遗传算法和蚁群算法的比较

遗传算法和蚁群算法的比较
遗传算法和蚁群算法的比较

全局优化报告

——遗传算法和蚁群算法的比较

某:X玄玄

学号:3112054023

班级:硕2041

1遗传算法

1.1遗传算法的发展历史

遗传算法是一种模拟自然选择和遗传机制的寻优方法。20世纪60年代初期,Holland教授开始认识到生物的自然遗传现象与人工自适应系统行为的相似性。他认为不仅要研究自适应系统自身,也要研究与之相关的环境。因此,他提出在研究和设计人工自适应系统时,可以借鉴生物自然遗传的基本原理,模仿生物自然遗传的基本方法。1967年,他的学生Bagley在博士论文中首次提出了“遗传算法”一词。到70年代初,Holland教授提出了“模式定理”,一般认为是遗传算法的基本定理,从而奠定了遗传算法的基本理论。1975年,Holland出版了著名的《自然系统和人工系统的自适应性》,这是第一本系统论述遗传算法的专著。因此,也有人把1975年作为遗传算法的诞生年。

1985年,在美国召开了第一届两年一次的遗传算法国际会议,并且成立了国际遗传算法协会。1989年,Holland的学生Goldberg出版了《搜索、优化和机器学习中的遗传算法》,总结了遗传算法研究的主要成果,对遗传算法作了全面而系统的论述。一般认为,这个时期的遗传算法从古典时期发展了现代阶段,这本书则奠定了现代遗传算法的基础。

遗传算法是建立在达尔文的生物进化论和孟德尔的遗传学说基

础上的算法。在进化论中,每一个物种在不断发展的过程中都是越来越适应环境,物种每个个体的基本特征被后代所继承,但后代又不完全同于父代,这些新的变化,若适应环境,则被保留下来;否则,就将被淘汰。在遗传学中认为,遗传是作为一种指令遗传码封装在每个细胞中,并以基因的形式包含在染色体中,每个基因有特殊的位置并控制某个特殊的性质。每个基因产生的个体对环境有一定的适应性。基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。在求解过程中,遗传算法从一个初始变量群体开始,一代一代地寻找问题的最优解,直到满足收敛判据或预先假定的迭代次数为止。

遗传算法的应用研究比理论研究更为丰富,已渗透到许多学科,并且几乎在所有的科学和工程问题中都具有应用前景。一些典型的应用领域如下:

(1)复杂的非线性最优化问题。对具体多个局部极值的非线性最优化问题,传统的优化方法一般难于找到全局最优解;而遗传算法可以克服这一缺点,找到全局最优解。

(2)复杂的组合优化或整数规划问题。大多数组合优化或整数规划问题属于NP难问题,很难找到有效的求解方法;而遗传算法即特别适合解决这一类问题,能够在可以接受的计算时间内求得满意的近似最优解,如著名的旅行商问题、装箱问题等都可以用遗传算法得到满意的解。

(3)工程应用方面。工程方法的应用是遗传算法的一个主要应用领域,如管道优化设计、通风网络的优化设计、飞机外型设计、超大规模集成电路的布线等。

(4)计算机科学。遗传算法广泛应用于计算机科学的研究,如用于图像处理和自动识别、文档自动处理、VLSI设计等。

(5)生物学。遗传算法起源于对生物和自然现象的模拟,现在又反过来用于生物领域的研究,如利用遗传算法进行生物信息学的研究等。

(6)社会科学。遗传算法在社会科学的许多领域也有广泛应用,如人类行为规X进化过程的模拟、人口迁移模型的建立等

(7)经济领域。经济学领域也用到遗传算法。例如,国民经济预测模型、市场预测模型和期货贸易模型等。遗传算法与神经网络相结合正成功地被应用于从时间序列分析来进行财政预算等。

