初中数学专题行程问题

初中数学专题行程问题
初中数学专题行程问题

初中(行程问题)专题

行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是:

路程=速度×时间;速度=路程÷时间;时间=路程÷速度.

行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。

1. 单人单程:

例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。甲,乙两城市间的路程是多少?

【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】3100

80=-x x .

例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。求火车的速度和长度。

【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:

【等量关系式】火车min 1行驶的路程=桥长+火车长;

火车s 40行驶的路程=桥长-火车长 【列出方程组】???-

=+=y x y x 100040100060

举一反三:

1.小明家和学校相距km

15。小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min

/

m,再乘公共汽车到学校,发现比步行的时间缩短了

km/

40,求小明从家到学校用了多长时间。20,已知公共汽车的速度为h

min

2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km

1)

km/

260.求提速后的火车速度。(精确到h

3.徐州至上海的铁路里程为km

650,从徐州乘”C “字头列车A,”D”字头列车B都可直达上海,已知A车的速度为B车的2倍,且行驶的时间比B车少h5.2.求A车的速度及行驶时间。(同学们可能会认为这是双人行程问题,其实这题的类型可归结于例1的类型,把B车的速度看成是A提速后的速度,是不是也可看成单人单程的问题呀!)

4.一列匀速前进的火车用15秒的时间通过了一个长300米的隧道(即从车头进入隧道到车尾离开隧道)。又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,(光速s

?

=)

38

10

m/

1)求这列火车的长度

2)如果这列火车用25秒的时间通过了另一个隧道,求这个隧道的长

2.单人双程(等量关系式:来时的路程=回时的路程):

例1:某校组织学生乘汽车去自然保护区野营,先以h km /60的速度走平路,后又以h km /30的速度爬坡,共用了h 5.6;返回时汽车以h km /40的速度下坡,又以h km /50的速度走平路,共用了h 6.学校距自然保护区有多远。

【分析】如果设学校距自然保护区为x km ,由题目条件:去时用了h 5.6,则有些同学会认为总的速度为h km x /5

.6,然后用去时走平路的速度+去时爬坡的速度=总的速度,得出方程5

.63060x =+,这种解法是错误的,因为速度是不能相加的。不妨设平路的长度为x km ,坡路的长度为y km ,则去时走平路用了h x 60

,去时爬坡用了h y 30

,而去时总共用了h 5.6,这时,时间是可以相加的;回来时汽车下坡用了h y 40,回来时走平路用了50

x ,而回来时总共用了h 6.则学校到自然保护区的距离为km y x )(+。

【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间 回来时走平路用的时间+回来时爬坡用的时间=回来时用的

总时间 【列出方程组】640

505.63060=+=+y x y x 注:单人双程的行程问题抓住来时的路程=回时的路程、路程=速度×时间,再把单人单程的行程问题练练熟就ok 了,题型跟单人单程的题型差不多,把上面的例题弄懂,这里就不多做练习了。

3.双人行程:

(Ⅰ)单块应用:只单个应用同向而行或背向而行或相向而行或追击问题。

1)同时同地同向而行:A,B 两事物同时同地沿同一个方向行驶

例:甲车的速度为h km /60,乙车的速度为h km /80,两车同时同地出发,同向而行。经过多少时间两车相距km 280。

【分析】如果设经过x h 后两车相距km 280,则甲走的路程为xkm 60,乙走的路程为xkm 80,根据题意可画出如下示意图:

甲 280km

【等量关系式】甲车行驶的距离+280=乙车行驶的距离

【列出方程】x x 28028060=+

2)同时同地背向而行:A ,B 两事物同时同地沿相反方向行驶

例:甲车的速度为h km /60,乙车的速度为h km /80,两车同时同地出发,背向而行。经过多少时间两车相距km 280。

【分析】如果设经过x h 后两车相距km 280,则甲走的路程为xkm 60,乙走的路程为xkm 80,根据题意可画出如下示意图:

甲 乙

280 km

【等量关系式】甲车行驶的距离+乙车行驶的距离=280

【列出方程】2808060=+x x

3)同时相向而行(相遇问题):

例:甲,乙两人在相距km 10的A,B 两地相向而行,乙的速度是甲的速度的2倍,两人同时处发h 5.1后相遇,求甲,乙两人的速度。

【分析】如果设甲的速度为h xkm /,则乙的速度为h xkm /2,甲走过的路程为x 5.1km ,乙走过的路程为x 25.1?km ,根据题意可画出如下示意图:

甲 乙

280 km

【等量关系式】甲车行驶的距离+乙车行驶的距离=10

【列出方程】1025.15.1=?+x x

4)追及问题:

例:一对学生从学校步行去博物馆,他们以h km /5的速度行进min 24后,一名教师骑自行车以h km /15的速度按原路追赶学生队伍。这名教师从出发到途中与学生队伍会合共用了多少时间?

