哈工大威海校区2015春集合图论试题A

哈工大威海校区2015春集合图论试题A
哈工大威海校区2015春集合图论试题A

姓名: 班级: 学号:

遵 守 考 试 纪 律 注

意 行 为 规 范

哈尔滨工业大学(威海)2014 / 2015学年春季学期

集合论与图论 试题卷(A )

考试形式(开、闭卷):闭卷 答题时间:105(分钟)本卷面成绩占课程成绩 30 %

试卷说明:

[1] 卷面总分100分,取卷面成绩的70%计入总分,平时成绩30%。 [2] 填空题请在答题卡内答题,其它处无效。 [3] 答卷时禁止拆开试卷钉,背面即为草稿纸。

一、填空题(每小题2分,共20分)

(1) 集合的()表示方法可能产生悖论。

(2) 映射f左可逆的充分必要条件是:()。

(3) 设R={(a, b),(c, d),(e, f)}是一个二元关系,则R的逆记为R-1,R-1=()。

(4) n个顶点的完全图的边的个数是( )。

(5) 一个无向图的边数为20,那么所有顶点的度数和为()。

(6) 设G是一个有p个顶点q条边的最大可平面图,则: q=( )。

(7) 一个图是树当且仅当G是连通的且p=()。

(8) G是一个p个顶点q条边的最大平面图,则G的每个面都是( )形。

(9) 若G是偶数个顶点的圈,则G是()色的。

(10) 当顶点数大于2时,树的连通度是()。

二、简答题(每小题5分,共20分)

1.设集合X={a,b,c,d,e},E={a,b,c}是X的子集。写出E的特征函数。

2.R={(1,b),(2,c),(3,a),(4,d)}是集合A={1,2,3,4}到集合B={a,b,c,d}的一个二元关系,画出R的关系矩阵和关系图。

3.举例说明什么是偏序关系?什么是偏序集?

4.简述图的连通度、边连通度、最小度之间的关系。

三、证明题(每小题10分,共20分)

1. A和B是两个集合,证明:(A∪B)c=A c∩B c

2. 证明:3度正则图(每个顶点的度数都是3)的顶点的数目必为偶数。

四、计算题(每小题5分,共20分)

1. 集合X={a,b,c,d,e,f,g,h},X的两个子集是A={a,b,c,d},B={e,f,g,h}

求:A?B,A?B,A c,A\B,A?B

2、一个学校学生总人数为336人,共有数学,物理,化学3门课。已知参加这3门课的学生人数分别有170,130,120人;同时参加数学、物理两门课的学生有45人;同时参加数学、化学的有20人;同时参加物理、化学的有22人;

问同时参加三门课的学生有多少人?

3. 集合X={1, 2, 3, 4, 5},Y={a, b, c, d, e, f},f是X到Y的一个映射,其中:f(1)=b, f(2)=a, f(3)=a, f(4)=c, f(5)=d, A和B分别是X和Y的子集,其中:

A={1, 2, 3}, B={a, c, f}。求:f(A), f-1(B)

4. 设集合X={a, b, c, d, e, f}, R和S是X上的二元关系,其中:

R={(a, b), (c, d), (e, f)}, S={(b, c), (d, a), (b, a), (f, d)}

求:R?S和S?R

1、

(1)举例说明什么是偶图?(2分)

(2)一个图是偶图的充分必要条件是什么?(3分)

(3)已知图G是偶图,写出图G的顶点划分过程。(5分)

2、

(1)举例说明什么是欧拉图?(2分)

(2)一个图G是欧拉图的充分必要条件是什么?(3分)(3)已知图G是欧拉图,写出求G的欧拉闭迹的过程。(5分)

图论期末考试整理复习资料

目录 第一章图的基本概念 (2) 二路和连通性 (4) 第二章树 (4) 第三章图的连通度 (6) 第四章欧拉图与哈密尔顿图 (8) 一,欧拉图 (8) 二.哈密尔顿图 (10) 第五章匹配与因子分解 (14) 一.匹配 (14) 二.偶图的覆盖于匹配 (15) 三.因子分解 (16) 第六章平面图 (20) 二.对偶图 (24) 三.平面图的判定 (25) 四.平面性算法 (28) 第七章图的着色 (34) 一.边着色 (34) 二.顶点着色 (35)

第九章 有向图 (40) 二 有向树 (41) 第一章 图的基本概念 1. 点集与边集均为有限集合的图称为有限图。 2. 只有一个顶点而无边的图称为平凡图。 3. 边集为空的图称为空图。 4. 既没有环也没有重边的图称为简单图。 5. 其他所有的图都称为复合图。 6. 具有二分类(X, Y )的偶图(或二部图):是指该图的点集可以分解为两个(非空)子 集 X 和 Y ,使得每条边的一个端点在 X 中,另一个端点在Y 中。 7. 完全偶图:是指具有二分类(X, Y )的简单偶图,其中 X 的每个顶点与 Y 的每个顶点 相连,若 |X|=m ,|Y|=n ,则这样的偶图记为 Km,n 8. 定理1 若n 阶图G 是自补的(即 ),则 n = 0, 1(mod 4) 9. 图G 的顶点的最小度。 10. 图G 的顶点的最大度。 11. k-正则图: 每个点的度均为 k 的简单图。 例如,完全图和完全偶图Kn,n 均是正则图。 12. 推论1 任意图中,奇点的个数为偶数。 ()G δ()G ?