1.2遗传算法的基本原理

遗传算法是一种基于自然选择和群体遗传机制的搜索算法,它模拟了自然选择和自然遗传过程中的繁殖、杂交和突变现象。在利用遗传算法求解问题时,问题的每个可能的解都被编码成一个“染色体”,即个体,若干个个体构成了群体(所有可能解)。在遗传算法开始时,总是随机地产生一些个体(即初始解)。根据预定的目标函数对每个个体进行评估,给出了一个适应度值。基于此适应度值,选择个体用来复制下一代。选择操作体现了“适者生存”的原理,“好”的个体

被选择用来复制,而“坏”的个体则被淘汰。然后选择出来的个体经过交叉和变异算子进行再结合生成新的一代。这一群新个体由于继承了上一代的一些优良性状,因而在性能上要优于上一代,这样逐步朝着更优解的方向进化。因此,遗传算法可以看成是一个由可行解组成的群体逐步进化的过程。图给出了简单遗传算法的基本过程。下面介绍遗传算法的编码及基本遗传操作过程。

1.2.1 编码

利用遗传算法求解问题时,首先要确定问题的目标函数和变量,然后对变量进行编码。这样做主要是因为在遗传算法中,问题的解是用数字串来表示的,而且遗传算子也是直接对串进行操作的。编码方式可以分为二进制编码和实数编码。若用二进制数表示个体,则将二进制数转化为十进制数的解码公式可以为

∑=---+=l j j ij l i

i i il i i b R T R b b b F 1121212),...,,(

其中,),...,,(il i i b b b 21为某个个体的第i 段,每段段长都为l ,每个ik b 都是0或者1,i T 和i R 是第i 段分量i X 的定义域的两个端点。

1.2.2 遗传操作

遗传操作是模拟生物基因的操作,它的任务就是根据个体的适应度对其施加一定的操作,从而实现优胜劣汰的进化过程。从优化搜索的角度看,遗传操作可以使问题的解逐代的优化,逼近最优解。遗传操作包括以下三个基本遗传算子:选择、交叉、变异。选择和交叉基本上完成了遗传算法的大部分搜索功能,变异增加了遗传算法找到最接近最优解的能力。

1. 选择

选择是指从群体中选择优良的个体并淘汰劣质个体的操作。它建立在适应度评估的基础上。适应度越大的个体,被选择的可能性就越大,它的“子孙”在下一代的个数就越多。选择出来的个体被放入配对库中。

目前常用的选择方法有轮赌盘方法(也称适应度比例法)、最佳个体保留法、期望值法、排序选择法、竞争法、线性标准化方法等。

2. 交叉

交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作,交叉的目的是为了能够在下一代产生新的个体。通过交叉操作,遗传算法的搜索能力得以飞跃性的提高。交叉是遗传算法获得新优良个体的最重要的手段。

交叉操作是按照一定的交叉概率c P 在配对库中随机地选取两个

个体进行的。交叉的位置也是随机确定的。交叉概率c P 的值一般取得

很大,为0.6~0.9。

3. 变异

变异就是以很小的变异概率m P 随机地改变群体中个体的某些基

因的值。变异操作的基本过程是:产生一个],[10之间的随机数rand ,如果m P rand ,则进行变异操作。

变异操作本身是一种局部随机搜索,与选择、交叉算子结合在一起,能够避免由于选择和交叉算子而引起的某些信息的永久性丢失,保证了遗传算法的有效性,使遗传算法具有局部的随机搜索能力,同

时使得遗传算法能够保持群体的多样性,以防止出现未成熟收敛。变异操作是一种防止算法早熟的措施。在变异操作中,变异概率不能取值太大,如果5

P,遗传算法就退化为随机搜索,而遗传算法的

0.

m

一些重要的数学特性和搜索能力也就不复存在了。

1.3 基本步骤

遗传算法的基本步骤如下:

使用遗传算法需要决定的运行参数有:编码串长度、种群大小、交叉和变异概率。编码串长度优优化问题所要求的求解精度决定。种群大小表示种群中所含个体的数量,种群较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,可能找不到最优解;种群较大时,又会增加计算量,使遗传算法的运行效率降低。一般取种群数目为20~100.交叉概率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉概率通常应取较大值;但若过

