USB接口电路电路

USB接口电路电路
USB接口电路电路

U S B接口电路电路-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

左边这张图,过了保险丝以后,接了一个470uF 的电容C16,右边这张图,经过开关后,接了一个100uF 的电容C19,并且并联了一个0.1uF 的电容C10。其中C16 和C19 起到的作用是一样的,C10 的作用和他们两个不一样,我们先来介绍这2 个大一点的电容。容值比较大的电容,理论上可以理解成水缸或者水池子,同时,大家可以直接把电流理解成水流,其实大自然万物的原理都是类似的。作用一,缓冲作用。当上电的瞬间,电流从电源处流下来的时候,不稳定,容易冲击电子器件,加个电容可以起到缓冲作用。就如同我们直接用水

龙头的水浇地,容易冲坏花花草草的。我们只需要在水龙头处加个

水池,让水经过水池后再缓慢流进草地,就不会冲坏花草,起到有

效的保护作用。

作用二,稳定作用。我们一整套电路,后级的电子器件功率大小、电

流大小也不一样,器件工作的时候,电流大小不是一直持续不变的。

比如后级有个器件还没有工作的时候,电流消耗是100mA,突然它参

与工作了,电流猛的增大到150mA 了,这个时候如果没有一个水缸的

话,电路中的电压(水位)就会直接突然下降,比如我们的5V 电压突然

降低到3V 了。而我们系统中有些电子元器件,必须高于一定的电压才

能正常工作,电压太低就直接不工作了,这个时候水缸就必不可少

了。电容会在这个时候把存储在里边的电流释放一下,稳定电压,当

然,随后前级的电流会及时把水缸充满的。有了这个电容,可以说我

们的电压和电流就会很稳定了,不会产生大的波动。这种电容常用的有以下三种:

图3-这三种电容是我们常用的三种电容,其中第一种个头大,占空间大,单位容量价格最便宜,第二种和第三种个头小,占空间小,性能一般也略好于第一种,但是价格也贵不少。当然,除了价格,还有一些特殊参数,在通信要求高的场合也要考虑很多,这里暂且不说。我们板子上现在用的是第一种,只要在符合条件的情况下,第一种470uF 的电容不到一毛钱,同样的耐压和容值,第二种和第三种可能得1 块钱左右。

电容的选取,第一个参数是耐压值的考虑。我们用的是5V 系统,电容的耐压值要高于5V,一般推荐1.5 倍到2 倍即可,有些场合稍微高于也可以。我们板子上用的是10V 耐压的。第二个参数是电容容值,这个就需要根据经验来选取了,选取的时候,要看这个电容起作用的这块系统的功率消耗情况,如果系统耗电较大,波动可能比较大,那么容值就要选大一些,反之,可以小一些。

刚开始同学们设计电路也模仿别人,别人用多大自己也用多大,慢慢积累。比如咱上边讲电容作用二的时候,电流从100mA 突然增大到150mA 的时候,其实即使加上这个电容,电压也会轻微波动,比如从5V 波动到4.9V,但是只要我们板子上的器件在电压4.9V 以上也可以正常工作的话,这点波动是没有问题的,但是如果不加或者加的很小,电压波动比较大,有些器件就会工作不正常了。但是如果加的太大,占空间并且价格也高,所以这个地方电容的选取多参考经验。

第二个电容,容值较小,是0.1uF,也就是100nF,是用来滤除高频信号干扰的。比如ESD,EFT 等。有一点大家要清楚,我们初中学过电容可以通交流隔直流,但是电容的参数对不同频率段的干扰的作用是不一样的。这个100nF 的电容,是我们的前辈根据干扰的频率段,根据板子的参数,根据电容本身的参数所总结出来的一个值。也就是说,以后大家在设计数字电路的时候,在电源处的去耦高频电容,直接用这个0.1uF 就可以了,不需要去计算。还有一点,就是大家看我们的电路图可以看出来,通常在电路中可能瞬间电流较大的地

方,会加一个大电容,比如在1602 液晶左上角的那个,靠近了单片机的VCC 以及1602 液晶背光的VCC,起到稳定电压的作用,在左上角电机和蜂鸣器位置有一个,也是起到稳定电压的作用。还有在所有的IC 器件的VCC 和GND 之间,都会放一个0.1uF 的高频去耦电容,特别在布板的时候,这个0.1uF 电容要尽可能

的靠近IC,尽量很顺利的将这个IC 的VCC 和GND 连到一起,这个大家先了解,细节以后再讨论。__

USB接口电路电路

U S B接口电路电路 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

左边这张图,过了保险丝以后,接了一个470uF 的电容C16,右边这张图,经过开关后,接了一个100uF 的电容C19,并且并联了一个的电容C10。其中C16 和C19 起到的作用是一样的,C10 的作用和他们两个不一样,我们先来介绍这2 个大一点的电容。容值比较大的电容,理论上可以理解成水缸或者水池子,同时,大家可以直接把电流理解成水流,其实大自然万物的原理都是类似的。作用一,缓冲作用。当上电的瞬间,电流从电源处流下来的时候,不稳定,容易冲击电子器件,加个电容可以起到缓冲作用。就如同我们直接用水龙头的水浇地,容易冲坏花花草草的。我们只需要在水龙头处加个水池,让水经过水池后再缓慢流进草地,就不会冲坏花草,起到有效的保护作用。 作用二,稳定作用。我们一整套电路,后级的电子器件功率大小、电流大小也不一样,器件工作的时候,电流大小不是一直持续不变的。比如后级有个器件还没有工作的时候,电流消耗是100mA,突然它参与工作了,电流猛的增大到150mA 了,这个时候如果没有一个水缸的话,电路中的电压(水位)就会直接突然下降,比如我们的5V 电压突然降低到3V 了。而我们系统中有些电子元器