【分析】如果设这名教师从出发到途中与学生队伍会合共用了x h ,则教师走过的路程为x 15km ,学生走过的路程为教师出发前走过的路程加上教师出发

后走过的路程,而学生在教师出发前走过的路程为km 60

245?,学生在教师出发后走过的路程为x 5km ,又由于教师走过的路程等于学生走过的路程。根据题意可画出如下示意图:

学生 教师

师出发后走过的路程 【列出方程】x x 560

24515+?=

5)不同时同地同向而行(与追击问题相似):

例:甲,乙两人都从A 地出发到B 地,甲出发h 1后乙才从A 地出发,乙出发h 3后甲,乙两人同时到达B 地,已知乙的速度为h km /50,问,甲的速度为多少?

【分析】如果设甲的速度为x h km /,则乙出发前甲走过的路程为x km ,乙出发后甲走过的路程为x 3km ,甲走过的路程等于乙出发前甲走过的路程加上乙出发后甲走过的路程,而乙走过的路程为km 350?,甲走过的路程等于乙走过的路程。根据题意可画出如下示意图:

【等量关系式】乙走过的路程=乙出发前甲走过的路程加上乙出发后甲走过

的路程

【列出方程】x x 3350+=?

6)不同时相向而行

例:甲,乙两站相距km 448,一列慢车从甲站出发,速度为h km /60;一列快车从乙站出发,速度为h km /100。两车相向而行,慢车先出发min 32,快车开出后多少时间两车相遇?

【分析】如果设快车开出后x h 两车相遇,则慢车走过的路程为

60

326060?+x km ,快车走过的路程为100x km 。根据题意可画出如下示意图:

快车

448km

【等量关系式】总路程=快车出发前慢车走过的路程+快车出发后慢车走过

的路程+快车走过的路程

【列出方程】x x 1006060

3260448++?= 注:涉及此类问题的还有同时不同地同向而行、不同时不同地背向而行、不同时不同地同向而行、不同时不同地背向而行,与上面解法类似,只要画出示意图问题就会迎刃而解,就不再一一给出解答了,此类问题会在后面练习中给出习题。

(Ⅱ)结合应用:把同向而行、背向而行、相向而行、追击问题两两结合起来应用。

1) 相向而行+背向而行

例:A ,B 两地相距km 36,小明从A 地骑自行车到B 地,小丽从B 地骑自行车到A 地,两人同时出发相向而行,经过h 1后两人相遇;再过h 5.0,小明余下的路程是小丽余下的路程的2倍。小明和小丽骑车的速度各是多少?

【分析】如果设小明骑车的速度为x ,小丽骑车的速度为y ,相遇前小明走过的路程为x ,小丽走过的路程为y ;相遇后两人背向而行,小明走过的路程为x 5.0,小丽走过的路程为y 5.0。根据题意可画出如下示意图:

小明 小丽

相遇前

B

【等量关系式】相遇前小明走过的路程+相遇前小丽走过的路程=总路程 相遇后小明余下的路程=2×相遇后小丽余下的路程

【列出方程组】???-?=-=+)

5.0(25.036y x x y y x

2)同向而行+相向而行

例:一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,直到与其他队员会合。1号队员从离队开始到与其他队员重新会合,经过了多长时间?

【分析】由题意“1号队员以45千米/时的速度独自行进,行进10千米后

掉转车头”可知1号队员从离队到调转车头前的时间为h 45

10,不妨设1号队员从调转车头到与其他队员重新回合的时间为x h 。根据题意可画出如下示意图:

1

10km

【等量关系式】1号队员从离队到调转车头这段时间所有队员走的路程+1号队员从调转车头到与其他队员重新回合这段时间内所有队员走的路程+1号队员从调转车头到与其他队员重新回合这段时间内1号队员走的路程=10。

【列出方程】10453545

1035=++?x x 注:涉及此类问题的还有同向而行+相背而行、追及+同向而行、追及+相背而行、追及+相向而行,只要把它们分成单个类型,按照题意一步一步求解,这里就不一一举例了,此类问题会在后面练习中给出习题。

举一反三:

1.甲,乙两人从楼底爬楼梯到楼顶,甲平均每分钟爬楼梯40级,乙平均每分钟爬楼梯50级,甲先出发min 2,结果两人同时到达楼顶。问从楼底到楼顶共有楼梯多少级?

2甲,乙两人在相距m 100的两地相背而行,

min 30后甲,乙两人相距km 4,已知甲的速度为min /60m ,求乙的速度。

3.小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,(1如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬。

4.一队学生去校外进行军事野营训练。他们以h

5的速度行进,走了

km/

18的时候,学校要将一个紧急通知传给队长。通讯员从学校出发,骑自行车min

以h

14的速度按原路追上去,队长出发后经过多少时间接到通知?

km/

5.两辆汽车同时从A地出发,沿一条公路开往B地。甲车比乙车每小时多行8千米,甲车比乙车早40分钟到达途中的C地,当乙车到达C地时,甲车正好到达B地。已知C至B地的路程是40千米,求乙车每小时行多少km?

