动态神经网络综述

动态神经网络综述
动态神经网络综述

动态神经网络综述

摘要

动态神经网络(DNN)由于具有很强的学习能力和逼近任意非线性函数的特点而被广泛应用。本文系统介绍了该网络的几种常见模型,并在此基础之上介绍它的基本学习算法、功能、应用领域、实际推广。

关键词:动态神经网络,模型,功能,算法,应用

Abstract

Dynamic Neural Network (DNN) has been widely applied by means of the strong ability of learning and the characteristic of approximating any nonlinear function. The paper mainly introduces several models of common dynamic neural network, and dynamic neural network's function, basic algorithm, application and promotion.

Keywords: DNN, Models , Function , Algorithm , Application

1、绪论

人工神经网络(Artificial Neural Networks,简写为ANNs)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达[1]。

神经网络按是否含有延迟或反馈环节,以及与时间是否相关分为静态神经网络和动态神经网络,其中含有延迟或反馈环节,与时间直接有关的神经网络称为动态神经网络[2]。动态神经网络具有很强的学习能力和逼近任意非线性函数的特点,自20世纪80年代末以来,将动态神经网络作为一种新的方法引入复杂非线性系统建模中引起了工程控制领域许多学者的关注[3]。动态神经网络现在已经广泛地用于模式识别、语音识别、图象处理、信号处理、系统控制、AUV自适应航向和机器人控制、故障检测、变形预报、最优化决策及求解非线性代数问题等方面。

本文第二章主要介绍了动态神经网络的分类,基本模型和算法;第三章主要介绍了动态神经网络的应用;第四章简要介绍了神经网络的改进方法。

2、DNN网络的基本模型和算法

根据结构特点,可以将动态神经网络分为3类:全反馈网络结构,部分反馈网络结构以及无反馈的网络结构。

反馈网络(Recurrent Network),又称自联想记忆网络,如下图所示:

图2-1 反馈网络模型

反馈网络的目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。

反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:

第一、网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态;

第二、系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。

反馈网络根据信号的时间域的性质的分类为

如果激活函数f(·)是一个二值型的阶跃函数,则称此网络为离散型反馈网络,主要用于联想记忆;

如果f(·)为一个连续单调上升的有界函数,这类网络被称为连续型反馈网络,主要用于优化计算。

2.1、Hopfield神经网络

1982年,美国加州工学院J.Hopfield提出了可用作联想存储器和优化计算的反馈网络,这个网络称为Hopfield神经网络(HNN)模型,也称Hopfield模型.Hopfield网络是全反馈网络的突出代表,如图2-2所示,是一种单层对称全反馈的结构。Hopfield神经网络的结构特点是:每一个神经元的输出信号通过其它神经元后,反馈到自己的输入端。Hopfield网络具有从初始状态朝着能量减小的方向变化,最终收敛到稳定状态的能力,因此Hopfield网络可以实现优化计算,联想记忆等功能[4]。

图2-2 Hopfiled网络结构图

Hopfield 神经网络是一种互连型神经网络,其演变过程是一个非线性动力学系统,可以用一组非线性差分议程描述(离散型)或微分方程(连续型)来描述。系统的稳定性可用所谓的“能量函数”进行分析。在满足条件的情况下,某种“能量函数”的能量在网络运行过程中不断地减少,最后趋于稳定的平衡状态。对于一个非线性动力学系统,系统的状态从某一初值出发经过演变后可能有如下几种结果:渐进稳定点(吸引子)、极限环、混沌、状态发散[5]。

f?是一个二值型的硬函数,则称此网在Hopfield网络中,如果其传输函数()

f?是一个连续单调上升的有界函数,络为离散型Hopfield网络;如果传输函数()

则称此网络为连续型Hopfield网络。

2.1.1、离散Hopfield神经网络

Hopfield最早提出的网络是神经元的输出为0-1二值的NN,所以,也称离散的HNN (简称为DHNN)。

在DHNN网络中,神经元所输出的离散值1和0分别表示神经元处于兴奋和抑制状态。各神经元通过赋有权重的连接来互联。

2.1.1.1、 网络结构

以三个神经元组成的DHNN 来说一下,其结构如下:

1 3 2

图2-2 三个神经元组成的HNN

在图中,第0层仅仅是作为网络的输入,它不是实际神经元,所以无计算功能;

而第一层是实际神经元,故而执行对输入信息和权系数乘积求累加和,并由非线

性函数f 处理后产生输出信息。

f 是一个简单的阈值函数,如果神经元的输入信息的综合大于阈值θ,那么,

神经元的输出就取值为1;小于阈值θ,则神经元的输出就取值为0。

对于二值神经元,它的计算公式如下

j n 1i i j i,j x y w

u +=∑=

其中x j 为外部输入,并且有

y j =1,当u j ≥θj 时

y j =0,当u j <θj 时

对于DHNN,其网络状态是输出神经元信息的集合。

对于一个输出层是n 个神经元的网络,则其t 时刻的状态为一个n 维向量:

y (t)=[y 1(t),y 2(t),...,y n (t)]τ

因为y i (t)可以取值为1或0,故n 维向量y (t),即网络状态,有2n 种状态.

对于一个由n 个神经元组成的DHNN,则有n ?n 权系数矩阵

w ={w ij |i=1,2,...,n; j=1,2,...,n},同时,有n 维阈值向量θ=[θ1,θ2,...,θn ]τ。

一般而言,w 和θ可以确定一个唯一的DHNN.

当w i,j 在i=j 时等于0,则说明一个神经元的输出并不会反馈到它自己的输

入。这时,DHNN 称为无自反馈网络.

当w i,j 在i=j 时不等于0,则说明—个神经元的输出会反馈到它自己的输入。

这时,DHNN 称为有自反馈的网络.

2.1.1.2、 工作方式

DHNN 有二种不同的工作方式:串行(异步)方式和并行(同步)方式.

1、串行(异步)方式

在时刻t 时,只有某一个神经元j 的状态产生变化,而其它n-1个神经元的状

态不变这时称串行工作方式。并且有:

?????≠=+=??????-+=+∑=i j (t)y 1)(t y i j x (t)y w f 1)(t y j j

j j n 1r r j r,j θ

在不考虑外部输入时,则有 ??????-=+∑=j n 1r r j r,j (t)y w f 1)(t y θ

2、并行(同步)方式

在任一时刻t,所有的神经元的状态都产生了变化,则称并行工作方式。并且

n 1,2,...,j x (t)y w f 1)(t y j j n 1i i j i,j =??