件,必须高于一定的电压才能正常工作,电压太低就直接不工作了,这个时候 水缸就必不可少了。电容会在这个时候把存储在里边的电流释放一下,稳定电 压,当然,随后前级的电流会及时把水缸充满的。有了这个电容,可以说我们 的电压和电流就会很稳定了,不会产生大的波动。这种电容 常用的有以下三种: 图3-这三种电容是我们常用的三种电容,其中第一种个头大,占空间大,单位容量价格最便宜,第二种和第三种个头小,占空间小,性能一般也略好于第一种,但是价格也贵不少。当然,除了价格,还有一些特殊参数,在通信要求高的场合也要考虑很多,这里暂且不说。我们板子上现在用的是第一种,只要在符合条件的情况下,第一种470uF 的电容不到一毛钱,同样的耐压和容值,第二种和第三种可能得1 块钱左右。 电容的选取,第一个参数是耐压值的考虑。我们用的是5V 系统,电容的耐压值要高于5V,一般推荐倍到2 倍即可,有些场合稍微高于也可以。我们板子上用的是10V 耐压的。第二个参数是电容容值,这个就需要根据经验来选取了,选取的时候,要看这个电容起作用的这块系统的功率消耗情况,如果系统耗电较大,波动可能比较大,那么容值就要选大一些,反之,可以小一些。 刚开始同学们设计电路也模仿别人,别人用多大自己也用多大,慢慢积累。比如咱上边讲电容作用二的时候,电流从100mA 突然增大到150mA 的时候,其实即使加上这个电容,电压也会轻微波动,比如从5V 波动到,但是只要我们板子上的器件在电压以上也可以正常工作的话,这点波动是没有问题的,但是如果不加或者加的很小,电压波动比较大,有些器件就会工作不正常了。但是如果加的太大,占空间并且价格也高,所以这个地方电容的选取多参考经验。

电路图常用英文缩写大全

UREGISTERED未注册 SW开关 UI用户接口BSIC专用集成电路 BAND频段 BAND-SEL频段选择/切换 BUFFER缓冲放大器 BUS通信总线 DET检测 Circuit Diagram电路原理图 Blick Diagram方框图 PCB板图 LayoutPCB元件分布图 Receiver收信机 Transmitter发信机 Interface界面,电子电路基础知识2,接口 Power Supply电源系统 射频电路 A模拟信号 AFC自动频率控制 AGC自动增益控制 APC/AOC自动功率控制 AGND模拟地 ANT天线 ANTSW天线切换开关 AM调幅 BPF带通滤波器 CP-TX RXVCO控制输出接收锁相电平 CP-TX TXVCO控制输出发射锁相电平 DUPLEX / DIPLEX双工器 Duplex Sapatation双工间隔 DCS-CS发射机控制信号:控制TXVCO与I/Q调制器FILFTER滤波器 Gen Out信号发生器 GAIN增益 GSM-PINDIODE功率放大器输出匹配电路切换控制信号GSM-SEL频段切换控制信号之一 G-TX-VCO900MHZ发射VCO切换控制 IF中频 IFLO中频本振 LO本振 LOCK锁定 MODFreq调制频率 Mixed Second第二混频信号

PLL锁相环路 PADRV功率放大器驱动 TXRF发射射频 TXEN发射使能 TXENT发射供电 TXIN发送I信号负 TXIP发送I信号正 TXON发送开 TXQN发送Q信号负 TXQP发送Q信号正 TXI发射基带信号 TX-DEY-OUT发射时序控制输出 TXQ发射基带信号 UHFVCO超高频/射频VCO VHFVCO甚高频/中频VCO SHFVCO专用射频VCO(NOKIA) VCO 压控振荡器 VCTCXO温补压控振荡器 AMP放大器 CTL-GSM频段控制信号 Diplex双工滤波器 SUPLEX双工器作用相当于天线开关 LPF低通滤波器 MAINVCO主振荡器(Motorola) MIX混频器 Anternna天线 RFConnector射频接口 BALUN平衡于一不平衡转换 Direct Coner Siorl Lionear Receicer直接变换的线性接收机Carrier载波调制 POWCONTROL功率控制 POWLEV功放级别 RFIN/OFF高频输入/输出 RADIO射频本振 RFADAT射频频率合成器数据 RFAENB射频频率合成器启动 RSSI接收信号强度指示 RX接收 RXIN接收输出 RXON接收机启动/开关控制 RXOUT接收输出 RXEN接收使能 RXIFN接收中频信号负

主板USB接口电路检修方法

主板USB接口电路检修方法 一、滤波电容损坏 检测滤波电容之前应进行目测,观察电容是否鼓包、漏液或是烧坏等,若目测没有发现明显问题再用万用表测量。 首先将万用表调至欧姆档的20K档位上,然后用黑色表笔接触电容负极,用红色表笔接触电容正极,正常时屏幕显示值应从“000”开始逐渐增加,最后显示为“1”。 二、贴片电感损坏 贴片电感损坏会导致USB接口电路数据传输异常,最终便USB接口无法使用。检测时将万用表调至二极管档,然后两只表笔分别接触电感两端,若显示“0”则说明电感内部断路,若数字一直跳动则说明电感内部接触不良。 三、保险电感损坏 保险电感损坏会无法给USB接口供电,至使其无法使用。保险电感测量方法与贴片电感相同。 某品牌超人4500电脑,故障现象是前置USB接口不能使用,检查发现:在我的电脑属性里设备管理器中的USB驱动安装正常,但是把U盘等移动设备插入前置USB接口时,系统没有任何反应,和没有插入设备时一样;不过把U盘插入后置USB接口时,却能够发现新硬件,提示安装相应的驱动程序。由此可以判断USB驱动和主板的驱动安装没有问题,故障是出在USB接口的硬件方面,如跳线插针错误,连线断开,USB接口内的簧片变形等。 拆开机箱,仔细检查前置USB跳线的跳线插接位置,没有发现问题;并用万用表测试USB接口的供电极性,电压为5.06V,也是正确的,看来前置USB接口的极性正确,供电电压正常。难道会是连接线的问题?我把连接线仔细检查一遍,全部导通。无奈之余,只好拆下前面板。前面板上有一个Microphone接口,一个Line Out,一个USB接口,还有一个S-Video 接口和一个Audio In接口,不过在这个机型上没有使用,都焊接在一小块电路板上。其中USB 接口,通过四芯排线连接在主板上的插针上。在前置USB接口的四根连线中接有F1、F2、 F3、F4四个保险电阻,并且数据+和数据-两路还各有一个滤波电容C2、C3,用来滤除干扰,和两个起保护作用的二极管D1、D2。 如果USB设备不能用,有这么几种可能原因: 1. F1-F4中的保险电阻有一个或多个断路,造成电源供应中断或数据中断。 2. 滤波电容C2、C3短路,导致数据接地。 3. D1,D2中有一个或全部对地短路。 根据以上的分析,我用万用表测试F1-F4的通断情况,没有发现问题。再测试C2,C3 也没有发现短路情况。最后在测试D1,D2时,发现这两个二极管的完全导通。因为二极管击穿导通后,将数据-和数据+的信号直接进地,所以才导致前面的USB接口不能识别U盘等移动设备。 由电路分析D1和D2是起保护作用的,当数据+和数据-的信号强度过大时或者因电路故障有过高的电压输入时,这时D1和D2将导通,将强信号接地,这时起到保护作用。所以这两个三极管即使不用,也不会有什么严重后果。最后用热风焊机把这两只作怪的小二极管吹去,再接入线路中测试,OK。 以前不少主机出现过这种情况:移动硬盘不另加扩展电流接口就能在后置USB接口上能够使用,而在前置USB接口上不能使用。我一直向顾客解释是因为前置USB接口和后置USB接口的供电方法不同,同时前置USB接口要经过多次连接,其间有一定的接触电阻,导致供电电流不足所致。现在看来,很有可能是因为保险电阻限流造成供电电流不足,或者是保护二极管击穿短路致使数据接地。(天极)