6.A,B两地相距km

450,甲,乙两车分别从A,B两地同时出发,相向而行。已知甲车速度为h

80,经过多少小时两车相距

km/

km/

120,乙车速度为h

50。

km

7.甲乙两车同时从A地出发,在相距900千米的AB两地间不断往返行驶。已知甲车的速度是每小时25千米,乙车的速度是每小时20千米。请问:

(1)甲车第一次从后面追上乙车是在出发后多长时间?

(2)甲车在第一次从后面追上乙车之后又经过多长时间第二次从后面追上乙车?

(3)甲乙两车第二次迎面相遇是在出发后多长时间?

4.行程问题中的工程问题:

乍一看,题目中就时间已知,速度、路程都未知,此类问题同学们做起来觉得无从下手。其实只要把路程看做单位“1”(至于为什么,结合以下例题讲解),这就相当于把行程问题转化为工程问题。

例:甲开汽车从A 地到B 地需要h 6,乙开汽车从A 地到B 地需要h 4,如果甲,乙两人分别从A ,B 两地出发,相向而行,经过多少小时后两车相遇。

【分析】题目中就时间已知,速度、路程都未知,有些同学想如果知道A 与B 的距离,就可以得出A 与B 的速度,那么问题就迎刃而解了,可是路程未知呀!是不是路程无论取什么值,都经过相同的时间两车相遇呢?为此,我们不妨设A 与B 的距离为a ,经过xh 后两车相遇。我们可以立马得出关系式:a x a x a =?+?46,可以把两边的a 消去,得到方程146=+x x ,立马得出512=x 。说明路程无论取什么值,都经过相同的时间两车相遇。遇到类似问题,我们往往把路程看做单位“1”。

举一反三:

1.甲从A 地到B 地需要h 3,乙从A 地到B 地需要h 4,甲,乙两人同时从A 地出发,甲先到达B 地后掉头向A 方向行驶,问,甲,乙两人从A 地同时出发到两人相遇需要多长时间?

2.甲开汽车从A 地到B 地需h 2,乙骑摩托车从B 地到A 地需h 3。如果乙骑摩托车从B 地出发往A 地,h 1后甲开汽车从A 地往B 地,那么甲出发多少时间与乙相遇?

5.环形跑道问题:

环形跑道问题也是形成问题的一种,环形跑道问题就是闭路线上的追击问题。在环形问题中,若两人所走同时同地出发,同向而行,当第一次相遇时,两人所走路程差为一周长;相向而行,第一次相遇时,两人所走路程和为一周长。

例1:运动场跑道周长m 400,小红跑步的速度是爷爷的3

5倍,他们从同一地点沿跑道的同一方向同时出发,min 5后小红第一次追上了爷爷。你知道他们的跑步速度吗?那是不是再过min 5两人第二次相遇呢?如果不是,请说明理由;如果是,用方程式表示。

【分析】不妨设爷爷的跑步速度为x min /m ,则小红的跑步速度为x 3

5min /m 【等量关系式】小红跑的路程—爷爷跑的路程=400m 【列出方程】40053

55=-?x x 注:再过min 5两人第二次相遇,用上面那个方程式就可以表示出来。

例2:甲,乙两车分别以均匀的速度在周长为m 600的圆形轨道上运动。甲车的速度较快,当两车反向运动时,每s 15相遇一次;当两车同向运动时,每min 1相遇一次,求两车的速度。

【分析】设甲,乙两车的速度分别为x s m /和y s m /。

【等量关系式】同向而行甲所走的路程-同向而行乙所走的路程=一周长 反向而行甲所走的路程+同向而行乙所走的路程=一周长

【列出方程组】?

??=+=-60060606001515y x y x

举一反三:

1.甲,乙两人在周长m 400长的环形跑道上竞走,已知乙的速度是min /80m ,

甲的速度是乙的1.25倍,乙在甲前m

100。问多少分钟后,甲可以追上乙?

2.甲,乙两人都以不变的速度在环形路上跑步,相向而行,每隔min

2相遇一次;同向而行,每隔min

6相遇一次。已知甲比乙跑得快,求甲,乙两人每分钟个跑几圈?

6.水流问题

一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它的特点主要是考虑水速在逆行和顺行中的不同作用。基本概念和公式有:船速:船在静水中航行的速度

水速:水流动的速度

顺水速度:船顺流航行的速度

逆水速度:船逆流航行的速度

顺速=船速+水速

逆速=船速-水速

船行速度=(顺水速度+ 逆流速度)÷2

流水速度=(顺流速度—逆流速度)÷2

路程=顺流速度× 顺流航行所需时间

路程=逆流速度×逆流航行所需时间

例1:某船在km 80的航道上航行,顺流航行需h 6.1,逆流航行需h 2。求船在静水中航行的速度和水流的速度。

【分析】设船在静水中航行的速度和水流的速度分别为x 和y ,顺流的速度为h km /6.180,逆流的速度为h km /2

80,再利用上面的公式。 【等量关系式】顺速=船速+水速

逆速=船速-水速 【列出方程】y x y x -=+=2

806.180

例2:甲,乙两艘货船,甲船在前30千米处逆水而行,乙船在后追赶。甲乙两人的静水速度分别是36千米/小时和42千米/小时,水流速度是4千米/小时,求甲船行多少时间被乙船追上?