????-+=+∑=θ

在不考虑外部输入时,则有 ??

????-=+∑=j n 1i i j i,j (t)y w f 1)(t y θ

2.1.1.3、 学习算法

Hopfield 网络按动力学方式运行,其工作过程为状态的演化过程,即从初始

状态按“能量”减小的方向进行演化,直到达到稳定状态,稳定状态即为网络的

输出状态。

下面以串行方式为例说明Hopfield 网络的运行步骤:

第一步 对网络进行初始化;

第二步 从网络中随机选取一个神经元i ;

第三步 求出神经元i 的输入

()i u t : 1()()n

i i j j i

j j i u t w v t b =≠=+∑ 第四步 求出神经元i 的输出

(1)i v t +,此时网络中的其他神经元的输出保持不变;

说明:

(1)(())i i v t f u t +=,f 为激励函数,可取阶跃函数或符号函数。如取符号函数,则

Hopfield 网络的神经元输出(1)i v t +取离散值1或-1,即:

111,()0

(1)1,()0n

ij j i j j i i n ij j i j j i w v t b v t w v t b =≠=≠?+≥???+=??-+

∑∑ 第五步 判断网络是否达到稳定状态,若达到稳定状态或满足给定条件,则

结束;否则转至第二步继续运行。

这里网络的稳定状态定义为:若网络从某一时刻以后,状态不再发生变化。

即:()(),0v t t v t t +?=?>。

2.1.2、连续Hopfield 神经网络

连续Hopfield 网络(简称CHNN)的拓扑结构和DHNN 的结构相似. 这种拓扑

结构和生物的神经系统中大量存在的神经反馈回路是相一致的。在CHNN 中,和

DHNN 一样,其稳定条件也要求W ij =W ji 。CHNN 和DHNN 不同的地方在于其函数g 不

是阶跃函数,而是S 形的连续函数.一般取g(u)=1/(1+e -u )

CHNN 在时间上是连续的.所以,网络中各神经元是处于同步方式工作的。

2.1.2.1 网络结构

考虑对于一个神经细胞,即神经元i,其内部膜电位状态用u j 表示,生物神经

元的动态(微分系统)由运算放大器来模拟,其中微分电路中细胞膜输入电容为C i ,

细胞膜的传递电阻为R i ,输出电压为V i ,外部输入电流用I i 表示,神经元的状态满

足如下动力学方程.

?????==++-=∑=n

i t U g t V I t V W R t U t t U C i i i i n j j ji i i i i ,...,2,1))(()()()(d )(d 1

模仿生物神经元及其网络的主要特性,连续型Hopfield 网络利用模拟电路构

造了反馈人工神经网络的电路模型,图2-4为其网络结构:

电路中

微分系统的暂态过程的时间常数通过电容C i ,和电阻R i 并联实现,

跨导T ij 模拟神经元之间互连的突触特性

运算放大器模拟神经元的非线性特性

Hopfield 用模拟电路设计了一个CHNN 的电路模型,如图2-3所示:

图2-3

图2-4

2.1.2.2基本算法

取参数

得:

()i i i u f v = N i ?????????=4321

过程:先设定初态( i u ),运行至稳定,得到稳定状态。

()'111n i i i j j i i

ij i i i i du I u V dt R C R C C V f u =?=-++???=?∑'1111N j i i ij R R R =??=+ ? ???∑1

n i i ij j i j du u w v dt θτ==-++∑

对应输出:

由于Hopfleld 网络是全反馈网络,因此当网络中神经元节点数目比较多时,网络的结构就过于复杂,并且Hopfleld 网络中没有隐含层,使得网络的非线性性能比较差,因此在一定程度上限制了它的应用。

2.2、Elman 神经网络

Elman 网络是部分反馈网络的突出代表。Elman 网络是 Jeffrey L. Elman 于 1990年首先针对语音处理问题而提出来的, Elman 神经网络是一种动态的反馈网络,它除了具有输入层、隐层、输出层单元外,还有一个特殊的联系单元(关于该网络的更详细内容可参考文献[6])。联系单元是用来记忆隐层单元以前时刻的输出值,可认为是一时延算子,它使该网络具有动态记忆的功能。

2.2.1、网络结构

Elman 网络结构如图2-5 所示[7]。

图2-5 Elman 网络结构示意图

Elman 网络由4层组成:

输入层 信号传输作用

隐含层

承接层 也称上下文单元或状态层,承接层从隐含层接收反馈信号,用来记忆隐 含层神经元前一时刻的输出值,承接层神经元的输出经延迟与存储,再输入到隐

011tan 2i i u v u ??=+????

含层。这样就使其对历史数据具有敏感性,增加了网络自身处理动态信息的能力。输出层仅起线性加权作用。

2.2.2、数学模型

其中连接权为联系单元与隐层单元的连接权矩阵,为输入单元与隐层单元的连接权矩阵,为隐层单元与输出单元的连接权矩阵,和分别表示联系单元 1 和隐层单元的输出,表示输出单元的输出,

为自连接反馈增益因子。多取为 sigmoid 函数,

2.2.3学习算法

设第 k 步系统的实际输出为,则 Elman 网络的目标函数即误差函数可表示为:

根据梯度下降法,分别计算 E(k)对权值的偏导数并使其为 0,可得到 Elman 网络的学习算法:

2.3、无反馈神经网络

时延神经网络是一种典型的无反馈网络,这种网络模型是在多层前向神经网络模型的基础上引入时间延迟器得到的,该网络自隐层至输出层的所有节点,与上一层每个节点的输出之间存在一组并行延迟单元。图2-7为延时器连接结构,图2-8为l层节点i到l+1层节点j之间的延时器内部结构,节点j时输入为上

一层节点i在时刻输出的加权和,为层延时器的延迟单元数目,延迟单元的引入使神经元不但了解当前时刻输入的信息,还了解过去时刻输入的信息,有利于序列数据的识别。

图2-7 图2-8

3、DNN 实际应用

动态神经网络具有很强的学习能力和逼近任意非线性函数的特点,自20世

纪80年代末以来,将动态神经网络作为一种新的方法引入复杂非线性系统建模

中引起了工程控制领域许多学者的关注。动态神经网络现在已经广泛地用于模式识别、语音识别、图象处理、信号处理、系统控制、AUV自适应航向和机器人控制、故障检测、变形预报、最优化决策及求解非线性代数问题等方面[8]。