动态蚁群遗传混合算法1

动态蚁群遗传混合算法的研究及应用 (河北工程学院,河北邯郸056038) 摘要:蚁群算法是一种源于大自然生物世界的仿生类算法,该算法采用分布式并行计算和正反馈机制。易于与其他方法结合,具有很强的鲁棒性和适应性,但存在搜素时间长、易陷入局部最优解的缺点。为了克服这一缺点, 文中给出一种新的蚁群算法——动态蚂蚁遗传混合算法。在基本蚁群算法中引入变异机制, 采用最佳融合点评估策略来交叉地调用两种算法。动态地控制遗传算法与蚂蚁算法的调用时机,并设计了相应的信息素更新方法,有效减少了算法的冗余迭代次数,提高了搜索速度,同时引入迭代调整阈值控制算法后期的遗传操作和蚂蚁规模,加快了种群进化速度,从而更快地找到最优解。该法具有较快的收敛速度,节省计算时间,实验结果表明该方法是行之有效的。 关键词:蚁群算法; TSP问题; 遗传算法; 动态蚂蚁遗传混合算法 1 引言 蚁群算法 (Ant Colony Algorithms,ACO)又称蚂蚁算法。是一种用来在图中寻找优化路径的机率型技术。蚂蚁在寻找食物时,总是能找到较短的路径。受到蚁群系统信息共享机制的启发,意大利学者Macro Dorigo于1992年在他的博士论文中首次系统提出了蚁群算法,并成功地将该算法应用到求解旅行商问题(TSP)和二次分配问题(QAP)中。取得了一系列较好的实验结果。解决一些实际问题也有很好的效果。但蚁群算法同其它生物进化算法一样存在过早收敛易陷入局部极小值等问题。结合其它优化算法形成混合蚁群算法是克服这些缺点的有效手段。遗传算法(genetic algorithm,GA)以决策变量的编码作为运算对象,在优化过程中借鉴生物学中染色体和基因的概念,模拟自然界中生物和遗传进化等机理,通过个体适应度来进行概率选择操作,通过交叉变异产生新的个体,从而遗传算法具有较强的全局性。 为克服蚁群算法搜索速度慢、易陷入局部最优等缺点。本文提出了一种新的动态蚁群遗传混合算法(Dynamic Ant Algorithm -Genetic Algorithm,DAAGA)。该算法采用最佳融合点评估策略来交叉地调用两种算法,其框架是用蚂蚁算法的解作为遗传操作的种子,每当种

遗传算法和蚁群算法的比较

全局优化报告 ——遗传算法和蚁群算法的比较 某:X玄玄 学号:3112054023 班级:硕2041

1遗传算法 1.1遗传算法的发展历史 遗传算法是一种模拟自然选择和遗传机制的寻优方法。20世纪60年代初期,Holland教授开始认识到生物的自然遗传现象与人工自适应系统行为的相似性。他认为不仅要研究自适应系统自身,也要研究与之相关的环境。因此,他提出在研究和设计人工自适应系统时,可以借鉴生物自然遗传的基本原理,模仿生物自然遗传的基本方法。1967年,他的学生Bagley在博士论文中首次提出了“遗传算法”一词。到70年代初,Holland教授提出了“模式定理”,一般认为是遗传算法的基本定理,从而奠定了遗传算法的基本理论。1975年,Holland出版了著名的《自然系统和人工系统的自适应性》,这是第一本系统论述遗传算法的专著。因此,也有人把1975年作为遗传算法的诞生年。 1985年,在美国召开了第一届两年一次的遗传算法国际会议,并且成立了国际遗传算法协会。1989年,Holland的学生Goldberg出版了《搜索、优化和机器学习中的遗传算法》,总结了遗传算法研究的主要成果,对遗传算法作了全面而系统的论述。一般认为,这个时期的遗传算法从古典时期发展了现代阶段,这本书则奠定了现代遗传算法的基础。 遗传算法是建立在达尔文的生物进化论和孟德尔的遗传学说基