【分析】已知甲乙两人的静水速度和水流速度,可以分别求出甲乙两人的逆水速度,分别为32千米/小时和38千米/小时。不妨设甲船行x 小时后被乙船追上,再根据公式路程=逆流速度×逆流航行所需时间,则甲行驶的路程为x 32千米,乙行驶的路程为x 38千米,这样就可以把此问题转化为追击问题。

【等量关系式】甲行驶的路程+30=乙行驶的路程

【列出方程】x x 383032=+

初中数学图像行程问题17题

1、甲、乙两人在同一直线噵路上同起点,同方向同进出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到达终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y (米)与出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点 ______________米。 2、如图,贝贝和欢欢同时从学校放学,两人以各自速度匀速步行回家,贝贝的家在学校的正西方向,欢欢的家在学校的正东方向,贝贝准备一回家就开始做作业,打开书包是发现错拿了欢欢的练习册,于是立即跑步去追欢欢,终于在途中追上了欢欢并交还了练习册,然后再以先前的速度步行回家,(贝贝在家中耽搁和交还练习册的时间忽略不计)结果贝贝比欢欢晚回到家.如图是两人之间的距离米与他们从学校出发的时间分钟的函数关系 图.则贝贝的家和欢欢的家相距___________米. 3、如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC和BD表示,当他们行走3小时后,他们之间的距离为_____千 米. 4、快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地后停留了45分钟,立即按原路以另一速度匀速返回,直至与慢车相遇.已知慢车的速度为60千米/

时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,则快 车从乙地返回时的速度为__________千米/时 5、甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x 秒,y与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发__ 秒. 6、从A地到B地需修一条公路,该工程由甲、乙两队共同完成,甲、乙两队分别从A 地、B地同时开始修路,设修路的时间为x(天),未修的路程为y(米),图中的折线表示甲乙两个工程队从开始施工到工程结束的过程中y与x之间的函数关系.已知在修路过程中,甲工程队因设备升级而停工5天,则设备升级后甲工程队每天修路比原来多米. 7、在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

初中数学最短距离问题

最短距离问题 1. 如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,求PQR △周长的最小值. 2. 如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A . B . C .3 D 3. 在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝ 4. 一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式; (2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点坐标. 第题 A B P R Q 图3 A D E P B C

5.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 6.如图,村庄A、B位于一条小河的两侧,若河岸a、b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近 作法:设a、b的距离为r。①把点B竖直向上平移r个单位得到点B'; ②连接AB',交a于C;③过C作CD b于D; ④连接AC、BD。 证明:∵BB'∥CD且BB'=CD,∴四边形BB'CD是平行四边形,∴CB'=BD ∴AC+CD+DB=AC+CB'+B'B=AB'+B'B 在a上任取一点C',作C'D',连接AC'、D'B,C'B' 同理可得AC'+C'D'+D'B=AC'+C'B'+B'B,而AC'+C'B'>A B',∴AC+CD+DB最短。7.如图,矩形ABCD中,AB=20,BC=10,若AC,AB是各有一个动点M,N,求BM+MN最小值. 8.如图2所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 .

初中数学问题解决地案例

最短距离问题 摘要:最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题。几何中的最短路线问题是中考热点之一,往往与两点之间线段最短、垂线段最短、轴对称、勾股定理息息相关。

案例问题: (1)如图:一辆汽车在直线公路AB上由A向B行驶,M、N 分别表示位于公路AB两侧的村庄,当汽车行驶到什么位置时,到村庄M、N的距离之和最短?理由是? (2)如图:一辆汽车在直线公路AB上由A向B行驶,若村庄M、N在公路AB的同侧,当汽车行驶到什么位置时,到村庄M、N的距离之和最短?请简单证明。

解决问题: 一 建立几何模型: 案例问题(2)可以转化为数学问题: 如图(1),在直线a 同侧有A,B两点,在直线a 上找一点M ,可使MA+MB 的值最小? 二 几何模型的解决 你可以在a 上找几个点试一试,能发现什么规律? 思路分析:如图2,问题就是要在a 上找一点M ,使AM 与BM 的和最小。设A ′是A 的对称点,本问题也就是要使A ′M 与BM 的和最小。在连接A ′B 的线中,线段A ′B 最短。因此,线段A ′B 与直线a 的交点C 的位置即为所求。 如图3,为了证明点C 的位置即为所求,我们不妨在直线a 上另外任取一点N ,连接AN 、BN 、A ′N 。 因为直线a 是A ,A ′的对称轴,点M,N 在a 上,所以AM= A ′M,AN= A ′N 。

