。 2.1.3表面增强拉曼散射:当物质分子吸附在一些特定的金属表面时,分子的拉曼散射强度得到大大提升。表面增强拉曼散射有如下特点:SERS 具有很强的增强因子;SERS具有金属选择性,出现SERS现象的金属材料只有少数几种,分别是币族金属金,银,铜;碱性金属锂,钠,钾;部分过度金属铁,钴,镍;SERS要求金属表面有一定粗糙度,不同金属出现最大SERS效应的粗糙度不一样。关于SERS的增强机理目前提出了两大类理论模型:物理增强模型和化学增强模型。物理增强模型认为SERS 效应起源于金属表面局域电场的增强(又成为电磁增强)金属基底和被吸附分子之间的相互作用相对较弱。表面等离子模型,天线共振子模型和镜像场模型等均属于物理增强机制,但他们对于导致居于电磁场增强的原因的解释是不用的。化学增强模型认为,拉曼散射信号的增强是由于吸附在粗糙金属表面的物质分子极化率改变而引起的。主要的理论模

拉曼光谱的应用

拉曼光谱的应用 拉曼光谱技术由于信息丰富,制样简单,水干扰小等独特优点,在化学、材料、物理、高分子、生物、医药、地质等领域有广泛的应用。 1、拉曼光谱在化学研究中的应用 拉曼光谱在有机化学方面主要用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为分子异构体判断的依据。 在无机化合物中金属离子和配位体中的中心元素相结合的阴离子或中性分子,如含有孤对电子的卤素元素、氨,天然水体中主要的配位体有无机的和有机的两类,前者有CH-、CO 3 2-、 OH-、 SO 42-和PO 4 3-等,后者有腐殖质、氨基酸等。许多废水中也含有可与金属络合的配位体, 如含氰废水中,CN-能与金属形成很稳定的络合物配位体。利用不同的络合配位体可对水体中金属离子进行测定、分离以及研究其形态和物理、化学特性等。另外,许多无机化合物具有多种晶型结构,它们具有不同的拉曼活性,因此用拉曼光谱能测定和鉴别红外光谱无法完成的无机化合物的晶型结构。 在催化化学中,拉曼光谱能够提供催化剂本身以及表面上物种的结构信息,还可以对催化剂制备过程进行实时研究。同时,激光拉曼光谱是研究电极/溶液界面的结构和性能的重要方法,能够在分子水平上深入研究电化学界面结构、吸附和反应等基础问题并应用于电催化、腐蚀和电镀等领域。 2、拉曼光谱在高分子材料中的应用 拉曼光谱可提供聚合物材料结构方面的许多重要信息。如分子结构与组成、立体规整性、结晶与取向、分子相互作用以及表面和界面的结构等。从拉曼峰的宽度可以表征高分子材料的立体化学纯度,如无规立场试样或头-头,头-尾结构混杂的样品,拉曼峰是弱而宽,而高度有序样品具有强而尖锐的拉曼峰。研究内容包括: (1)化学结构和立构性判断:高分子中的C=C、C-C、S-S、C-S、N-N等骨架对拉曼光谱非常敏感,常用来研究高分子的化学组份和结构。 (2)组分定量分析:拉曼散射强度与高分子的浓度成线性关系,给高分子组分含量分析带来方便。 (3)晶相与无定形相的表征以及聚合物结晶过程和结晶度的监测。 (4)动力学过程研究:伴随高分子反应的动力学过程如聚合、裂解、水解和结晶等。相应的拉曼光谱某些特征谱带会有强度的改变。 (5)高分子取向研究:高分子链的各向异性必然带来对光散射的各向异性,测量分子的拉曼带退偏比可以得到分子构型或构象等方面的重要信息。 (6)聚合物共混物的相容性以及分子相互作用研究。 (7)复合材料应力松弛和应变过程的监测。 (8)聚合反应过程和聚合物固化过程监控。 3、拉曼光谱技术在材料科学研究中的应用 拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。包括: (1)薄膜结构材料拉曼研究:拉曼光谱已成化学气相沉积法制备薄膜的检测和鉴定手段。拉曼可以研究非晶硅结构以及硼化非晶硅、氢化非晶硅、金刚石、类金刚石等层状薄膜的结构。 (2)超晶格材料研究:可通过测量超晶格中的应变层的拉曼频移计算出应变层的应力,根据拉曼峰的对称性,知道晶格的完整性。

拉曼光谱培训教材

内容概要
拉曼光谱原理
拉曼光谱仪各部件功能
激光器 滤光片 物镜及共焦针孔 光栅和焦长 探测器CCD 常用附件及选择
? 2009 HORIBA, Ltd. All rights reserved.