础上的算法。在进化论中,每一个物种在不断发展的过程中都是越来越适应环境,物种每个个体的基本特征被后代所继承,但后代又不完全同于父代,这些新的变化,若适应环境,则被保留下来;否则,就将被淘汰。在遗传学中认为,遗传是作为一种指令遗传码封装在每个细胞中,并以基因的形式包含在染色体中,每个基因有特殊的位置并控制某个特殊的性质。每个基因产生的个体对环境有一定的适应性。基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。在求解过程中,遗传算法从一个初始变量群体开始,一代一代地寻找问题的最优解,直到满足收敛判据或预先假定的迭代次数为止。 遗传算法的应用研究比理论研究更为丰富,已渗透到许多学科,并且几乎在所有的科学和工程问题中都具有应用前景。一些典型的应用领域如下: (1)复杂的非线性最优化问题。对具体多个局部极值的非线性最优化问题,传统的优化方法一般难于找到全局最优解;而遗传算法可以克服这一缺点,找到全局最优解。 (2)复杂的组合优化或整数规划问题。大多数组合优化或整数规划问题属于NP难问题,很难找到有效的求解方法;而遗传算法即特别适合解决这一类问题,能够在可以接受的计算时间内求得满意的近似最优解,如著名的旅行商问题、装箱问题等都可以用遗传算法得到满意的解。

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题 一、专家系统(Expert System) 1,什么是专家系统? 在日常生活中大家所认知的“专家”一般都拥有某一特定领域的大量专业知识,以及丰富的实际经验。在解决问题时,专家们通常拥有一套独特的思维方式,能较圆满地解决一类困难问题,或向用户提出一些建设性的建议等。 专家系统一般定义为一个具有智能特点的计算机程序。 它的智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。因此,专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 专家系统的基本结构如图1所示,其中箭头方向为数据流动的方向。 图1 专家系统的基本组成 专家系统通常由知识库和推理机两个主要组成要素。 知识库存放着作为专家经验的判断性知识,例如表达建议、 推断、 命令、 策略的产生式规则等, 用于某种结论的推理、 问题的求解,以及对于推理、 求解知识的各种控制知识。 知识库中还包括另一类叙述性知识, 也称作数据,用于说明问题的状态,有关的事实和概念,当前的条件以及常识等。

专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。 推理机实际上是一个运用知识库中提供的两类知识,基于木某种通用的问题求解模型,进行自动推理、 求解问题的计算机软件系统。 它包括一个解释程序, 用于决定如何使用判断性知识推导新的知识, 还包括一个调度程序, 用于决定判断性知识的使用次序。 推理机的具体构造取决于问题领域的特点,及专家系统中知识表示和组织的方法。 推理机针对当前问题的条件或已知信息,反复匹配知识库中的规则,获得新的结论,以得到问题求解结果。在这里,推理方式可以有正向和反向推理两种。正向推理是从前件匹配到结论,反向推理则先假设一个结论成立,看它的条件有没有得到满足。由此可见,推理机就如同专家解决问题的思维方式,知识库就是通过推理机来实现其价值的。 人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。 综合数据库专门用于存储推理过程中所需的原始数据、中间结果和最终结论,往往是作为暂时的存储区。解释器能够根据用户的提问,对结论、求解过程做出说明,因而使专家系统更具有人情味。 知识获取是专家系统知识库是否优越的关键,也是专家系统设计的“瓶颈”问题,通过知识获取,可以扩充和修改知识库中的内容,也可以实现自动学习功能。 2,专家系统的特点 在功能上, 专家系统是一种知识信息处理系统, 而不是数值信息计算系统。在结构上, 专家系统的两个主要组成部分 – 知识库和推理机是独立构造、分离组织, 但又相互作用的。在性能上, 专家系统具有启发性, 它能够运用专家的经验知识对不确定的或不精确的问题进行启发式推理, 运用排除多余步骤或减少不必要计算的思维捷径和策略;专家系统具有透明性, 它能够向用户显示为得出某一结论而形成的推理链, 运用有关推理的知识(元知识)检查导出结论的精度、一致性和合理性, 甚至提出一些证据来解释或证明它的推理;专家系统具有灵活性, 它能够通过知识库的扩充和更新提高求解专门问题的水平或适应环境对象的某些变化,通过与系统用户的交互使自身的性能得到评价和监护。 3,专家系统适合解决的实际问题 专家系统是人工智能的一个应用,但由于其重要性及相关应用系统之迅速发展,它已是信息系统的一种特定类型。专家系统一词系由以知识为基础的专家系统(knowledge-based expert system)而来,此种系统应用计算机中储存的人类知识,解决一般需要用到专家才能处理的问题,它能模仿人类专家解决特定问题时的推理过程,因而可供非专家们用来增进问题解决的能力,同时专家们也可把它视为具备专业知识的助理。由于在人类社会中,专家资源确实相当稀少,有了专家系统,则可使此珍贵的专家知识获得普遍的应用。 专家系统技术广泛应用在工程、科学、医药、军事、商业等方面,而且成果相当丰硕,甚至在某些应用领域,还超过人类专家的智能与判断。其功能应用领