∴AM+BM= A ′M+BM= A ′B 在△A ′BN 中, ∵A ′B <A ′N+BN ∴AM+BM <AN+BN 即AM+BM 最小。 三 几何模型应用: 两条直线间的对称 题目1 如图,在旷野上,一个人骑马从A 出发,他欲将马引到河a1饮水后再到a2饮水,然后返回A 地,问他应该怎样走才能使总路程最短。 点评:这道题学生拿到时往往无从下手。但只要把握轴对称的性质就能迎刃而解了。作法:过点A 作a1的对称点A ′,作a2的对称点A 〞,连接A ′A 〞交a1、a2于B 、C,连接BC.所经过路线如图5: A-B-C-A,所走的总路程为A ′A 〞。 A C 第1题图 第2题图

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变 式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线 段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街 道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的 点. 三、一点在两相交直线部 例:已知:如图A是锐角∠MON部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM, ON于点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周 长最小

七年级数学行程问题(整理)

行程问题无论怎么变化,都离不开“三个量,三个关系”: 这三个量是:路程(s)、速度(v)、时间(t) 三个关系: 简单行程:路程=速度×时间 相遇问题:路程和=速度和×时间 追击问题:路程差=速度差×时间 流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 甲、乙两人分别从相距100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。一只狗从 A 地出发,先以 6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。问在此过程中狗一共跑了多少米? 1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。 (1)两列火车同时开出,相向而行,多少小时相遇? (2)慢车先开1小时,相向而行,快车开几小时与慢车相遇? 2.甲、乙两人从同地出发前往某地。甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲? 3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。 (1)几秒后,甲在乙前面2米? (2)如果甲让乙先跑4米,几秒可追上乙?

4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。 a)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇? b)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇? c)甲、乙同时同地同向出发,经过多长时间二人首次相遇? d)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇? 5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码 头的之间的距离? 6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔 1 3 3 分钟相遇一次,,如果反向跑,则每隔40 秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度? 7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米?

初中数学行程问题专题

初中列方程解应用题(行程问题)专题 行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是: 路程=速度×时间;速度=路程÷时间;时间=路程÷速度. 行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。 1. 单人单程: 例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速 度从h km/80提高到h km/100,运行时间缩短了h 3。甲,乙两城市间的路程是多少? 【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的 运行时间为h x 80,提速后的运行时间为h x 100 . 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】3100 80x x . 例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。求火车的速度和长度。 【分析】如果设火车的速度为x s m/,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图: y 1000 60x 1000 y 40x 【等量关系式】火车min 1行驶的路程=桥长+火车长; 火车s 40行驶的路程=桥长-火车长 【列出方程组】y x y x 100040100060

2.单人双程(等量关系式:来时的路程=回时的路程): 例1:某校组织学生乘汽车去自然保护区野营,先以h km/60的速度走平路,后又以h km/30的速度爬坡,共用了h 5.6;返回时汽车以h km/40的速度下坡,又以h km/50的速度走平路,共用了h 6.学校距自然保护区有多远。 【分析】如果设学校距自然保护区为x km ,由题目条件:去时用了h 5.6,则 有些同学会认为总的速度为h km x /5 .6,然后用去时走平路的速度+去时爬坡的速度=总的速度,得出方程5 .63060x ,这种解法是错误的,因为速度是不能相加的。不妨设平路的长度为x km ,坡路的长度为y km ,则去时走平路用了h x 60 ,去时爬坡用了h y 30 ,而去时总共用了h 5.6,这时,时间是可以相加的;回来时汽车下坡用了h y 40,回来时走平路用了50 x ,而回来时总共用了h 6.则学校到自然保护区的距离为km y x )(。 【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间 回来时走平路用的时间+回来时爬坡用的时间=回来时用的 总时间 【列出方程组】6 40505.63060y x y x 3.双人行程: (Ⅰ)单块应用:只单个应用同向而行或背向而行或相向而行或追击问题。 1)同时同地同向而行:A,B 两事物同时同地沿同一个方向行驶 例:甲车的速度为h km/60,乙车的速度为h km/80,两车同时同地出发,同向而行。经过多少时间两车相距km 280。 【分析】如果设经过x h 后两车相距km 280,则甲走的路程为xkm 60,乙走的路程为xkm 80,根据题意可画出如下示意图: 80x km 乙 甲60x km 280km 【等量关系式】甲车行驶的距离+280=乙车行驶的距离 【列出方程】x x 28028060

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A ,B 在直线L 的两侧,在L 上求一点P ,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、 两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短. 解:只有A 、C 、B 在一直线上时,才能使AC +BC 最小.作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点. 三、一点在两相交直线内部 例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小. 解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求 分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 A· B M N E

(完整版)初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中, 关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题” 。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题” ,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短. 解:只有A、C 、B在一直线上时,才能使AC +BC最小.作点A 关于 直线“街道”的对称点A′,然后连接A ′B,交“街道”于点C,则 点C 就是所求的点. 、一点在两相交直线内部 例:已知:如图A 是锐角∠ MON 内部任意一点,在∠ MON 的两边 OM ,ON 上各取一点B,C ,组成三角形,使三角形周长最小.