3.1、故障检测

估计方法在故障检测中应用广泛,如发动机的故障检测。用故障参数估计实现发动机故障检测,由于构建的发动机数学模型的不精确性,影响了检测性能。静态反推神经网络可以实现系统的动态辨识过程,但反推神经网络的学习算法存在局部极小问题,在线学习收敛速度比较慢,不易满足工程上实时性要求。动态神经网络直接用李雅诺夫方法推出神经网络的权值修改公式,得到稳定的学习规则,并且学习收敛到全局最优,因此可以考虑用动态神经网络来辨识发动机的动态响应过程,估计发动机传感器测量信号。基于发动机测量信号与动态神经网络辨识信号得到的残差信号,然后将残差信号的某一特定范数输入检测逻辑,得到发动机故障检测结果,实现动态神经网络的故障检测策略[9]。

3.2、变形预报

静态神经网络模型用于在线时间序列的预报时具有局限性,即网络的泛化能力有限,且模型不能不断地适应新增样本的变化。如果每增加一个样本对神经网络重新训练,需要大量的计算时间。由此产生了动态神经网络预报模型。在获得新增样本数据之后,通过比较预报值与实际值之差的绝对值是否大于敏感因子a,决定模型是否需要修正。使用在线动态修正方法降低了模型修正的计算时间, ,实现了增加样本而矩阵阶数不增加,且避免了矩阵求逆运算,提高了计算效率。该方法在计算时间和预报精度两个方面都具有一定优势,可应用于在线实时变形预报及相关领域[10]。

3.3、交通事件自动检测

交通事件的自动检测算法发展至今已有几十年的历史,较早期代表性算法有: California算法及其10个版本的改进算法、时间序列算法、贝叶斯算法、动态模型算法、突变论算法等,这些算法均有各自的特点,但都不能完全满足事件检测

的要求,不同的算法只是在不同的情况下性能优越,从理论上讲,动态模型法捕捉交通动态过程及自适应方面较好,且其可移植性好,但是它的计算效率需要进一步改善;突变论方法从计算效率和实时运行以及实现上具有无可比拟的优越性,但是它的检测性能指标需要进一步的提高。近二十年随着神经网络的迅速发展,尤其是在处理非线性问题上的优势,使得神经网络已经应用于事件检测中并充分显示出它优于其他算法的特点。目前应用于事件检测中的神经网络大多是应用静态前馈神经网络进行模式分类,这种网络的特点是结构简单、训练方法成熟,但是它的动态性能比较差,满足不了像交通流这样高度复杂的动态大系统。

在动态神经网络的基础上融合了基于状态估计的非线性系统故障检测的方法,以改善神经网络的动态性,使其更适合进行检测交通事件。具体做法是:依据基于状态估计的非线性系统故障检测的基本原理,利用动态神经网络根据一段高速公路两端的检测数据来估计路段中间的交通状态,并将状态的估计值与实测值进行比较,产生残差向量,通过对残差向量的分析,确定事件的发生及性质[11]。

3.4、最优化问题计算

人工神经网络的大部分模型是非线性动态系统,若将计算问题的目标函数与网络某种能量函数对应起来,网络动态向能量极小值方向移动的过程则可视作优化问题的解算过程,稳态点则是优化问题的局部的或全局最优动态过程解。这方面的应用包括组合优化、约束条件优化等一类求解问题,如:任务分配、货物调度、路径选择、组合编码、排序、系统规划、交通管理以及图论中各类问题的解算等。

3.5通信

卫星通信逐渐从单纯的军用通信,转向了民用领域。随着 OFDM,WCDMA 等高峰均比调制技术在新一代卫星通信中的大量使用,这些宽带信号会引起带外干扰,从而造成发射信号的失真。为了解决上述问题,双盒 Wiener 预失真方法、双盒 Hammerstein 预失真方法、Volterra 滤波预失真方法和人工神经网络方法等预失真方法被广泛应用于星载功率放大器线性化处理。现在卫星上正在使用的预失真方法主要集中于双盒Hammerstein 预失真方法和双盒 Wiener 预失真方法,这两种方法均采用 2 个子块,一个用于消除功率放大器的非线性,另一个用于消除功率放大器的记忆效应,但是随着高峰均比调制技术在卫星通信中的应用,功率放大器的非线性特性和记忆效应呈现出交互特性,将非线性特性和记忆效应分别进行处理已不能满足卫星通信的需求。针对下一代卫星通信的需求,预失真技术主要采用 Volterra 滤波预失真方法和神经网络预失真方法。文献[12]和文献[13]提出基于前馈法和反馈法的 Volterra 滤波预失真方法,为了追求一定的线性化精度,但这两种方法所采用的 Volterra 模型的阶数都较长,导致预失真器的系数更新速度较慢,当发射信号的变化较大时,会产生很大的延时。神经网络预失真方法也是目前最热门的预失真技术,文献[14]提出了一种基于多个隐层来消除记忆效应和非线性特性的方法,但随着隐层数量和神经元的增加,会导致计算量急剧增长,从而使神经网络的系数产生较大的延时。文献[15]提出了一种基于幅度和相位的双神经网络预失真方法,该方法由于采用非直接的训练算法,导致卫星长时间工作的记忆效应无法得到修正,并且神经网络模型系数采用

矢量来代替矩阵,随着时间的延长,会产生较大的误差。针对上述缺点,采用直接学习法的动态神经网络预失真方法,该方法首先通过对输入信号进行幅度和相位的分离,并分别利用神经网络预失真方法对数据进行处理,在处理过程中引入前 M 个时刻的输出所构造的记忆效应反馈模型,并详细推导整个神经网络预失真方法的数学算法。该方法与没有经过预失真处理的方法相比可以有效消除功率放大器的非线性特性和记忆效应,在高速卫星通信中具有较好的应用价值[16]。