遗传算法和蚁群算法的比较

全局优化报告——遗传算法和蚁群算法的比较 姓名:玄玄 学号:3112054023 班级:硕2041

1遗传算法 1.1遗传算法的发展历史 遗传算法是一种模拟自然选择和遗传机制的寻优方法。20世纪60年代初期,Holland教授开始认识到生物的自然遗传现象与人工自适应系统行为的相似性。他认为不仅要研究自适应系统自身,也要研究与之相关的环境。因此,他提出在研究和设计人工自适应系统时,可以借鉴生物自然遗传的基本原理,模仿生物自然遗传的基本方法。1967年,他的学生Bagley在博士论文中首次提出了“遗传算法”一词。到70年代初,Holland教授提出了“模式定理”,一般认为是遗传算法的基本定理,从而奠定了遗传算法的基本理论。1975年,Holland出版了著名的《自然系统和人工系统的自适应性》,这是第一本系统论述遗传算法的专著。因此,也有人把1975年作为遗传算法的诞生年。 1985年,在美国召开了第一届两年一次的遗传算法国际会议,并且成立了国际遗传算法协会。1989年,Holland的学生Goldberg 出版了《搜索、优化和机器学习中的遗传算法》,总结了遗传算法研究的主要成果,对遗传算法作了全面而系统的论述。一般认为,这个

时期的遗传算法从古典时期发展了现代阶段,这本书则奠定了现代遗传算法的基础。 遗传算法是建立在达尔文的生物进化论和孟德尔的遗传学说基础上的算法。在进化论中,每一个物种在不断发展的过程中都是越来越适应环境,物种每个个体的基本特征被后代所继承,但后代又不完全同于父代,这些新的变化,若适应环境,则被保留下来;否则,就将被淘汰。在遗传学中认为,遗传是作为一种指令遗传码封装在每个细胞中,并以基因的形式包含在染色体中,每个基因有特殊的位置并控制某个特殊的性质。每个基因产生的个体对环境有一定的适应性。基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。在求解过程中,遗传算法从一个初始变量群体开始,一代一代地寻找问题的最优解,直到满足收敛判据或预先假定的迭代次数为止。 遗传算法的应用研究比理论研究更为丰富,已渗透到许多学科,并且几乎在所有的科学和工程问题中都具有应用前景。一些典型的应用领域如下: (1)复杂的非线性最优化问题。对具体多个局部极值的非线性最优化问题,传统的优化方法一般难于找到全局最优解;而遗传算法可以克服这一缺点,找到全局最优解。 (2)复杂的组合优化或整数规划问题。大多数组合优化或整数规划问题属于NP难问题,很难找到有效的求解方法;而遗传算法即特别