拉曼光谱原理
? 2009 HORIBA, Ltd. All rights reserved.

什么是拉曼效应?
1928 年,印度科学家C.V Raman in首先在CCL4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。
Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science
? 2009 HORIBA, Ltd. All rights reserved.

弹性散射与非弹性散射
弹性散射: 频率不发生改变,如瑞利散射 非弹性散射: 频率发生改变,如拉曼散射
拉曼散射
λscatter≠ λlaser
λlaser
瑞利散射
λscatter= λlaser
拉曼散射
λscatter≠ λlaser
? 2009 HORIBA, Ltd. All rights reserved.

斯托克斯散射
反斯托克斯散射 反斯托克斯散射 斯托克斯散射 瑞利散射
能级示意图
虚态
瑞利散射 电子激发态 +激光线
hv0 hv0 hv0
h(v0-v) hv0
能量差
hv
h(v0+v) 电子基态
-x
0
x
Raman shift (cm-1)
? 2009 HORIBA, Ltd. All rights reserved.

拉曼光谱

拉曼光谱 1.1引言 拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。拉曼光谱的突出优点是可以很容易地测量含水的样品, 而且拉曼散射光可以在紫外和可见光波段量测。由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。 拉曼光谱得名于印度物理学家拉曼(R a m a n)。1928年, 拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。拉曼因此获得诺贝尔奖。 当一束入射光通过样品时,在各个方向上都发生散射。拉曼光谱仪收集和检测与入射光成直角的散射光。由于收集和检测的散射光强度非常低,因此拉曼光谱的应用和发展受到很大限制。六十年代激光开始广泛应用,拉曼光谱仪以激光作光源, 光的单色性和强度都大大提高,拉曼散射仪的信号强度因而大大提高,拉曼光谱技术得以迅速发展,应用领域遍及物理,材料,化学,生物等学科,并已成为光谱学的一个分支 拉曼光谱学。 2.1拉曼光谱原理 2.1.1光的散射 入射光通过样品后,除了被吸收的光之外,大部分沿入射方向穿过样品, 一小部分光则改变方向,发生散射。一部分散射光的波长与入射光波长相同, 这种散射称为瑞利散射(R a y l e i g h s c a t t e r i n g)。1899年,瑞利从实验中得出结论:晴天时天空呈兰色的原因是大气分子对阳光的散射。瑞利还证实:散射光的强度与波长的四次方成反比。这就是瑞利散射定律。由于组成白光的各种颜色的光中,兰光的波长最短,因而散射光强度最大。天空因而呈现兰色。 瑞利当时并没有考虑到散射光的频率变化。 他认为散射光与入射光的频率是相同的。所以后来把与入射光波长相同的散射称为瑞利散射,而把波长与入射光不同的散射称为拉曼散射。 2.1.2拉曼散射的产生 2.1.2.1机械力学的解释 光由光子组成,这是光的微粒性。光子与样品分子间的相互作用, 可以用光子与样品分子之间的碰撞来解释。 光照射样品时,光子和样品分子之间发生碰撞。如果碰撞时只是运动方向改变而未发生能量交换即发生了弹性碰撞,则光子的能量不变。由E=hν,能量不变频率也就不变。这就是瑞利散射产生的原因。如果光子和样品分子间发生非弹性碰撞, 即光子除改变运动方向外还有能量的改变,一部分能量碰撞时在光子和样品之间发生交换,光子的能量有所增减,则光的频率发生改变。 2.1.2.2从能级之间的跃迁来分析 光子和样品分子之间的作用也可以从能级之间的跃迁来分析。 样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要