解:分别作点A 关于OM ,ON 的对称点A ′,A OM ,ON 于点B、点C ,则点B、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长 最小 例:如图,A.B 两地在一条河的两岸,现要在河 上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E, 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵ AC+CE >AE, ∴AC+CE+MN >AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B 两地,问该站建在 连接A ′,A ″,分 别交 B

最新北师大初一数学(上册)行程问题

行程问题 (行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点) ★要掌握行程中的基本关系:路程=速度×时间。 ★相遇问题(相向而行):甲走的路程+乙走的路程=全路程 ★追及问题(同向而行): ①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙 相距的路程(甲追乙,甲的速度比乙大,甲追上乙。) ②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程 (乙先走,甲后走,甲的速度比乙大,甲追上乙。) ★环形跑道上的相遇和追及问题: 同地反向而行的等量关系是两人所走的路程和=一圈的路程; 同地同向而行的等量关系是两人所走的路程差=一圈的路程。 ★船(飞机)航行问题: 顺水(风)速度=静水(无风)中速度+水(风)流速度; 逆水(风)速度=静水(无风)中速度-水(风)流速度。 ★车上(离)桥问题:

①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。 ②车离桥指车头离开桥到车尾离开桥的一段路程,所走的路程为一个车长 ③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长 ④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长 相遇追击问题 一、相遇问题:若甲乙分别从两地同时出发相向而行,则相遇时甲乙路程之和等于两地的距离。 二、追及问题:若甲乙分别从两地同时出发同向而行,则甲追上乙时甲乙路程之差等于两地的距离。 1.小亮、小科从学校到县城去,小亮每小时走4km ,小科每小时走6km ,小亮先出发1h ,结果小科还比小亮早到1h ,若设学校与县城间的距离为s ,则以下方程正确的是( ) A.1614-=+s s B.164-=S S C.16 14+=-S S D.1614+=-s s 2、甲乙两地相距460千米.A 、B 两车分别从甲、乙两地开出,A 车每小时行驶60千米,B 车每小时行驶48千米. (l )两车同时开出,相向而行,出发后多少小时两车相遇? (2)两车相向而行,A 车提前半小时出发;B 车开出后多少小时两车相遇?相遇地点距离甲地多远? (3)两车同向同时开出,B 车在前,出发后多少小时A 车追上B 车? (4)两车背向而行,同时出发,行驶多少小时两车相距960千米?

初中数学专题行程问题--最新版

初中数学知识点精选汇总 ----------(行程问题)专题 行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是: 路程=速度×时间;速度=路程÷时间;时间=路程÷速度. 行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。 1. 单人单程: 例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。甲,乙两城市间的路程是多少? 【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】3100 80=-x x . 例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。求火车的速度和长度。 【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图: 【等量关系式】火车min 1行驶的路程=桥长+火车长; 火车s 40行驶的路程=桥长-火车长

【列出方程组】???-=+=y x y x 100040100060 举一反三: 1.小明家和学校相距km 15。小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。 2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260.求提速后的火车速度。(精确到h km /1)

初中数学专题行程问题

初中(行程问题)专题 行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是: 路程=速度×时间;速度=路程÷时间;时间=路程÷速度. 行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。 1. 单人单程: 例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。甲,乙两城市间的路程是多少? 【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】3100 80=-x x . 例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。求火车的速度和长度。 【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图: ??-=y x 100040 举一反三: 1.小明家和学校相距km 15。小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。 2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260.求提速后的火车速度。(精确到h km /1) 3.徐州至上海的铁路里程为km 650,从徐州乘”C “字头列车A ,”D ”字头列

初中数学《最短距离问题》教学设计

初中数学《最短距离问题》教学设计 课题分析 (1)最短距离问题是初中数学的重要内容之一,也是中考命题的重点之一。学生已有两点之间线段最短的基本知识,故本课应对从直观认识的基础上,着重在不同背景的实际问题中应用,从而渗透化归的数学思想方法。 (2)通过本节的学习,类比、构造、化归转化等数学思想方法的渗透,使学生体会到数学中的美学意义,不断提高学习数学的兴趣,树立学好数学的信心。本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。 学情分析 (1)知识基础:学生了解两点之间线段最短等基本知识点,但此后的学习很少涉及此内容,所以学生对此内容的应用较为陌生,所以学生通过本课的学习,须掌握能在不同背景的实际问题中应用。 (2)能力基础:学生的作图能力还是读图能力,添加适当的辅助线、创造适合的条件去在不同背景的实际问题中应用的能力比较薄弱的,这些能力都必须得到加强。 (3)心理基础:因为陌生而害怕,学生在这部分的学习上存在心理的障碍,这不利于学习,故要在题目的设置上让学生更容易得到成就感,才会让学生敢于动手,达到学好的信心,要充分调动学生的积极性。 教学目标 知识目标:掌握两点之间线段最短问题,能在不同背景的实际问题中应用。 技能目标:学习过平移、轴对称、旋转三种图形变换,利用图形变换能解决一些最短距离问题。 情感目标:引导学生对图形观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.体会数学的对称美,体验化归的思想方法,培养合作精神。 重点难点 重点:1.掌握两点之间线段最短问题,能在不同背景的实际问题中应用 2.利用图形变换能解决一些最短距离问题