硬件电路图

1.2 各模块电路说明
1.2.1 数码管显示模块
图 1.1 数码管显示模块电路
数码管的段信号由 FPGA 直接驱动,JP9,JP10 代表两个共阴极数码管的 A、B、C、D、E、F、Dp 段;
1.2.2 A/D 转换模块

图 1.2 A/D 转换模块电路
AD9288 是采用了并行双通道独立 8 位、 高速采样 (100MHZ) 的 A/D 器件, 模拟信号分别通过 INPUT_A、 INPUT_B 输入,时钟输入采用 FPGA 控制的 10-100MHZ 时钟信号,数据采用 8 位并行输出。FPGA 控制采 样率,此实验可以很快的验证采样定律。注意在使用该模块的过程中应该将入信号应该为调节到 0 到 1V 的 电压范围内的高频交流信号。
1.2.3 D/A 转换模块
图 1.3 D/A 转换模块电路
AD9767 是美国 ADI 公司出品的高速数模转换电路, 在单芯片上集成了 2 个独立的 14 位高速 D/A 转换 器。
1.2.4 以太网模块
图 1.4 以太网模块电路
该模块为百兆以太网设计模块,FPGA 通过排线连接对以太网数据进行读写和控制。

1.2.5 VGA 接口模块
图 1.5 VGA 模块电路
该模块采用 ADV7123 实现对 VGA 时序控制,完成画面显示。
1.2.6 PS/2 接口模块
图 1.6 PS/2 模块电路
该模块设计有两个 PS/2 接口,都可以接 PS/2 设备,其时钟线和数据线通过排线与 FPGA 相连。

常见串口接口电路设计集锦

常见串口接口电路设计集锦 六种常用串口接口电路1、并口接口(分立元件) 适用于Windows 95/98/Me 操作系统。这个电路与FMS 随软件提供的电路比多了一个200K 的电阻,这个主要是为了与JR 的摇控器连接,因为JR 的摇控器教练口好象是集电极开路设计的,需要加一只上拉电阻才能正常工作。 不过电路还是满简单的,用的元件也很少,很适合无线电水平不太高的朋友们 制作,只是不能用于Win2000/XP 上有点让人遗憾。 2、串口接口(分立元件)字串5 适用于Windows 95/98/Me 操作系统,电路也不是很复杂,当然元件比并口电路多了一些,而且串口的外壳比并口小很多,如何把这些元件都放到小 小的外壳里免不了要大家好好考虑一下了。当做体积小也是它的最大的优点, 而且不用占用电脑并口,因为现在还有一些打印机还是要用并口的。缺点同样 是不支持Win2000/XP。 3、串行PIC 接口(使用PIC12C508 单片机)字串9 适用于Windows 95/98/Me/2000/XP 操作系统。电路简单,只是用到MicroChip 公司的PIC12C508 型单片机,免不了要用到编程器向芯片里写程序了,这个东西一般朋友可能没有,不过大多卖单片机的地方都有编程器,你只 要拿张软盘把需要用的HEX 文件拷去让老板帮你写就可以了。这个接口最大 的优点就是支Win2000/XP 操作系统,还可以用PPJOY 这个软件来用摇控器虚拟游戏控制器玩电脑游戏。 4、25 针串行PIC 接口(使用PIC12C508 单片机) 适用于Windows 95/98/Me/2000/XP 操作系统。电路同9 针的接口基本一样,只不过是接25 针串口的,现在用的不是很多了。

USB接口电路分析

USB接口电路分析 USB(Universal serial bus)的中文含义是通用串行总线。USB接口的特点是速度快、兼容性好、不占中断、可以串接、支持热插拔等。目前USB接口有两种标准,分别为USB1.1和USB2.0. 其中USB1.1标准接口的数据传输速度为12Mbps,USB2.0标准接口的数据传输速度为480Mbps。主板通常集成4-8个USB接口,并且在主板上还有USB扩展接口,通常USB接口使用一个4针插头作为标准插头,通过USB 插头,采用菊花链的形式可以把所有的外设连接起来,并且不会损失带宽。USB接口电路主要由USB接口插座、电感、滤波电容、电阻排、保险电阻、南桥芯片等组成。USB 接口电路的VCC0和VCC1供电针脚通过保险电阻和电感连接到电源插座的第4针脚,有的主板在供电电路中还设置有一个供电跳线,通过跳线可以选择待机供电或VCC5供电。如果选择待机供电,则在关机的状态下,USB接口也有工作电压。USB接口电路中的保险电阻用来防止USB 设备发生短路时烧坏ATX电源,目前的主板一般使用贴片电阻或高分子PTC热敏电阻作为保险电阻。高分子PTC热敏电阻可以在出现短路情况时,自动升高内部电阻,起到保护的作用,同时在故障排除后,又会自动恢复到低电阻状态继续工作。USB接口电路数据线路中的贴片电感