拉曼光谱及其在现代技术中的应用

拉曼光谱及其在现代技术中的应用 1 拉曼光谱发展历史 印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω 的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是 属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射称之谓并合散射。 到40年代中期,红外技术的进步和商品化使拉曼光谱的应用一度衰落。1960年以后,红宝石激光器单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率,成为拉曼光谱的理想光源。70年代中期,激光拉曼探针的出现,给微区分析注入活力。80年代以后,拉曼探针共焦激光拉曼光谱仪由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,就只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率可以很低,灵敏度得到很大的提高,这使拉曼光谱的应用范围更加广阔。 2 拉曼光谱的原理 当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅发生散射改变方向,其频率仍与激发光源一致,这种散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。拉曼散射的产生原因是光子与分子之间发生了能量交换改变了光子的能量。 2.1 拉曼散射 拉曼散射的产生可以从光子和样品分子作用时光子发生能级跃迁来解释。 样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。样品分子在吸收了光子后,被激发到较高的不稳定的能态(虚态)。当样品分子激发到虚态后又回到低能级的振动激发态,此时激发光能量大于散射光能量,散射光频率小于入射光。这时在瑞利散射线较低频率侧就会出现一根拉曼散射线,这条线称为Stokes线。

Raman 拉曼光谱原理及应用

拉曼光谱学 ——原理及应用HORIBA Jobin Yvon北京办事处

报告内容 ?1-什么是拉曼光谱? –简单介绍 ?2-拉曼光谱仪工作原理介绍 ?3-拉曼光谱在材料研究中的应用介绍?4-HORIBA Jobin Yvon拉曼光谱仪简介

1928年,印度科学家C.V Raman in首先在CCL 4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。 时间 和发现人? Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science

λlaser λscatter >λlaser 瑞利散射λscatter = λlaser 拉曼散射 光散射的过程:激光入射到样品,产生散射光。 散射光弹性散射(频率不发生改变-瑞利散射) 非弹性散射(频率发生改变-拉曼散射)

2 0004 000 6 0008 00010 000I n t e n s i t y (c n t )400600Raman Shift (cm -1) 520不同材料的拉曼光 谱有各自的不同于其它材料的特征的光谱-特征谱 z 为表征和鉴别材料提 供了指纹谱 z 深入开展光谱学和材 料物性研究打下基础 1332 1580 20000 15000 10000 5000 100012001400160018002000 Wavenumber (cm-1)?组分信息?结构信息