简单对比遗传算法与蚁群算法求解旅行商问题

简单对比遗传算法与蚁群算法求解旅行商问题

简单对比遗传算法与蚁群算法求解旅行商问题 1、旅行商 1.1 旅行商问题简介 旅行商问题(Traveling Saleman Problem)又称作旅行推销员问题、货郎担问题等,简称为TSP问题,是最基本的路线问题,该问题是在寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。最早的旅行商问题的数学规划是由Dantzig(1959)等人提出,规则虽然简单,但在地点数目增多后求解却极为复杂。 TSP问题最简单的求解方法是枚举法。它的解是多维的、多局部极值的、趋于无穷大的复杂解的空间,搜索空间是n个点的所有排列的集合,大小为(n-1)!。有研究者形象地把解空间比喻为一个无穷大的丘陵地带,各山峰或山谷的高度即是问题的极值。求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到山顶或谷底的过程。 1.2 求解TSP方法简介 旅行推销员的问题属于NP-Complete的问题,所以旅行商问题大多集中在启发式解法。Bodin(1983)等人将旅行推销员问题的启发式解法分成三种: 1.2.1 途程建构法(Tour Construction Procedures) 从距离矩阵中产生一个近似最佳解的途径,有以下几种解法: (1)最近邻点法(Nearest Neighbor Procedure):一开始以寻找离场站最近的需求点为起始路线的第一个顾客,此后寻找离最后加入路线的顾客最近的需求点,直到最后。 (2)节省法(Clark and Wright Saving):以服务每一个节点为起始解,根据三角不等式两边之和大于第三边之性质,其起始状况为每服务一个顾客后便回场站,而后计算路线间合并节省量,将节省量以降序排序而依次合并路线,直到最后。 (3)插入法(Insertion procedures):如最近插入法、最省插入法、随意插入法、最远插入法、最大角度插入法等。 1.2.2 途程改善法(Tour Improvement Procedure) 先给定一个可行途程,然后进行改善,一直到不能改善为止。有以下几种解法: (1)K-Opt(2/3 Opt):把尚未加入路径的K条节线暂时取代目前路径中K条节线,并计算其成本(或距离),如果成本降低(距离减少),则取代之,直到无法改善为止,K通常为2或3。 (2)Or-Opt:在相同路径上相邻的需求点,将之和本身或其它路径交换且仍保持路径方向性,并计算其成本(或距离),如果成本降低(距离减少),则取代之,直到无法改善为止。 1.2.3 合成启发法(Composite Procedure) 先由途程建构法产生起始途程,然后再使用途程改善法去寻求最佳解,又称为两段解法(two phase method)。有以下几种解法: (1)起始解求解+2-Opt:以途程建构法建立一个起始的解,再用2-Opt的方式改善途程,直到不能改善为止。

遗传算法及蚂蚁算法作业

(1)用遗传算法来做: 第一步:确定决策变量及其约束条件 s.t. -5<=x<=5 第二步:建立优化模型 第三步:确定编码方法,用长度为50位的二进制编码串来表示决策 变量x 第四步:确定解码方法 第五步:确定个体评价方法 个体的适应度取为每次迭代的最小值的绝对值加上目标函数值,即 第六步:确定参数 本题种群规模n=30,迭代次数ger=200,交叉概率pc=0.65,变异概率 pm=0.05 代码: clear all; close all; clc; tic; n=30; ger=200; pc=0.65; pm=0.05; % 生成初始种群

v=init_population(n,50); [N,L]=size(v); disp(sprintf('Number of generations:%d',ger)); disp(sprintf('Population size:%d',N)); disp(sprintf('Crossover probability:%.3f',pc)); disp(sprintf('Mutation probability:%.3f',pm)); % 待优化问题 xmin=-5; xmax=5; ymin=-5; ymax=5; f='-(2-exp(-(x.^2+y.^2)))'; [x,y]=meshgrid(xmin:0.1:xmax,ymin:0.1:ymax); vxp=x; vyp=y; vzp=eval(f); figure(1); mesh(vxp,vyp,-vzp); hold on; grid on; % 计算适应度,并画出初始种群图形x=decode(v(:,1:25),xmin,xmax);

相关文档
最新文档