3.6模式信息处理和模式识别

所谓模式,从广义上说,就是事物的某种特性类属,如:图像、文字、声纳信号、动植物种类形态等信息。模式信息处理就是对模式信息进行特征提取、聚类分析、边缘检测、信号增强噪声抑制、数据压缩等各种变换。模式识别就是将所研究客体的特性类属映射成“类别号”,以实现对客体特定类别的识别。人工神经网络所具有的非线性映射能力和高度并行运算能力为非线性动态负荷模型的辨识提供了一条有效的途径。动态神经网络特别适宜解算这类问题,形成了新的模式信息处理技术。它在各领域的广泛应用是神经网络技术发展的重要侧面。这方面的主要应用有:图形符号、符号、手写体及语音识别,雷达及声纳等目标的识别,药物构效关系等化学模式信息辨识,机器人视觉、听觉,各种最近相邻模式聚类及识别分类等等。

目前基于动态神经网络的研究、应用越来越广。动态神经网络已推广到方方面面。例如:Hopfield神经网络及其应用的图像边缘检测[17];Hopfield网络及其在图像识别中的应用[18];基于Elman神经网络的股票价格预测研究[19];改进的Elman网络在火工品气动压力机建模中的应用[20];基于Elman动态神经网络的煤质预测算法研究[21];基于动态BP 神经网络的财务危机预警算法研究[22]等等。

4、DNN改进

Elman网络采取与BP网络一致的权值更新方法——梯度下降法,其缺陷是容易陷入局部最小值,可以借助遗传算法来训练优化初始权值。遗传算法针对所给问题进行编码,通过选择、复制、交叉、变异这几种进化机制来寻找最优解。因此,遗传算法全局变异算子可以避免陷入局部最优,并且由于其具有并行搜索的特性,保证了算法的快速、稳定。

Elman网络的初始权值由随机产生的1到l之间的均匀实数组成。每次训练完毕,计算一次均方误差MSE。同时,把误差平方和E(t)作为遗传算法的适应度函数,通过引用遗传算法优化误差平方和,来确定最优的初始权值。由于适应度函数通常寻求最大值,而网络要求误差平方和最小,所以这里用f=1/E(t)代替目标函数。

改进后的GA.Elman神经网络模型的工作流程如下:

(1)Elman网络初始化以及初始权值编码。遗传算法将Elman网络的初始随机基于动态神经网络的股价预测模型研究权值编码为若干染色体组成的初始种群。

(2)适应度函数的选取适应度函数式。

(3)选择算子。

(4)交叉算子。遗传算法的交叉操作分为控制基因交叉和参数基因交叉。这里,对控制基因串采用单点交叉。由于参数基因采用实值编码,为保证交叉后产生新

的参数值,并开辟出新的搜索空间,参数基因的交叉操作采用线性组合方式,将两个基因串对应交叉位的值相组合生成新的基因串,

(5)变异算子

对控制基因,变异操作可以以一定的概率对变异位进行取反运算;而对参数基因的变异操作,可采用均匀变异,即以一定概率给变异位基因加一个符合某一范围内均匀分布的随机数。

(6)形成新的一代并检验是否满足停止准则,最后产生优化后的神经网络初始权值。

(7)Elman网络开始工作,进行学习和训练,并更新权值,计算网络误差,检验是否达到要求精度并利用测试集检验网络效果。

参考文献

[1]张青贵.人工神经网络导论[M]、北京:水利水电出版社,2004.5-20

[2]王颖.基于动态神经网络的系统建模理论及优化技术研究[D].大庆.东北石油大学计算机

与信息技术学院.2011

[3]Grossberg S, Adaptive pattern classification and universal recording. I:Parallel development

and coding of neural feature detectors, Biolog. Cybernetics[M],Boston,1976,23:121-134. [4]Grossberg S, Adaptive pattern classification and universal recording. II: Feedback,

expectation, olfaction , and illusion, Biology Cybernetics[M],Boston, 1976 , 23: 187 -202 [5]杨盈. Hopfield神经网络的改进及其应用基于Hopfield神经网络的脱机手写数字识别[D].

无锡.江南大学物联网工程学院.2008

[6]Shi, X.H., Liang, Y.C., Lee, H.P., Lin, W.Z., Xu, X.and Lim, S.P. Improved Elman networks and

applications for controlling ultrasonic motors[J]. Applied Artificial Intelligence, 2004, 18: 603-629.

[7]韩旭明. Elman 神经网络的应用研究[D].天津.天津大学.2006

[8]李嘉刚.动态神经网络的模型[D].青岛.中国海洋大学.2010

[9]黄敏超,张育林,陈启智. 动态神经网络在液体火箭发动机故障检测与分离中的应用[J].

航空动力学报,1996,11(2):149-152.

[10]邓兴升,王新洲. 动态神经网络在变形预报中的应用[J]. 武汉大学学报,2008,33(1):

93-96.

[11]吕琪,王慧. 基于动态神经网络模型的交通事件检测算法[J]. 公路交通科

技,2003,20(6):105-107.

[12]Wang Yong,Xiang Xin,Yi Kechu.Memory Predistorter in Wideband OFDM

System[J]. Systems Engineering and Electronics,2006,28( 9) : 1456-1459 [13]Pan Jie. Nonlinear Electrical Predistortion and Equalization for the Coherent

Optical Communication System. Journal of Lightwave Technology,2011,29( 18) : 2785-2789

[14]Mkadem F,Boumaiza S. Physically Inspired Neural Network Model for RF Power

Amplifier Behavioral Modeling and Digital Predistortion[J]. IEEE Trans on Microwave Theory and Techniques,2011,59( 4) : 913-923

[15]崔华,赵祥模,艾渤.记忆功放的 BP 神经网络分离预失真方法[J].西安电子科

技大学学报,2010,37( 3) : 565-569

[16]唐成凯,廉保旺,张玲玲.卫星通信中动态神经网络预失真算法研究[J].西北工业大

学学报,2013,31(1):34-39

[17]Yonghong Zhang,Dejin Hu,Kai Zhang,Junjie Xu. Hopfield neural network and its

applications on image edge detection[J]. Chinese Optics Letters,2004,04,213-216

[18]刘雅莉;李华. Hopfield网络及其在图像识别中的应用[J]. 商洛学院学

报,2008,22(5),62-65

[19]林春燕;朱东华. 基于Elman神经网络的股票价格预测研究[J]. 计算机应

用,2006,26(2),476-484

[20]胡斌;刘荣;李璀. 改进的Elman网络在火工品气动压力机建模中的应用[J]. 工业控制计

算机,2011,06,46-49

[21]张玮,张丹.基于Elman动态神经网络的煤质预测算法研究[J] 中国矿

业,2013,22(3),106-108

[22]杨济亭. 基于动态BP 神经网络的财务危机预警算法研究[J].信息技术.2013,2, 96-100

附录A 摘要集

[1]基于动态神经网络的系统建模理论及优化技术研究

摘要

系统建模技术己成为分析、研究各种系统,特别是复杂非线性系统的重要工具,由于具有经济、可靠、易实现和可多次重复使用等优点,己成为对实际系统进行分析、设计、实验、评估的有效手段,在科学研究和工程领域具有广泛应用。随着科学研究与工程应用领域的不断扩大,人们所面临的系统建模问题也变得越来越复杂。大多数建模对象存在着多种不确定性因素以及难以定量描述的非线性特性,并且对系统模型的描述能力和建模方法的灵活性、适用性以及智能水平要求越来越高,传统的系统建模方法在许多方面己不再满足当前的需求,存在模型选择及建模困难、精度低、求解难度大等问题。