和电阻排的作用是:在数据传输时起到缓冲的作用(抗干扰)。这个电阻排通常采用阻值为22欧或33欧的电阻。而数据线路中连接的电容排和电阻排起滤波的作用,可改善数据传输质量,电容排的容量一般为47PF,有的为100PF。 USB接口的工作原理是:当电脑主机的USB接口接入USB设备时,通过USB接口的5V供电为UDB设备供电,设备得到供电后,内部电路开始工作,并向+DATA针输出高电平信号(—DATA为低电平)。同时主板南桥芯片中的USB模块会不停的检测USB接口的+—DATE的电压。当南桥芯片中的USB模块检测到信号后,就认为USB设备准备好,并向USB设备发送准备好信号。接着USB设备的控制芯片就通过USB接口向电脑主板的USB总线发送USB设备的数据信息。电脑主板接收后,操作系统就会提示发现新硬件,并开始安装USB设备的驱动程序,驱动安装完成后,用户在系统中看见并使用USB设备。

原理图常用缩写

原理图常用缩写 很多,掌握了解这些缩写对我们分析电路帮助很大。下面,介绍在手机中较常使用的一些英文符号,供分析电路和维修时参考。 A/D:或ADC: 模数转换。 AC:交流。 ADDRESS:地址线。 ADC-DRIVE:自动功率检测 AF:音频。 AFC:自动频率控制,控制基准频率时钟电路。在GSM手机电路中,只要看到AFC字样,则马上可以断定该信号线所控制的是13MHz电路。该信号不正常则可能导致手机不能进入服务状态,严重的导致手机不开机。有些手机的AFC标注为VCXOCONT。

AGC:自动增益控制。该信号通常出现在接收机电路的低噪声放大器,被用来控制接收机前端放大器在不同强度信号时给后级电路提供一个比较稳定的信号。 ALERT:告警。属于接收音频电路,被用来提示用户有电话进入或操作错误。 ALRT:铃声电路 AM:调幅。 AMP:放大器。常用于手机的电路框图中。 AMPS:先进的移动电话系统。 ANT:天线。用来将高频电磁波转化为高频电流或将高频信号电流转化为高频电磁波。在电路原理图中,找到ANT,就可以很方便地找到天线及天线电路。 ANTSW:开线开关控制信号。 AOC:自动功率控制。通常出现在手机发射机的功率放大器部分(以摩

托罗拉手机比较常用)。 AOC-DRIVE:自动功率控制参考电平。 ASIC:专用应用集成电路。在手机电路中,它通常包含多个功能电路,提供许多接口,主要完成手机的各种控制。 AUC:鉴权中心。 AUDIO:音频。 AUX:辅助。 AVCC:音频供电。 BACKLIGHT;背光。 BALUN:平衡/不平衡转换。 BAND:频段。 BAND-SELECT:频段选择。只出现在双频手机或三频手机电路中。该

USB接口EMC设计方案

U S B2.0接口E M C设计方案 一、接口概述 USB?通用串行总线(英文:Universal?Serial?Bus,简称USB)是连接外部装置的一个串口汇流排标准,在计算机上使用广泛,但也可以用在机顶盒和游戏机上,补充标准On-The-Go(?OTG)使其能够用于在便携装置之间直接交换资料。USB接口的电磁兼容性能关系到设备稳定行与数据传输的准确性,赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计USB2.0接口的EMC设计方案 二、接口电路原理图的EMC设计 本方案由电磁兼容设计平台(EDP)软件自动生成 1. USB 2.0接口防静电设计 图1 USB 2.0接口防静电设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC问题。 电路EMC设计说明: (1) 电路滤波设计要点: L1为共模滤波电感,用于滤除差分信号上的共模干扰; L2为滤波磁珠,用于滤除为电源上的干扰; C1、C2为电源滤波电容,滤除电源上的干扰。 L1共模电感阻抗选择范围为60Ω/100MHz ~120Ω/100MHz,典型值选取90Ω /100MHz; L2磁珠阻抗范围为100Ω/100MHz ~1000Ω/100MHz,典型值选取600Ω/100MHz ;磁珠在选取时通流量应符合电路电流的要求,磁珠推荐使用电源用磁珠; C1、C2两个电容在取值时要相差100倍,典型值为10uF、0.1uF;小电容用滤除电源上的高频干扰,大电容用于滤除电源线上的纹波干扰; C3为接口地和数字地之间的跨接电容,典型取值为1000pF,耐压要求达到2KV以上,C3容值可根据测试情况进行调整; (2)电路防护设计要点 D1、D2和D3组成USB接口防护电路,能快速泄放静电干扰,防止在热拔插过程中产生的大量干扰能量对电路进行冲击,导致内部电路工作异常。 D1、D2、D3选用TVS,TVS反向关断电压为5V;TVS管的结电容对信号传输频率有一定的影响,USB2.0的TVS结电容要求小于5pF。 接口电路设计备注: 如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连; 如果设备为非金属外壳,那么接口地PGND与单板地GND直接电气连接。 三、连接器设计 本方案由电磁兼容设计平台(EDP)软件自动生成

(完整word版)各种接口针脚定义大全,推荐文档

3.5mm插头 最常见的立体声耳机分三层,标准分布为“左右地红白”(从端部到根部依次是左声道、右声道、地线,其中左声道常用红色线皮,右声道常用白色的)。 最常见的是银白色的和铜黄色的,银色的是铜镀银,铜黄色的就是铜。由于银的稳定性和电子工程性优于铜,所以铜镀上银后可以升级使用该插头设备的用户体验。 USB接口 USB是一种常用的pc接口,他只有4根线,两根电源两根信号,故信号是串行传输的,usb接口也称为串行口,usb2.0的速度可以达到480Mbps。可以满足各种工业和民用需要.USB接口的输出电压和电流是: +5V 500mA 实际上有误差,最大不能超过+/-0.2V 也就是4.8-5.2V 。usb接口的4根线一般是下面这样分配的,需要注意的是千万不要把正负极弄反了,否则会烧掉usb设备或者电脑的南桥芯片:黑线:gnd 红线:vcc 绿线:data+ 白线:data-