中考数学求最短距离总结含答案

一、填空题(共6小题) 1、边长为2的正方形的顶点A 到其内切圆周上的最远距离是 _________ ,最短距离是 _________ . 2、已知点P 到⊙O 上的点的最短距离为3cm ,最长距离为5cm ,则⊙O 的半径为 _________ cm . 3、(2011?广安)如图所示,若⊙O 的半径为13cm ,点P 是弦AB 上一动点,且到圆心的最短距 离为5cm ,则弦AB 的长为 _________ . 4、如图,圆锥的底面半径为OB=3,母线SB=9,D 为SB 上一点,且SD=,则点A 沿圆锥表 面到D 点的最短距离为 _________ . 5、如图,P 为半圆直径AB 上一动点,C 为半圆中点,D 为弧AC 的三等分点,若AB=2,则PC+PD 的最短距离为 _________ . 6、如图,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC 和BD ,且AC=BD ,若点A 到河岸CD 的中点的距离为500米,则牧童从A 处把牛牵到河边饮水再回家,最短距离是 _________ 米. 二、解答题(共4小题) 7、正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为多少? 8、己知圆锥的底面半径是4cm ,母线长为12cm ,C 为母线PB 的中点,求从A 到C 在圆锥的侧面上的最短距离. 2012年 初中数学求最短距离

9、已知如图,圆锥的底面半径为3cm,母线长为9cm,C是母线PB中点且在圆锥的侧面上,求从A到C的最短距离为多少厘米? 10、如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短.求:最短距离EP+BP. 三、选择题(共4小题) 11、如图,在底面周长为12,高为8的圆柱体上有A、B两点,则A、B两点的最短距离为() A、4 B、8 C、10 D、5 12、(2003?贵阳)如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC 的中点S的最短距离为() A、B、 C、D、 13、如图,已知圆锥的母线长OA=6,底面圆的半径为2,一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A 处.则小虫所走的最短距离为()

(完整)初中数学行程问题应用题

1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离 中点32千米处相遇,求东西两地的距离是多少千米? 2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米? 3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度? 4、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇? 5、快车与慢车同时从甲、乙两地相对开出,经过12小时相遇。相遇后快车又行了8小时到达乙地。慢车还要行多少小时到达甲地? 6、两地相距380千米。有两辆汽车从两地同时相向开出。原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米? 7、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?

8、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇? 9、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇? 10、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。小勇继续以每小时10千米的速度前进,用2.5小时跑完余下的路程,求小刚的速度? 11、甲、乙两人在相距90千米的直路上来回跑步,甲的速度是每秒钟跑3米,乙的速度是每秒钟跑2米。如果他们同时分别在直路两端出发,当他们跑了10分钟,那么在这段时间内共相遇了多少次? 12、男、女两名运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。两人同时从A点出发,在A、B之间不停地往返奔跑。如果男运动员上坡速度是每秒3米,下坡速度每秒5米;女运动员上坡速度每秒2米,下坡速度每秒3米,那么两人第二次迎面相遇的地点离A点多少米? 13、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。问再过多少秒后,甲、乙两人相遇?

初二数学专题练习最短距离问题

初二数学专题练习最短距离问题 1.如图3-10,在l上求作一点M,使得AM+BM最小. 2.A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示) 3.如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求作点M、N,使PM+MN+NQ最短. 4.如图,在正方形ABCD中,点E为AB上一定点, 且BE=10,CE=14,P为BD上一动点,求PE+PC最小值 5.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D,M、N分别是AD和AB上的动点,求BM+MN的最小值是. 6.如图所示,正方形ABCD的面积为12,△ABC是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为() A.3.26 C.3 D6 7.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为 8.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂, (1)不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.