近几年来,智能信息处理理论和技术得到重视和发展,为解决复杂非线性动态系统的建模问题提供了一种有效途径。由于动态神经网络具有高度非线性映射能力、大规模并行分布处理和良好的自适应学习机制,在复杂系统建模方面表现出较大的优势。因此,将动态神经网络应用到系统建模方面的研究具有很好的前景。

论文提出和建立了一种反馈动态神经网络模型,对一般过程神经网络模型的信息处理机制进行了改进。模型具有适用性强、学习效率高、对具体实际问题易于建模等特点;构建了基于梯度一牛顿结合训练算法、基于二次样条拟合训练算法以及基于数值积分训练算法等三种动态神经网络学习方法,并给出了模型及算法的优化原则和实现技术。最后结合油田开发生产中的实际问题,进行了动态神经网络系统建模方法的具体应用。

关键词:时变输入输出系统,动态神经网络,学习算法,系统仿真,数值积分

[2]Adaptive pattern classification and universal recording. I:Parallel development and coding

of neural feature detectors

Abstract.

This paper analyses a model for the parallel development and adult coding of neural feature detectors. The model was introduced in Grossberg (1976). We show how experience can retune feature detectors to respond to a prescribed convex set of spatial patterns. In particular, the detectors automatically respond to average features chosen from the set even if the average features have never been experienced. Using this procedure, any set of arbitrary spatial patterns can be recoded, or transformed, into any other spatial patterns (universal recoding), if there are sufficiently many cells in the network's cortex. The network is built from short term memory (STM) and long term memory (LTM) mechanisms, including mechanisms of adaptation, filtering, contrast enhancement, tuning, and nonspecific arousal. These mechanisms capture some experimental properties of plasticity in the kitten visual cortex. The model also suggests a. classification of adult feature detector properties in terms of a small number of functional principles. In particular, experiments on retinal dynamics, including amacrine cell function, are suggested.

[3]Adaptive pattern classification and universal recording. II: Feedback, expectation,

olfaction , and illusion

Abstract.

Part I of this paper describes a model for the parallel development and adult coding of neural feature detectors. It shows how any set of arbitrary spatial patterns can be recoded, or

transformed, into any other spatial patterns (universal recoding), if there are sufficiently many cells in the network's cortex. This code is, however, unstable through time if arbitrarily many patterns can perturb a fixed number of cortical cells. This paper shows how to stabilize the code in the general case using feedback between cellular sites. A biochemically defined critical period is not necessary to stabilize the code, nor is it sufficient to ensure useful coding properties.

We ask how short term memory can be reset in response to temporal sequences of spatial patterns. This leads to a context-dependent code in which no feature detector need uniquely characterize an input pattern; yet unique classification by the pattern of activity across feature detectors is possible. This property uses learned expectation mechanisms where-by unexpected patterns are temporarily suppressed and/or activate nonspecific arousal. The simplest case describes reciprocal interactions via trainable synaptic pathways (long term memory traces) between two re-current on-center of T-surround networks undergoing mass action (shunting) interactions. This unit can establish an adaptive resonance, or reverberation, between two regions if their coded patterns match, and can suppress the reverberation if their patterns do not match. This concept yields a model of olfactory coding within the olfactory bulb and prepyriform cortex. The resonance idea also includes the establishment of Reverberation between conditioned reinforces and generators of contingent negative variation if presently available sensory cues are compatible with the net-work's drive requirements at that time; and a search and lock mechanism whereby the disparity between two patterns can be minimized and the minimal disparity images locked into position. Stabilizing the code uses attentional mechanisms, in particular nonspecific arousal as a tuning and search device. We suggest that arousal is gated by a chemical transmitter system for example; no repinephrine whose relative states of accumulation at antagonistic pairs of on-cells and of T-cells through time can shift the spatial pattern of STM activity across a field of feature detectors. For example, a sudden arousal increment in response to an un-expected pattern can reverse, or rebound, these relative activities, thereby suppressing incorrectly classified populations. The rebound mechanism has formal properties analogous to negative afterimages and spatial frequency adaptation.

[4]Hopfield神经网络的改进及其应用基于Hopfield神经网络的脱机手写数字识别

摘要

脱机手写数字识别在很多领域具有广泛的应用前景,国内外学者对此做了大量的研究工作,提出了很多预处理和模式识别的算法,大大提高了手写数字的识别精度。但到目前为止,手写数字识别的识别精度还有待提高,阀值参数选择等问题尚有待解决。

为了提高手写数字识别的精度,本文将Hopfield 神经网络应用于脱机手写数字识别分析中,Hopfield 神经网络的“能量函数”的能量在网络运行过程中,具有不断地减少最后趋于稳定的平衡状态的特性,而且网络一旦建立即可自动运行,无需要训练。脱机手写数字的识别过程分为两步:训练阶段,识别阶段。在训练阶段,提取训练样本集的代数特征,建立网络模型,以输入向量为目标向量,保存网络连接权值和阈值以及代数特征;在识别阶段,将待识别数字特征送入网络运行,待网络运行到平衡状态后,将输出结果与数字特征库的向量进行比较,距离最小者即为待识别的数字。

脱机手写数字识别一般分为图像预处理、特征提取、数字串分割、识别这几个阶段。

首先,票据的数字图像进行预处理,通过去噪、平滑、二值化等一系列预处理工作,在对手写数字图像进行预处理时,引入了基于小波变换的图像处理新方法,它较改进的中值滤波算法根据先进性和更适应于后续的Hopfield 神经网络的训练和识别过程。得到待识别的

手写体数字串后本文提出了一种基于识别的分割方法以得到分割最佳组合,这种分割方法的分割结果是基于识别结果的,在识别数字的同时得到分割结果设计了包含神经元的神经网络分类器识别手写数字,在训练分类器的时候,将反例样本作为必要的训练样本估计分类器的参数,并且合理的选择正例样本和反例样本的比例,这样训练得到的分类器具备很好的分类能力。试验数据表明,这样设计的脱机手写数字识别分类器大大的降低了误识率,得到了较高的识别正确率。

关键词:脱机手写数字识别,Hopfield 神经网络,小波变换,特征提取

[5]Improved Elman networks and applications for controlling ultrasonic motors Abstract.