USB接口定义图 USB接口定义颜色 一般的排列方式是:红白绿黑从左到右 定义: 红色-USB电源:标有-VCC、Power、5V、5VSB字样 白色-USB数据线:(负)-DATA-、USBD-、PD-、USBDT- 绿色-USB数据线:(正)-DATA+、USBD+、PD+、USBDT+ 黑色-地线: GND、Ground USB接口的连接线有两种形式,通常我们将其与电脑接口连接的一端称为“A”连接头,而将连接外设的接头称为“B”连接头(通常的外设都是内建USB数据线而仅仅包含与电脑相连的“A”连接头)。 USB接口是一种越来越流行的接口方式了,因为USB接口的特点很突出:速度快、兼容性好、不占中断、可以串接、支持热插拨等等,

USB接口内部结构_IC

USB接口电路 OE SPEED VMQFSEO VPO D + RCV< 二 VP VM 1、USB1.1协议对IO 口直流特性的要求: 2、Virtex-5 10 : 1) LVTTL直流特性

2)LVCMOSLVDCI 和LVDCI_DV2 直流特性: 4、USB1T11 芯片:

DC Electrical Characteristics 耐小注阿苗) Over fnflCTFTiiiTiflniiKil wnflfl d auppty vottaga and Gparw^ng frw air %rnpBrdtuni (urisw rtti-wvwB noted} *匸匚■ NOV so 3,6V ___________________________________________________________________________________________________________________________ 1 Symbol PsirBTiMtr T*it Conn hie n

单片机硬件电路设计

单片机应用设计

概述 单片机是一种大规模的具有计算机基本功能的单片 单片机是一种大规模的具有计算机基本功能的单片集成电路。可以与少量外围电路构成一个小而完善的计算机系统。芯片内置和外围的电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 单片机具有体积小、功耗低、控制功能强、扩 单片机具有体积小、功耗低、控制功能强、扩展灵活、使用方便等优点,广泛应用于仪器仪表、家用电器、医用设备、航空航天、通信产品、智能玩具、汽车电子、专用设备的智能化管理及过程控制等领域。 制等领域。

单片机类型 集中指令集(CISC)和精简指令集(RISC)–采用CISC结构的单片机数据线和指令线分时复 用,即所谓冯.诺伊曼结构。它的指令丰富,功 能较强,但取指令和取数据不能同时进行,速度 受限,价格亦高。 –采用RISC结构的单片机,数据线和指令线分离 ,即所谓哈佛结构。这使得取指令和取数据可同 时进行,且由于一般指令线宽于数据线,使其指 令较同类CISC单片机指令包含更多的处理信息 ,执行效率更高,速度亦更快。同时,这种单片 机指令多为单字节,程序存储器的空间利用率大 大提高,有利于实现超小型化。

常用的几个系列单片机 MCS-51及其兼容系列: –英特尔公司的MCS-51系列单片机是目前应 用最广泛的8位单片机之一,并且ATMEL、 PHILIPS、ADI、MAXIM、LG、 SIEMENS等公司都有其兼容型号的芯片。 这个系列的单片机具有运算与寻址能力强, 存储空间大,片内集成外设丰富,功耗低等 优点,其中大部分兼容芯片都含有片内 FLASH程序存储器,价格便宜。适合应用于 仪器仪表、测控系统、嵌入系统等开发。

USB接口EMC设计方案

U S B接口E M C设计方案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

接口E M C设计方案一、接口概述 USB通用串行总线(英文:UniversalSerialBus,简称USB)是连接外部装置的一个串口汇流排标准,在计算机上使用广泛,但也可以用在机顶盒和游戏机上,补充标准On-The-Go(OTG)使其能够用于在便携装置之间直接交换资料。USB接口的电磁兼容性能关系到设备稳定行与数据传输的准确性,赛盛技术应用电磁兼容设计平台(EDP)软件从接口原理图、结构设计,线缆设计三个方面来设计接口的EMC设计方案 二、接口电路原理图的EMC设计 本方案由电磁兼容设计平台(EDP)软件自动生成 接口防静电设计 图接口防静电设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC问题。 电路EMC设计说明: (1) 电路滤波设计要点: L1为共模滤波电感,用于滤除差分信号上的共模干扰; L2为滤波磁珠,用于滤除为电源上的干扰; C1、C2为电源滤波电容,滤除电源上的干扰。

L1共模电感阻抗选择范围为60Ω/100MHz~120Ω/100MHz,典型值选取90Ω /100MHz; L2磁珠阻抗范围为100Ω/100MHz~1000Ω/100MHz,典型值选取600Ω/100MHz;磁珠在选取时通流量应符合电路电流的要求,磁珠推荐使用电源用磁珠; C1、C2两个电容在取值时要相差100倍,典型值为10uF、;小电容用滤除电源上的高频干扰,大电容用于滤除电源线上的纹波干扰; C3为接口地和数字地之间的跨接电容,典型取值为1000pF,耐压要求达到2KV 以上,C3容值可根据测试情况进行调整; (2)电路防护设计要点 D1、D2和D3组成USB接口防护电路,能快速泄放静电干扰,防止在热拔插过程中产生的大量干扰能量对电路进行冲击,导致内部电路工作异常。 D1、D2、D3选用TVS,TVS反向关断电压为5V;TVS管的结电容对信号传输频率有一定的影响,的TVS结电容要求小于5pF。 接口电路设计备注: 如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连; 如果设备为非金属外壳,那么接口地PGND与单板地GND直接电气连接。三、连接器设计 本方案由电磁兼容设计平台(EDP)软件自动生成 USBAF连接器USB信号排序设计 图1USB连接器结构设计 连接器USB与机体的搭接方式:

各种接口标准图解大全

1.DVI接口基础知识 DVI全称为Digital Visual Interface,是1999年由Silicon Image、Intel(英特尔)、Compaq(康柏)、IBM、HP(惠普)、NEC、Fujitsu(富士通)等公司共同组成的数字显示工作组 DDWG(Digital Display Working Group)推出的接口标准,其外观是一个24针的接插件。显示设备采用DVI接口具有主要有以下两大优点: 一、速度快:DVI传输的是数字信号,数字图像信息不需经过任何转换,就会直接被传送到显示设备上,因此减少了数字→模拟→数字繁琐的转换过程,大大节省了时间,因此它的速度更快,有效消除拖影现象,而且使用DVI进行数据传输,信号没有衰减,色彩更纯净,更逼真。 二、画面清晰:计算机内部传输的是二进制的数字信号,使用VGA接口连接液晶显示器的话就需要先把信号通过显卡中的D/A(数字/模拟)转换器转变为R、G、B三原色信号和行、场同步信号,这些信号通过模拟信号线传输到液晶内部还需要相应的A/D(模拟/数字)转换器将模拟信号再一次转变成数字信号才 能在液晶上显示出图像来。在上述的D/A、A/D转换和信号传输过程中不可避免会出现信号的损失和受到干扰,导致图像出现失真甚至显示错误,而DVI接口无需进行这些转换,避免了信号的损失,使图像的清晰度和细节表现力都得到了大大提高。 区分不同DVI标准 DVI接口有多种规格,分为DVI-A、DVI-D和DVI-I,它是以Silicon Image 公司的PanalLink接口技术为基础,基于TMDS(Transition Minimized Differential Signaling,最小化传输差分信号)电子协议作为基本电气连接。TMDS是一种微分信号机制,可以将象素数据编码,并通过串行连接传递。显卡产生的数字信号由发送器按照TMDS协议编码后通过TMDS通道发送给接收器,经过*送给数字显示设备。一个DVI显示系统包括一个传送器和一个接收器。传送器是信号的来源,可以内建在显卡芯片中,也可以以附加芯片的形式出现在显卡PCB上;而接收器则是显示器上的一块电路,它可以接受数字信号,将其*并传递到数字显示电路中,通过这两者,显卡发出的信号成为显示器上的图象。 DVI-D接口

USB电路保护图

车载ECU的安全性能要求很高,在电气、物理、化学等各方面,各大汽车厂商通常都有自己严格的标准。一般情况下,车载ECU的外部接口都要有各种故障保护电路,其中最重要的莫过于对车载12V电源或对地发生短路时的保护电路。由于USB接口可以直接输出5伏电源,所以短路保护显得尤为重要。本文设计的保护电路可以实现对USB电源输出线的有效保护,无论USB电源输出线VBUS发生对12V电源还是对地短路,均不影响车载ECU内部电路的正常工作,实现了本质安全级的短路保护。 1、前言 为了保证行车安全,车载ECU的安全性能要求很高,在设计时便要保证故障发生率尽量低。作为目前应用最为广泛的移动外设与主机间通讯接口,USB(Universal Serial Bus)具有成本低、使用简单、支持即插即用、易于扩展等特点,在车载娱乐和存储设备上获得了广泛的应用。因为USB接口提供了内置电源,可提供 500mA以上的电流,对于一些功率较大的设备,如移动硬盘等,其瞬时驱动电流则可达到1A以上。如果车载ECU上带有像USB总线这种可以直接输出电源的接口,为防止接口电路发生对电源或对地短路时损坏机体,其接口部分通常都应具有保护电路,以便执行故障自诊断和保护功能。当系统产生故障时,它能在存储体中自动记录故障代码并采用保护措施,防止系统损坏,避免引起安全事故。 2、电路设计 利用比较器并结合外围电路,本文设计了一种可以自动探测USB电源输出线是否发了对12V电源或地短路,并且可以在短路故障发生时自动切断电源供应的保护电路。另外,如果探测到联接设备不在支持的USB设备之列,系统也可以借助本电路主动断开电源供应,并自动根据设备的连接状态实现对电源供应的控制。具体电路如图1所示。 图1 USB VBUS短路保护电路 图中MN1和MN2是USB电源通道上的两个MOSFET,用于控制5伏电源的输出,它们的G端都连接到比较器的输出端上。比较器的正端电位值受 3.3伏和VBUS共同影响,负端电位值由Umid通过电阻分压来决定,Umid的值总是与VCC5V和VBUS中的大者相同。本充分发挥二极管的正向导通和反向截止的作用,并对MOS管中快恢复二极管加以利用,利用一个比较器便可以构成一个窗口比较器。如果VBUS上的电压落在窗口之外(例如12V供电电压或地电平),那么比较器输出低电平,关断供电线的MOS管。这样既使12V电压无法进入系统内部,也防止了系统5V供电因为对地短路而发生过流,起到了保护系统不受短路侵扰的作用。 3、功能论证 假设比较器的两个输入端电位分别为U+和U-,输出电位为UO,二极管D1和D2的电压分别为UD1 和UD2,可知: U- = (Umid—UD1)R2/ (R2+R3);(1)正常工作的情况下,U- < U+,UO为高电平,MOS管处于打开状态。下面按照VBUS上电压值的大小分两种情况进行讨论,分析其值为多大时将使比较器输出发生反转,关断电源输出。 a、如果VBUS电压大于5V,因为二极管D2的反向截止作用,有: U+ =3.3V; (2) 又因为MN1和MN2中快恢复二极管的作用: VBUS=Umid; (3) 当U- > U+ 时,比较器输出电平发生反转,即: (Umid—UD1)R2/(R2+R3)> 3.3 (4)

USB接口电路电路

左边这张图,过了保险丝以后,接了一个470uF 的电容C16,右边这张图,经过开关后,接了一个100uF 的电容C19,并且并联了一个0.1uF 的电容C10。其中C16 和C19 起到的作用是一样的,C10 的作用和他们两个不一样,我们先来介绍这2 个大一点的电容。容值比较大的电容,理论上可以理