激光拉曼光谱及其应用进展

山西大学学报(自然科学版)24(3):279~282,2001 Jour nal of Shanxi Univ ersity(Na t.Sci.Ed.) 文章编号:0253-2395(2001)03-0279-04 激光拉曼光谱及其应用进展 刘 玲 (西南师范大学化学化工学院,重庆400715) 摘 要:综述了近年来激光拉曼光谱的几种分析技术及其应用,涉及到的激光拉曼光谱有傅立叶变换拉曼光谱、表面增强拉曼光谱、激光共振拉曼光谱、高温激光拉曼光谱、激光拉曼显微及激光拉曼遥测技术等。 关键词:激光拉曼光谱;应用 中图分类号:O652 文献标识码:A 从1928年起,拉曼光谱的发现距今已有70余年。激光技术的兴起使拉曼光谱成为激光分析中最活跃的研究领域之一。激光拉曼和红外光谱相辅相成,成为进行分子振动和分子结构鉴定的有利工具,被应用于纳米材料[1,2]、水中代谢物[3]、药物及药物成形剂[4]、植物有效成分[5]的结构分析。但传统拉曼光谱仪信号弱,灵敏度低,应用范围受到限制。为了提高激光拉曼光谱的信号强度,人们进行了大量卓有成效的研究工作,提出了一些新的激光拉曼分析技术及方法,本文就近五年来各种拉曼光谱技术在分析化学中的应用作一评述。 1 傅立叶变换拉曼光谱技术 1987年,Per kin Elmer公司推出第一台近红外激发傅立叶变换拉曼光谱(N I R F T-R)商品仪,它采用傅立叶变换技术对信号进行收集,多次累加来提高信噪比,并用1064m m的近红外激光照射样品,大大减弱了荧光背景。从此,N IR F T-R在化学、生物学和生物医学样品的非破坏性结构分析方面显示出了巨大的生命力。1996年,周光明等[6]就傅立叶变换拉曼光谱在无机、有机化合物、生物材料、高聚物等方面应用作过详尽综述。近几年来,化学工作者们对FT-Ra ma n光谱仍在不断探索。王斌等[7]采用F T-Raman光谱仪对蛋白质样品进行多次扫描,曲线拟合原始光谱图,以子峰面积表征对应二级结构含量,从而对蛋白质二级结构进行定量分析。可以根据人体正常组织和病变组织的F T-Ra ma n光谱差异从分子水平鉴别和研究病变的起因[8,9]。孙素琴首次利用F T-Raman光谱直接、准确、快速、无损地测定了23种常用植物生药材,并根据每种药材的光谱特征进行分类[10]。F T-Rama n光谱技术还应用在测定家兔体液中的葡萄糖含量[11]、亚麻油的组分[12]、棉织物上的有机染料[13]、碳酸钙的固相分析[14]以及共聚物[15]、金属有机化合物[16]的结构研究等等。 2 表面增强拉曼光谱技术 自1974年Fleischmann等人发现吸附在粗糙化的Ag电极表现的吡啶分子具有巨大的拉曼散射现象,后被Duy ne等人证实其表现增强因子可达106,加之活性载体表面选择吸附分子对荧光发射的抑制,使激光拉曼光谱分析的信噪比大大提高,这种表面增强效应被称为表面增强拉曼散射(Surface-Enha nce Ra man Scatte ring,简称SERS)。迄今为止的研究主要集中在探讨表面增强的理论模型,寻找新的体系和实验方法以及进行表面增强拉曼光谱的应用研究。关于表面增强效应产生的机理现已提出十余种理论模型,但普遍适用的完善模型尚在不断探索之中。随着表面增强拉曼光谱分析的深入,新的表面活性载体和具有表面增强效应的物质不断涌现,除了早期的金属电极外,目前最普遍的活性载体为金属溶胶、金属沉积岛状膜等。为了提高SERS的灵敏度、稳定性和重现性,氧化银溶液、氯化银溶胶等新的活性基质,激光烧蚀、酸蚀、掺银、涂银等活性载体制备技术也在开发应用中。SERS技术是一种新的表面测试技术,可以在分子水平上研究材料分子的结构信息,如银纳米粒 收稿日期:2001-02-15 作者简介:刘 玲(1973-),女,安徽石台人,西南师范大学化学化工学院研究生。主攻方向:化学发光与低压离子色谱。

激光拉曼光谱技术

激光拉曼光谱技术 摘要:论文综述了激光拉曼光谱的发展历史,拉曼光谱原理,其中有自发拉曼散射,相干反射托克斯拉曼散射光谱和受 激拉曼散射。 关键词:激光拉曼光谱原理自发反斯托克斯受激 正文 1.拉曼光谱的发展历史 印度物理学家拉曼于1928年用水银灯照射苯液体,发 现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分 布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种 新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。拉曼因发现这一新的分子辐射和所取得的许多光散射研究 成果而获得了1930年诺贝尔物理奖。与此同时,前苏联兰 茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象, 即由光学声子引起的拉曼散射,称之谓并合散射。 法国罗卡特、卡本斯以及美国伍德证实了拉曼的观察 研究的结果。然而到1940年,拉曼光谱的地位一落千丈。 主要是因为拉曼效应太弱(约为入射光强的10-6),人们难以 观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上 的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技 术的进步和商品化更使拉曼光谱的应用一度衰落。1960年 以后,红宝石激光器的出现,使得拉曼散射的研究进入了一 个全新的时期。由于激光器的单色性好,方向性强,功率密 度高,用它作为激发光源,大大提高了激发效率。成为拉曼 光谱的理想光源。随探测技术的改进和对被测样品要求的 降低,目前在物理、化学、医药、工业等各个领域拉曼光谱