Two improved Elman network models, output-input feedback (OIF) and output-hidden feedback (OHF), are proposed based on the modified Elman network. A recurrent back-propagation control (RBPC) network model is developed by using the OIF Elman network as a passageway of the error back-Propagation. The stability of the improved Elman and RBPC networks is analyzed. Adaptive learning rates are given in the form of discrete-type Lyapunov stability theory, which could guarantee the convergence of the improved Elman and RBPC networks. The speed of the ultrasonic motor is identified using the modified Elman network, OIF and OHF Elman networks, respectively, and some useful comparable results are presented. Numerical results show that the RBPC controller is effective for various kinds of reference speeds of the USM and the proposed scheme is fairly robust against random disturbance to the control variable.

[6]Elman 神经网络的应用研究

摘要

本文介绍了人工神经网络的一些基础知识,而且详细地介绍了两种具有动态反馈机制的人工神经网络模型,Elman 网络和输出-输入反馈Elman 网络,即OIF Elman (Output-Input Feedback Elman)网络,以及它们的数学模型和学习算法。

考虑到股民投资的主要目的是盈利。为了提高网络的预测精度,得到更加精确的预测结果,从而获得更多的利润,本文在 Elman 人工神经网络的基础上,将时间收益因素引入到Elman 网络的目标函数中,提出了一种改进的 Elman 神经网络模型—TPFENN(Time Profit Factor Elman Neural Network),并将其用于股票综合指数的预测以及股票利润率的计算和比较。为了更好地度量网络模型的预测性能,本文采用绝对平均误差(Absolute Average Error, AAE)和最小二乘误差(Least Square Error, LSE)表示网络的预测精度。实验结果表明:改进的 Elman 神经网络模型用于股市投资是可行的、有效的,该模型不仅可以明显提高网络的预测精度,达到快速收敛,而且还能够明显改善收益,提高股票投资的利润率,从而实现较大幅度地获得收益的目的。

另外,为了控制大气污染,关心大气质量,及时、准确地预测未来大气变化、预防严重污染事件的发生,本文在输出-输入反馈 Elman 网络,即 OIF Elman(Output-Input Feedback Elman)网络的基础上,将惩罚收益因素引入到 OIF Elman神经网络模型中,提出了一种基于 OIF Elman 神经网络的改进模型—DPFOIFENN ( Direction Profit Factor OIF Elman Neural Network),并将其用于预测和评价长春市的大气质量。实验结果表明:引入惩罚收益因素 OIF Elman 模型具有极佳的逼近性能,取得了较高的拟合精度,所得到的预测数据和评价结果与实际结果基本吻合。

上述结果表明:本文所提出的 TPFENN 和 DPFOIFENN 两种模型可为金融投资和大气环境预测及评价提供新的技术和方法,具有较好的应用潜能和一定的应用前景。

关键词:Elman 神经网络 OIF Elman 神经网络惩罚收益因素时间收益因素综合指数预测利润率大气质量预测和评价

[7]动态神经网络的模型

摘要

动态神经网络(DNN)由于具有很强的学习能力和逼近任意非线性函数的特点而被广泛应用。本文主要介绍动态神经网络的几种常见模型,比较不同模型之间的区别,在此基础上介绍一下动态神经网络的功能及应用。

[8]动态神经网络在液体火箭发动机故障检测与分离中的应用

摘要

应用动态神经网络在线辨识方法,提出了一种液体火箭发动机故障实时检测与分离基本系统。检测逻辑通过度量包含发动机故障信息的辨识残差信号实现火箭发动机故障检测,故障分离通过分析辨识误差相关函数的不同空间特征来实现。仿真研究表明动态神经网络可成功地应用于泵压式液体火箭发动机故障检测与分离。

[9]动态神经网络在变形预报中的应用

摘要

静态神经网络模型用于在线时间序列的预报时具有局限性,即网络的泛化能力有限,且模型不能不断地适应新增样本的变化。如果每增加一个样本对神经网络重新训练,需要大量的计算时间。针对该问题,提出了动态神经网络预报模型。在获得新增样本数据之后,通过比较预报值与实际值之差的绝对值是否大于E敏感因子,决定模型是否需要修正。为了降低模型修正的计算时间,提出了在线动态修正方法,实现了增加样本而矩阵阶数不增加,且避免了矩阵求逆运算,理论上可以提高计算效率。通过实例表明,该方法在计算时间和预报精度两个方面都具有一定优势,可应用于在线实时变形预报及相关领域。

[10]基于动态神经网络模型的交通事件检测算法

摘要

本文将一种新型的动态神经网络结构与传统的基于状态估计的故障检测方法相结合,提出了一种基于动态神经网络的交通事件检测算法。该网络借鉴静态BP网络的训练算法,并针对其训练方法中收敛速度慢及容易陷入局部极小点的缺点采用一种改进的算法,改善了训练效果。最后利用Matlab对提出的算法进行仿真,得到令人满意的效果。

[11]Physically Inspired Neural Network Model for RF Power Amplifier Behavioral

Modeling and Digital Predistortion

Abstract.

In this paper, a novel two hidden layers artificial neural network (2HLANN) model is proposed to predict the dynamic nonlinear behavior of wideband RF power amplifiers (PAs). Starting with a generic low-pass equivalent circuit of the PA, several circuit transformations are applied in order to build an appropriate artificial neural network structure and improve the modeling accuracy. This approach culminates in the development of a real-valued and feed-forward 2HLANN-based model. The parameters (number of neurons, memory depth, etc.) of the proposed model and the back propagation learning algorithm (learning rate, momentum term, etc.) used for its training were carefully studied and thoughtfully chosen to ensure the generality of the constructed model. The validation of the proposed models in mimicking the behavior of a 250-W Doherty amplifier driven with a 20-MHz bandwidth signal is carried out in terms of its accuracy in predicting its output spectrum, dynamic AM/AM and AM/PM characteristics, and in minimizing the normalized mean square error. In addition, the linearization of the Doherty PA using the 2HLANN enabled attaining an output power of up to 46.5 dBm and an average efficiency of up to 40% coupled with an adjacent channel power ratio higher than 50 dBc.