解成水缸或者水池子,同时,大家可以直接把电流理解成水流,其实 大自然万物的原理都是类似的。作用一,缓冲作用。当上电的瞬间, 电流从电源处流下来的时候,不稳定,容易冲击电子器件,加个电容 可以起到缓冲作用。就如同我们直接用水龙头的水浇地,容易冲坏花 花草草的。我们只需要在水龙头处加个水池,让水经过水池后再缓慢 流进草地,就不会冲坏花草,起到有效的保护作用。 作用二,稳定作用。我们一整套电路,后级的电子器件功率大小、电流 大小也不一样,器件工作的时候,电流大小不是一直持续不变的。比如 后级有个器件还没有工作的时候,电流消耗是100mA,突然它参与工作了,电流猛的增大到150mA 了,这个时候如果没有一个水缸的话,电路中的 电压(水位)就会直接突然下降,比如我们的5V 电压突然降低到3V 了。 而我们系统中有些电子元器件,必须高于一定的电压才能正常工作,电 压太低就直接不工作了,这个时候水缸就必不可少了。电容会在这个时 候把存储在里边的电流释放一下,稳定电压,当然,随后前级的电流会 及时把水缸充满的。有了这个电容,可以说我们的电压和电流就会很稳 定了,不会产生大的波动。这种电容 常用的有以下三种: 图3-这三种电容是我们常用的三种电容,其中第一种个头大,占空间大,单位容量价格最便宜,第二种和第三种个头小,占空间小,性能一般也略好于第一种,但是价格也贵不少。当然,除了价格,还有一些特殊参数,在通信要求高的场合也要考虑很多,这里暂且不说。我们板子上现在用的是第一种,只要在符合条件的情况下,第一种470uF 的电容不到一毛钱,同样的耐压和容值,第二种和第三

USB接口针脚定义及详细说明(附图文说明)

USB接口针脚定义及详细说明(附图文说明) 鉴于近期常有客户向我司咨询关于USB接口针脚定义及图文解释,将USB针脚资料进行整理上传,供客户参阅,详情如下: 一、USB接口定义: 众所周知,USB接口金属触点为4根金属线,两根电源线和两根数据信号线,故信号是串行传输的。因此也被称为串行口,标准的USB2.0接口其数据传输速度可达480Mbps。可以很好的满足工业和民用的需要。USB接口的输出电压和电流是:+5V 500mA 实际运用中存有正负0.2v的误差,也就是4.8-5.2V 。usb接口的4根线一般是红白绿黑从左到右这样分配的,具体针脚定义如下所示,特提醒切勿将正负极弄反了,否则会损坏USB设备或者计算机南桥芯片,从而影响设备正常使用。 二、USB引脚定义: 针脚名称说明接线颜色 1 VCC + 5V电压红色 2 D- 数据线负极白色 3 D+ 数据线正极绿色 4 GND 接地黑色 三、MiniUSB接口定义: 一般的排列方式是:红白绿黑从左到右 定义: 红色-USB电源:标有-VCC、Power、5V、5VSB字样 绿色-USB数据线:(正)-DATA+、USBD+、PD+、USBDT+ 白色-USB数据线:(负)-DATA-、USBD-、PD-、USBDT+ 黑色-地线: GND、Ground

四、MiniUSB引脚定义: 针脚名称说明接线颜色 1 VCC + 5V电压红色 2 D- 数据线负极白色 3 D+ 数据线正极绿色 4 ID permits distinction of Micro-A- and Micro-B-Plug none Type A:connected to Ground Type B:not connected 5 GND 接地黑色

开发板硬件结构

第一章 开发板硬件结构 OpenM3V 开发板,是作者专门为本书设计的硬件原型, 采用了 ST 公司基于M3核的STM32F103VB , 可通过ISP 下载及JTAG 方式调试和下载。 开发板上提供了众多的功能部件,都是工程师在实际应用中常用和必需要使用的模块,充分使用这 些模块能尽 可能的发挥 STM32系列的性能。这些功能模块包括有键盘和 LED 灯功能部件;I2C 方式接口的 EEPROM 储存器电路;两个 RS232串口电路;简单AD 采集电路,语音AD 采集电路;CAN 接口电路;USB 接口电路;JTAG 接口电路;后备供电电路; SPI 方式接口的FLASH 储存器接口电路模块,SPI 方式接口的 SD 卡电路,SPI 方式接口的128*64点阵液晶接口电路,SPI 方式接口 2.4G 无线通信模块接口电路, SPI 方式 接口的779 MHz 至928MHz 频段无线模块接口电路; PWM 方式调光电路,PWM 方式语音输出电路,连接 直流无刷电机驱动板的接口电路等众多功能模块电路,同时结合灵活的跳线,所有的 IO 口都可以单独引 出,极大的方便读者进行嵌入式开发实验。 1.1电路原理图 OpenM3V 开发板硬件原理图如图 1-1-1,1-1-2,1-1-3,1-1-4,1-1-5所示。 图1-1-1 芯片最小系统部分 Ila 包 卜 .nIJI I V _ I 1 i J- 亠 一 ? k F

图 1-1-3 1.2 原理图说明 1.2.1 电源电路 STM32系列的工作电压(VDD )为2.0?3.6V 。通过内置的电压调节器提供所需的 1.8V 电源。当主 ■f ■! .'-.Ijl 尸工

SD卡接口设计[附硬件电路和程序]

SD卡接口设计[附硬件电路和程序] 1标准 SD卡标准是SD卡协会针对可移动存储设备设计专利并授权的一种标准,主要用于制定卡的外形尺寸、电气接口和通信协议。 1.1SD卡引脚功能 SD卡的外形如图1所示,引脚功能如表1所列。SD卡的引脚具有双重功能,既可工作在SD模式,也可工作在SPI模式。不同的模式下,引脚的功能不同。 SD模式多用于对SD卡读写速度要求较高的场合,SPI模式则是以牺牲读写速度换取更好的硬件接口兼容性。由于SPI协议是目前广泛流行的通信协议,大多数高性能单片机都配备了SPI硬件接口,硬件连接相对简单,因此,在对SD卡读写速度要求不高的情况下,采用SPI模式无疑是一个不错的选择。