得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rr i ns how公司 相继推出,位曼探针共焦激光拉曼光谱仪,由于采用了凹陷 滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,因而不在需要采用双联单色器甚至三联单色器,而只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率 可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼 光谱的应用范围更加广阔。 2拉曼光谱的原理 2.1自发拉曼散射 泵浦光注入光纤后,其部分能量转为拉曼散射光,当 泵浦光的强度小于阈值时,这时光纤分子的热平衡没有被 破坏,这种拉曼散射叫自发拉曼散射。拉曼散射的产生原 因是光子与分子之间发生了能量交换改变了光子的能量。2.2拉曼散射的产生 光子和样品分子之间的作用可以从能级之间的跃迁来 分析。样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞 利散射。如果样品分子回到电子能级基态中的较高振动能 级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为St okes线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级 基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该 分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为

拉曼光谱技术及其广泛应用

拉曼光谱技术及其在广泛应用 摘要:本文简单介绍了拉曼光谱的原理,常用的拉曼光谱技术,拉曼光谱技术的特征、优越性以及近年来拉曼光谱分析技术在考古、医学、文物、宝石鉴定、林业和法庭科学等领域的最新进展。并对其未来的应用前景进行了展望。 引言:1928 年,印度科学家Raman 发现了拉曼散射效应,拉曼光谱最初用的光源是聚焦的日光,后来使用汞弧灯,由于它强度不太高和单色性差,限制了拉曼光谱的发展,直到使用激光作为激发光源的激光拉曼光谱仪问世以及傅立叶变换技术的出现,拉曼光谱检测灵敏度才大大增加,其应用范围也在不断地扩大。目前,拉曼光谱已广泛应用于考古、医学、文物、宝石鉴定、石油化工、林业和法庭科学等领域。 1 、拉曼光谱原理 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征

2 、常用的拉曼光谱技术常用的拉曼光谱技术主要有:显微共焦拉曼光谱技术、傅里叶变换拉曼光谱技术、共振增强拉曼光谱技术和表面增强拉曼光谱技术。 3、拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 4、拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1、由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合