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力 模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。 因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots 和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑

Hopfield神经网络综述

题目:Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfiel d神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfiel d神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

最新神经网络最新发展综述汇编

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

Hopfield神经网络综述

题目: Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfield神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

神经网络的应用及其发展

神经网络的应用及其发展 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP 网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。

神经网络控制

神经网络控制 沈阳电力高等专科学校杨庆柏 刊载于《辽宁电机工程科普》1999年第4期神经网络控制是一种基本上不依赖模型的控制方法。它比较适用于那些具有不确定性或高度非线性的控制对象,并且有较强的适应和学习功能,因而神经网络控制是智能控制的一个重要分支领域。神经网络控制的机理人脑是由大量的神经细胞组合而成的,它们之间互相连接。人工神经网络是对生物神经网络的一种模拟和近似,该网络是一个并行和分布式的信息处理网络结构,它一般由许多个神经元(即神经细胞)组成。虽然单个神经元的结构和功能极其简单和有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富的。每个神经元有一个单一的输出,它可以到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。由给定的输入,神经网络产生一组输出,这些输出与已知的输出或期望的输出比较,如有偏差,则修正连接权系数以改进网络性能这种培育过程直到神经网络达到令人满意的水平为止。 目前,取代人工控制的途径大致有二种,一是将手工操作中的经验总结成普通的规则或模糊规则,然后构造相应的专家控制器或模糊控制器。二是在知识难于表达的情况下,应用神经网络学习人的控制行为,即对人工控制器建模。然后用此神经网络控制器取代。这种通过对人工或传统控制器进行学习,然后用神经网络控制器取代或逐渐取代原控制器的方法,称为神经网络监督控制。

2.神经网络控制特点 (1)具有很强的自学习和自组织能力,能进行在线或离线学习。 (2)具有并行处理及其带来的高速处理能力,而且处理的时间与问题的复杂程度只是成比例关系,而不是串行处理中的几何数量级关系。 (3)具有很强的处理非线性问题的能力,能逼近任意的非线性函数,因而适于处理那些难于用模型或规则描述的过程或系统。 (4)具有很强的信息综合能力,能同时处理大量的、不同类型的定量和定性信息,便于进行多种信息的融合。 (5)具有分布式存储信息和容错能力,每个神经元存储多种信息的部分内容,部分神经元的损坏和信息破坏只会导致网络部分功能减弱。 3.神经网络控制应用 神经网络在自动控制系统中应用方式是多种多样的,基本上可分为单神经元的应用和神经网络的应用。由于目前缺乏相应的神经网络芯片或神经网络计算机硬件支持,此系统尚未获得实际应用。而由单个神经元构成的控制器,是利用了目前的计算机串行计算方法来模拟神经网络控制,其系统结构简单,易于实时控制,因此获得了实际应用。 神经网络在电力工业的应用研究已有多项,如用神经网络模拟火电厂的生产过程,可制成令人满意的火电厂模拟装置,并可以应用于火电厂的动态控制。

人工神经网络综述

目录 1 人工神经网络算法的工作原理 (3) 2 人工神经网络研究内容 (4) 3 人工神经网络的特点 (5) 4 典型的神经网络结构 (6) 4.1 前馈神经网络模型 (6) 4.1.1 自适应线性神经网络(Adaline) (6) 4.1.1.1网络结构 (6) 4.1.1.2学习算法步骤 (7) 4.1.1.3优缺点 (7) 4.1.2单层感知器 (8) 4.1.2.1网络结构 (8) 4.1.2.2学习算法步骤 (9) 4.1.2.3优缺点 (9) 4.1.3多层感知器和BP算法 (10) 4.1.3.1网络结构: (10) 4.1.3.2 BP算法 (10) 4.1.3.3算法学习规则 (11) 4.1.3.4算法步骤 (11) 4.1.3.5优缺点 (12) 4.2反馈神经网络模型 (13) 4.2.1 Hopfield神经网络 (13) 4.2.1.1网络结构 (13) 4.2.1.2 学习算法 (15) 4.2.1.3 Hopfield网络工作方式 (15) 4.2.1.4 Hopfield网络运行步骤 (15) 4.2.1.5优缺点 (16) 4.2.2海明神经网络(Hamming) (16) 4.2.2.1网络结构 (16) 4.2.2.2学习算法 (17) 4.2.2.3特点 (18) 4.2.3双向联想存储器(BAM) (19) 4.2.3.1 网络结构 (19) 4.2.3.2学习算法 (19) 4.2.3.4优缺点 (21) 5.人工神经网络发展趋势以及待解决的关键问题 (22) 5.1 与小波分析的结合 (22) 5.1.1小波神经网络的应用 (23) 5.1.2待解决的关键技术问题 (23) 5.2混沌神经网络 (23) 5.2.1混沌神经网络的应用 (24) 5.2.2待解决的关键技术问题 (24)

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

人工智能发展综述

人工智能发展综述 摘要:概要的阐述下人工智能的概念、发展历史、当前研究热点和实际应用以及未来的发展趋势。 关键词:人工智能; 前景; 发展综述 人工智能(Artificial Intelligence)自1956 年正式问世以来的五十年间已经取得了长足的进展,由于其应用的极其广泛性及存在的巨大研究开发潜力, 吸引了越来越多的科技工作者投入人工智能的研究中去。尤其是八十年代以来出现了世界范围的开发新技术的高潮,许多发达国家的高科技计划的重要内容是计算机技术,而尤以人工智能为其基本重要组成部分。人工智能成为国际公认的当代高技术的核心部分之一。 1什么是人工智能 美国斯坦福大学人工智能研究中心尼尔逊教授给人工智能下了这样一个定义:人工智能是关于知识的学科, 是怎样表示知识以及怎样获得知识并使用知识的科学。从人工智能所实现的功能来定义是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别学习和问题求解等思维活动。这些反映了人工智能学科的基本思想和基本内容, 即人工智能是研究人类智能活动的规律。若是从实用观点来看,人工智能是一门知识工程学:以知识为对象,研究知识的获取、知识的表示方法和知识的使用。 从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能更灵活方效地为人类服务。只要电脑能够表现出与人类相似的智能行为,就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了。人工智能就是计算机科学中涉及研究、设计和应用智能机器的—个分支,人工智能的目标就是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。 2 人工智能历史 当然,人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几