1.2SPI模式 SPI模式是一种简单的命令响应协议,主控制器发出命令后,SD卡针对不S同的命令返回对应的响应。 SD卡的命令列表都是以CMD和ACMD开头,分别指通用命令和专用命令,后面接命令的编号。例如,CMD17就是一个通用命令,用来读单块数据。 在SPI模式中,命令都是以如下的6字节形式发送的: 每帧命令都以“01”开头,然后是6位命令号和4字节的参数(高位在前,低位在后),最后是7位CRC校验和1位停止位“1”。 SD卡的每条命令都会返回对应的响应类型。在SPI模式下,共有3种响应类型:R1、R2和R3,分别占1、2和3个字节。这里仅列出了R1响应的格式,如表2所列。当出现表中所描述的状态时,相应的位置1。R2和R3的第1个字节格式与R1完全一样,详细内容请参考SD卡标准。

2硬件设计 本设计选用Freescale公司的32位低功耗微控制器MCF51QE128,采用SPI模式实现与SD卡的接口。 由于MCF51QE128是一款低功耗的微控制器,工作电压的典型值为3.6V,与SD卡的工作电压兼容,因而可以直接与SD卡连接,无需电平转换电路。这里选用的是MCF51QE128的第2个SPI口,硬件连接如图2所示。 3软件实现 软件部分主要实现MCF51QE128的初始化、底层SPI通信,以及SD卡的通用写命令、初始化和单块数据的读写等功能。 3.1MCF51QE128的初始化 在与SD卡通信之前,首先需要配置MCF51QE128,并初始化SPI端口。代码如下:

电脑前后USB接口的区别

电脑前后USB接口的区别 现在计算机主板上都提供了几个USB接口,P3的主板上有两个后置的USB接口,另外还提供了两个扩展的USB接口,P4主板上提供的USB接口有的比P3主板还要多。一般来说,主板上不会少于两个扩展的USB接口。我们可以将主板上的扩展USB接口连接到机箱前面板上,使其成为前置的USB接口,这样使用起来就方便多了。 在使用中,人们经常发现,当使用小功率USB设备,如闪存盘,前后USB接口没有太大的区别,可是当你在前置的USB的接口上使用功率稍大的设备时,比如USB外接硬盘,就会发现找不到设备或设备不能正常运行。如果你把USB硬盘接到后置的USB接口上,就能够正常使用了,这是为什么呢? USB接口有四个触点,分别是电源+5V、数据-、数据+、电源地,USB设备与计算机通过“数据+”和“数据-”通道进行数据传输,“+5V”、“电源地”具有为外部设备供电的能力。 根据目前通行的USB1.1规范,USB接口可以提供5V±5%的电压为外部设备供电,每个端口最大输出电流为500mA,因此其输出功率不能超过2.25W,超过了这个功率的外部设备就需要配备外置电源。另外,USB规范对外设电源电路的某些相关参数亦有具体规定,例如,为了防止外设接入USB口时的浪涌电流造成主机电源的“毛刺”,外设在接通瞬间从主机抽取的电量不得超过50mA,其电源输入端的旁路电容器容量应在10μF以下。又如,外设电源刚接通时,主机将外设一律作为低功耗装置看待,此时USB口的输出电流上限仅为100mA;须待外设向主机发出请求并经主机确认外设为高功耗装置之后,输出电流上限才会提升至其最大值500mA。再如,USB规范允许外设处于“待机”状态并支持“远程唤醒”功能,不过此时外设的静态电流必须小于0.5mA(低功耗装置)或2.5mA(高功耗装置)。 当USB外设功率较大时,主板的USB接口不能提供足够的功率,特别是前置的USB接口,其实际上的供电功率小于后置的USB接口。解决USB接口供电不足有多种办法,有的USB 外设多提供了一个PS/2插头或USB插头连线,用双插头取电,如移动硬盘,以增加供给外设的电源功率。如果功率还嫌小,最好的办法是使用外接的USB外设电源。这种外接的USB 外设电源,就是在符合USB规范的前提下,根据不同外部设备的要求设计出来的。 还有一种另类的办法,就是直接取用计算机机箱电源的办法。这种办法需要自己动手,因此需要有点电子、电气方面的知识和动手焊接的能力,适合DIY一族。这种方法既不需要使用另外一个插头去连接PS/2口或USB口,也不需要外接USB电源,一般情况下,足可以应付诸如移动硬盘、USB打印机、扫描仪及其它使用USB接口供电的数码设备的需要。1.直接使用机箱电源给USB设备供电的可行性 标准的ATX电源盒可以输出+12V、-12V、+5V、-5V、+3.3V、+5VSB几组电压,从电路结构上看,是采用“共地”的接法,把“电路地”作为参考点。也就是说,凡是输出的正电压组,都把电路中的“地”作为负极,凡是输出负电压组,都把电路中的“地”作为正极。不管是正电压组还是负电压组,都是以电路中的“地”作为参考电位,所以叫“共地”。既然供电电源是“共地”接法,那么主板上电路的设计也应该是按照“共地”的接法设计的,否则电路就不能正常运行。那么连接在主板上的设备当然也要按照“共地”的接法来连接了。这一点对直接引用主机电源盒中的电源供USB接口使用是很重要的。我们可以按照“共地”的接法将主机电源盒中的+5V主电源的地线与前置USB接口的“电源地”线相连,电源盒的+5V主电源的正端可直接连接到前置的USB接口上,而把主板上USB扩展插针的+5V电源端断开,就可以正常使用USB设备了。 2.一种改造电路 为了解决前置USB接口的供电功率问题,不少DIY高手们都在发挥自己的智慧,进行有限的改造。如前所述,有使用双USB接口以增加供电功率的,有使用一个USB接口加上一个PS/2(鼠标或键盘口)增加USB供电功率的,当然也有人想到了使用主机电源盒电源来提

相关文档
最新文档