(2)另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由. 9.(1)如图1示,∠AOB内有两点M,N,请你确定一点P,使点P到M,N的距离相等,且到OA,OB边的距离也相等,在图上标出它的位置. (2)某班举行文艺晚会,桌子摆成两直线(如图2中的AO,BO),AO桌面上摆满桔子,BO桌面上摆满糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮他设计一条行走路线,使其所走的路程最短. 10.如图,厂A和工厂B被一条河隔开,它们到河的距离都是2km,两个厂的水平距离都是3km,河宽1km,现在要架一座垂直于河岸的桥,使工厂A到工厂B的距离最短.(河的两岸是平行的) ①请画出架桥的位置.(不写画法) ②求从工厂A经过桥到工厂B的最短路程. 11.一次函数y kx b =+的图象与x、y轴分别交于点A(2,0),B(0,4). (1)求该函数的解析式; (2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.12.如图,在直角坐标系中有四个点A(-6,3),B(-2,5),C(0,m),D?(n,0),当四边形ABCD周长最短时,则m=________,n=________. 13.蚂蚁搬家都选择最短路线行走,有一只蚂蚁

人教版八年级数学讲义最短路径问题(含解析)(2020年最新)

第6讲最短路径问题 知识定位 讲解用时:5分钟 A、适用范围:人教版初二,基础较好; B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径 问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。 知识梳理 讲解用时:20分钟 两点之间线段最短 C D A B E A地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢? 选A-B,因为两点之间,直线最短 垂线段最短 如图,点P是直线L外一点,点P与直线上各 点的所有连线中,哪条最短? PC最短,因为垂线段最短

两点在一条直线异侧 A P L B 如图,已知A点、B点在直线L异侧,在L上选一点P,使PA+PB最短. 连接AB交直线L于点P,则PA+PB 最短. 依据:两点之间:线段最短 两点在一条直线同侧 相传,古希腊亚历山大里亚城里有一位 久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不 得其解的问题: 从图中的A地出发,到一条笔直的河边 l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短? 作法: 1、作B点关于直线L的对称点B’; 2、连接AB’交直线L于点C; 3、点C即为所求. 证明:在直线L上任意选一点C’(点C’不与C重合),连接AC’、BC’、B’C’. 在△AB’C’中, AC’+B’C’>AB’ ∴AC’+BC’>AC+BC 所以AC+BC最短.

课堂精讲精练 【例题1】 已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是() A.B. C.D. 【答案】D 【解析】根据作图的方法即可得到结论. 解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB的值最小, ∴D的作法正确, 故选:D. 讲解用时:3分钟 解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键. 教学建议:学会处理两点在直线同侧的最短距离问题. 难度: 3 适应场景:当堂例题例题来源:无年份:2018 【练习1.1】 如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需

2013中考数学求最短距离大全含答案

2013求最短距离问题大全 一、填空题(共6小题) 1、边长为2的正方形的顶点A到其内切圆周上的最远距离是_________,最短距离是_________. 2、已知点P到⊙O上的点的最短距离为3cm,最长距离为5cm,则⊙O的半径为_________cm. 3、(2011?广安)如图所示,若⊙O 的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离 为5cm,则弦AB的长为_________. 4、如图,圆锥的底面半径为OB=3,母线SB=9,D为SB上一点,且SD=,则点A沿圆锥表 面到D点的最短距离为_________. 5、如图,P为半圆直径AB上一动点,C为半圆中点,D为弧AC的三等分点,若AB=2,则PC+PD的最短距离为_________. 6、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是_________米. 二、解答题(共4小题) 7、正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为多少? 8、己知圆锥的底面半径是4cm,母线长为12cm,C为母线PB的中点,求从A到C在圆锥的侧面上的最短距离. 9、已知如图,圆锥的底面半径为3cm,母线长为9cm,C是母线PB中点且在圆锥的侧面上,求从A到C的最短距离为多少厘米?

10、如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短.求:最短距离EP+BP. 三、选择题(共4小题) 11、如图,在底面周长为12,高为8的圆柱体上有A、B两点,则A、B两点的最短距离为() A、4 B、8 C、10 D、5 12、(2003?贵阳)如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC 的中点S的最短距离为() A、B、 C、D、 13、如图,已知圆锥的母线长OA=6,底面圆的半径为2,一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A 处.则小虫所走的最短距离为() A、12 B、4π C、D、 14、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()

中考数学专题:最短距离问题

最短距离问题分析 洪湖市峰口镇二中 刘万兵 最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。利用一次函数和二次函数的性质求最值。 一、“最值”问题大都归于两类基本模型: Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定 某范围内函数的最大或最小值 Ⅱ、归于几何模型,这类模型又分为两种情况: (1)归于“两点之间的连线中,线段最短”。凡属于求“变动的两线段之和的最 小值”时,大都应用这一模型。 (2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大 值”时,大都应用这一模型。 几何模型: 条件:如图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于点P , 则PA PB A B '+=的值最小(不必证明). 模型应用: (1)如图1,正方形ABCD 的边长为2,E 为AB 的中点, P 是AC 上一动点.连结BD ,由正方形对称性可知, B 与D 关于直线A C 对称.连结E D 交AC 于P ,则 PB PE +的最小值是___________; (2)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上, OA OB ⊥,60AOC ∠=°,P 是OB 上一动点, 求PA PC +的最小值; 解:(1)PB PE +的最小值是5DE = (2)PA PC +的最小值是23 【典型例题分析】 1.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A .23 B .26 C .3 D .6 A D E P A B A ' P l A B B 图1 A B C 图2 P

相关文档
最新文档