基于人工神经网络预测探究文献综述

基于人工神经网络的预测研究文献综述专业:电子信息工程班级:08级2班作者:刘铭指导老师:熊朝松 引言 随着多媒体和网络技术的飞速发展及广泛应用,人工神经网络已被广泛运用于各种领域,而它的预测功能也在不断被人挖掘着。人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。现代计算机构成单元的速度是人脑中神经元速度的几百万倍,对于那些特征明确,推理或运算规则清楚地可编程问题,可以高速有效地求解,在数值运算和逻辑运算方面的精确与高速极大地拓展了人脑的能力,从而在信息处理和控制决策等方面为人们提供了实现智能化和自动化的先进手段。但由于现有计算机是按照冯·诺依曼原理,基于程序存取进行工作的,历经半个多世纪的发展,其结构模式与运行机制仍然没有跳出传统的逻辑运算规则,因而在很多方面的功能还远不能达到认得智能水平。随着现代信息科学与技术的飞速发展,这方面的问题日趋尖锐,促使科学和技术专家们寻找解决问题的新出路。当人们的思想转向研究大自然造就的精妙的人脑结构模式和信息处理机制时,推动了脑科学的深入发展以及人工神经网络和闹模型的研究。随着对生物闹的深入了解,人工神经网络获得长足发展。在经历了漫长的初创期和低潮期后,人工神经网络终于以其不容忽视的潜力与活力进入了发展高潮。这么多年来,它的结构与功能逐步改善,运行机制渐趋成熟,应用领域日益扩大,在解决各行各业的难题中显示出巨大的潜力,取得了丰硕的成果。通过运用人工神经网络建模,可以进行预测事物的发展,节省了实际要求证结果所需的研究时间。 正是由于人工神经网络是一门新兴的学科,它在理论、模型、算法、应用和时限等方面都还有很多空白点需要努力探索、研究、开拓和开发。因此,许多国家的政府和企业都投入了大量的资金,组织大量的科学和技术专家对人工神经网络的广泛问题立项研究。从人工神经网络的模拟程序和专用芯片的不断推出、论文的大量发表以及各种应用的报道可以看到,在这个领域里一个百家争鸣的局面已经形成。 为了能深入认识人工神经网络的预测功能,大量收集和阅读相关资料是非常必要的。搜集的资料范围主要是大量介绍人工神经网路,以及认识和熟悉了其中重要的BP网络。参考的著作有:马锐的《人工神经网络原理》,胡守仁、余少波的《神经网络导论》以及一些相关论文,董军和胡上序的《混沌神经网络研究进展和展望》,朱大奇的《人工神经网络研究现状及其展望》和宋桂荣的《改进BP算法在故障诊断中的应用》,这些

动态神经网络综述

动态神经网络综述 摘要 动态神经网络(DNN)由于具有很强的学习能力和逼近任意非线性函数的特点而被广泛应用。本文系统介绍了该网络的几种常见模型,并在此基础之上介绍它的基本学习算法、功能、应用领域、实际推广。 关键词:动态神经网络,模型,功能,算法,应用 Abstract Dynamic Neural Network (DNN) has been widely applied by means of the strong ability of learning and the characteristic of approximating any nonlinear function. The paper mainly introduces several models of common dynamic neural network, and dynamic neural network's function, basic algorithm, application and promotion. Keywords: DNN, Models , Function , Algorithm , Application

1、绪论 人工神经网络(Artificial Neural Networks,简写为ANNs)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达[1]。 神经网络按是否含有延迟或反馈环节,以及与时间是否相关分为静态神经网络和动态神经网络,其中含有延迟或反馈环节,与时间直接有关的神经网络称为动态神经网络[2]。动态神经网络具有很强的学习能力和逼近任意非线性函数的特点,自20世纪80年代末以来,将动态神经网络作为一种新的方法引入复杂非线性系统建模中引起了工程控制领域许多学者的关注[3]。动态神经网络现在已经广泛地用于模式识别、语音识别、图象处理、信号处理、系统控制、AUV自适应航向和机器人控制、故障检测、变形预报、最优化决策及求解非线性代数问题等方面。 本文第二章主要介绍了动态神经网络的分类,基本模型和算法;第三章主要介绍了动态神经网络的应用;第四章简要介绍了神经网络的改进方法。 2、DNN网络的基本模型和算法 根据结构特点,可以将动态神经网络分为3类:全反馈网络结构,部分反馈网络结构以及无反馈的网络结构。 反馈网络(Recurrent Network),又称自联想记忆网络,如下图所示: 图2-1 反馈网络模型 反馈网络的目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点: 第一、网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; 第二、系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络根据信号的时间域的性质的分类为

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高 效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址: 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出 了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。 在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱, 但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下: ?Section II 给出了DNN 为什么很重要的背景、历史和应用。 ?Section III 给出了DNN 基础组件的概述,还有目前流行使用的DNN 模型。 ?Section IV 描述了DNN 研发所能用到的各种资源。 ?Section V 描述了处理DNN 用到的各种硬件平台,以及在不影响准确率的情况下改进吞吐量(thoughtput)和能量的各种优化方法(即产生bit-wise identical 结果)。 ?Section VI 讨论了混合信号回路和新的存储技术如何被用于近数据处理(near-data processing),从而解决DNN 中数据流通时面临的吞吐量和能量消耗难题。 ?Section VII 描述了各种用来改进DNN 吞吐量和能耗的联合算法和硬件优化,同时最小化对准确率的影响。 ?Section VIII 描述了对比DNN 设计时应该考虑的关键标准。

人工神经网络综述

人工神经网络综述 摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。 关键词:神经网络、分类、应用 0引言 多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。 1人工神经网络概述 1.1人工神经网络的发展 人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。 1.1.1人工神经网络发展初期 1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP模型,这是人类最早对于人脑功能的模仿。他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。1960年Bernard Widrow等提出自适应线形元件ADACINE网络模型,用于信号处理中的自适应滤波、预测和模型识别。 1.1.2人工神经网络低谷时期

相关文档
最新文档