拉曼光谱技术与应用

2010年9月第17卷第27期 研究进展 中国当代医药CHINA MODERN MEDICINE 拉曼光谱是一种散射光谱[1]。拉曼光谱常采用激光作为单色光源,当一束频率为ν0的单色光照射到试样上会出现透射、吸收、散射3种情况。散射光中的大部分频率与入射光相同(ν=ν0),而一小部分频率发生偏移(ν=ν0±νν)。这种频率发生偏移的光的光谱就是拉曼光谱。一般讨论的拉曼散射是指斯托克斯散射(ν=ν0+νν),光谱中常常出现一些尖锐的峰,是试样中某些特定分子的特征。 1拉曼光谱技术 1.1常规拉曼光谱技术 1.1.1傅里叶变换拉曼光谱技术傅立叶变换拉曼光谱技术 使用傅立叶变换的干涉仪型光谱仪。来自试样的拉曼散射光通过干涉仪进入探测器,获得一干涉图,随后进行傅里叶变换得到拉曼光谱。此技术针对荧光强、颜色深的样品更适用。这种技术克服了荧光干扰,具有测量波段宽、热效应小、光谱频率精度高及灵敏度高等优点,且具有多通路的特点,能同时测定所有频率[2]。乔惠君等[3]介绍傅立叶变换近红外拉曼光谱技术是现代激光光谱技术中的一种,对其基础理论进行评价、综述。邓学良等[4]利用傅立叶变换红外光谱法,直接、快速地测定了不同参片样品。 1.1.2显微拉曼光谱技术显微拉曼光谱技术通常是指装备有显微镜系统的拉曼光谱仪。采用了低功率激光器,高转换效率的全息CCD 技术,具有检测灵敏度高、时间短、所需样品量小、样品无需制备等优点。柯惟中等[5] 采用显微激光拉曼谱仪对各类司法文件作了无损检测。证明此技术用于检测、鉴定司法文件是切实可行的,鉴定的结果可以为法庭提供科学依据。 1.1.3光声拉曼技术光声拉曼光谱术是通过光声方法来直 接探测样品中因相干拉曼过程而存储的能量的一种非线性光谱技术。邹文栋[6]运用准平衡模型以及热弹理论,对固体样品中光声拉曼效应进行理论分析,导出了脉冲激光泵浦下光声拉曼信号的解析表达式,并总结分析了固体中光声拉曼效应的一些原理。 1.1.4高温高压原位拉曼光谱技术高温高压原位拉曼光谱技术能揭示试样的微观结构及其在高温高压下的物理化学反应,光谱既能得到反应物和产物的结构信息,还可获取反应中间体及其变化过程的信息。贾茹等[7]在一套高温高压原 位拉曼散射测量系统中描述了一套利用激光加热技术等成功搭建起来的高温高压原位拉曼散射、布里渊散射的光学测量系统。 1.2增强拉曼光谱技术 增强拉曼光谱技术能够克服散射信号强度弱、检测灵敏度低,低浓度试样分析难以得到检测,尤其在微量和痕量分析时发生困难的弱点。增强拉曼光谱术分为两种: 1.2.1表面增强拉曼光谱技术表面增强拉曼散射是指在金属胶粒和粗糙金属(如银、金、铜等)表面作用下,试样的拉曼散射强度会增加104~106倍。刘鹏等[8]采用表面增强拉曼光谱 技术以对样本检测快速、灵敏、无破坏性等众多优点,在分析生化样本成分方面有着非常重要而广泛的应用。秦维等[9]采用机械粗糙、电化学氧化还原、化学刻蚀等方法对纯钛电极表面进行粗糙,在钛基底上获得了表面增强拉曼光谱信号。陈伟炜等[10]测试分析了白术煎剂及其在银胶中的拉曼光谱,并对其进行初步谱峰归属。可能为白术煎剂或其他中药煎剂提供一种准确、直接、快速的检测方法。 1.2.2共振增强拉曼光谱技术当激发光波长与分子的电子 跃迁波长相等时将发生共振拉曼散射。拉曼散射强度比常规拉曼散射要高出约104~106倍,可用于低浓度和微量试样的检测,特别适用于生物大分子试样检测。姜永恒等[11]测量了 CCl 4和CS 2分子的Raman 光谱。用Bertran 理论和群论等相 关理论对其光谱强度进行了分析,获得了发生费米共振分子的拉曼光谱强度的特殊规律。董晓慧等[12]采用共振拉曼光谱技术和量子化学计算研究了苯甲酰苯胺在甲醇和乙腈溶液中的短时光化学动力学行为。结果表明,苯甲酰苯胺的非平面反式结构为最稳定结构。 2拉曼光谱的应用方向 分析拉曼光谱的目标是探测试样元素、成分、分子取向、结晶状态以及应力和应变状态等信息。这些信息隐含在拉曼光谱各拉曼峰的峰高、宽度、面积、位置(频移)和形状中。分析内容通常有3部分:确定拉曼中含有欲测信息的那部分光谱;将有用的拉曼信号从光谱的其他部分(噪声)中分离出来;确立将拉曼信号与试样信息间相联系的数学关系(或化学计量关系)。 拉曼光谱具有定性分析并对相似物质进行区分的功能。由于拉曼光谱的峰强度与相应分子的浓度成正比,拉曼光谱也能用于定量分析,故拉曼光谱的分析方向有两种: 拉曼光谱技术与应用 杨芳 (湖南省常德市药检所,湖南常德 415000) [摘要]本文介绍了拉曼光谱的理论,综述了人们采用常规及其增强两种拉曼光谱分析技术应用于定性和定量研究 方向的应用进展,同时对其应用前景做出了展望。 [关键词]拉曼光谱;傅里叶变换拉曼光谱技术;表面增强拉曼光谱技术[中图分类号]R318.51[文献标识码]A [文章编号]1674-4721(2010)09(c )-012-02 [作者简介]杨芳(1976-),女,民族:汉;毕业院校:成都中医药大学药学院;学历:大学本科;从事工作:药品检验;职称:主管药师。 12

相关文档
最新文档