13. 14.频序列:定理4 一个简单图G的n个点的度数不能互不相同。 15.定理5 一个n阶图G相和它的补图有相同的频序列。 16. 17. 18.对称差:G1△G2 = (G1∪G2) - (G1∩G2) = (G1-G2)∪(G2-G1) 19.定义:联图在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个 顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G2 20.积图:积图设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u = (u1,u2)和v = (v1,v2),当(u1 = v1和u2 adj v2) 或(u2 = v2 和u1 adj v1) 时就把u 和v 连接起来所得到的图G称为G1和G2积图。记为G = G1×G2 设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u = (u1,u2)和v = (v1,v2),当(u1 adj v1) 或(u1= v1 和u2 adj v2) 时就把u 和v 连接起来所得到的图G称为G1和G2的合成图。记为G=G1[G2]。

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 v v 1 3 图G

2004图论复习题答案

图论复习题答案 一、判断题,对打,错打 1.无向完全图是正则图。 () 2.零图是平凡图。() 3.连通图的补图是连通图.() 4.非连通图的补图是非连通图。() 5.若连通无向简单图G中无圈,则每条边都是割边。() 6.若无向简单图G是(n,m)图,并且m=n-1,则G是树。() 7.任何树都至少有2片树叶。() 8.任何无向图G都至少有一个生成树。() 9.非平凡树是二分图。() 10.所有树叶的级均相同的二元树是完全二元树。() 11.任何一个位置二元树的树叶都对应唯一一个前缀码。() 12. K是欧拉图也是哈密顿图。() 3,3 13.二分图的对偶图是欧拉图。() 14.平面图的对偶图是连通图。() 页脚内容1

15.设G*是平面图G的对偶图,则G*的面数等于G的顶点数。() 二、填空题 1.无向完全图K6有15条边。 2.有三个顶点的所有互不同构的简单无向图有4个。 3.设树T中有2个3度顶点和3个4度顶点,其余的顶点都是树叶,则T中有10片树叶。 4.若连通无向图G是(n,m)图,T是G的生成树,则基本割集有n-1个,基本圈有m-n+1个。 5.设连通无向图G有k个奇顶点,要使G变成欧拉图,在G中至少要加k/2条边。 6.连通无向图G是(n,m)图,若G是平面图,则G有m-n+2个面。 三、解答题 1.有向图D如图1所示,利用D的邻接矩阵及其幂运算 求解下列问题: (1)D中长度等于3的通路和回路各有多少条。 (2)求D的可达性矩阵。 (3)求D的强分图。 解:(1) a b c d e 图1 页脚内容2

页脚内容3 M=????????????????000101000000001 010*******M 2=?? ? ? ??????? ?????010******* 000101000001000 M 3=????????????????10000 01000010000001010000M 4=??? ???? ? ??? ?????00010 01000 100000100000010 由M 3可知,D 中长度等于3的通路有5条,长度等于3的回路有3条。 (2) I+M+M 2+M 3+M 4=????????????? ???100000100000100 0001000001 +??????????? ?? ???000101000000001 010******* +??????????? ?? ???010000001000010 1000001000 +??? ???? ? ??? ?? ???100000100001000 0001010000 + ????????????????00010 01000100000100000010 =??? ???? ???? ?? ???21020 1301011111 020******* D 的可达性矩阵为 R=B (I+M+M 2+M 3+M 4)=??? ???? ? ????? ???110101********* 1101011011 b c d e 图1

集合论与图论 试题A

本试卷满分90分 (06级计算机、信息安全专业、实验学院) 一、判断对错(本题满分10分,每小题各1分) ( 正确画“√”,错误画“×”) 1.对每个集合A ,A A 2}{∈。 (×) 2.对集合Q P ,,若?==Q P Q Q P ,,则P =?。 (√) 3.设,,:X A Y X f ?→若)()(A f x f ∈,则A x ∈。 (×) 4.设,,:Y B Y X f ?→则有B B f f ?-))((1。 (×) 5.若R 是集合X 上的等价关系,则2R 也是集合X 上的等价关系。 (√) 6.若:f X Y →且f 是满射,则只要X 是可数的,那么Y 至多可数的。(√) 7.设G 是有10个顶点的无向图,对于G 中任意两个不邻接的顶点u 和v, 均有9deg deg ≥+v u ,则G 是哈密顿图。 (×) 8.设)(ij a A =是 p 个顶点的无向图G 的邻接矩阵,则对于G 的顶点i v , 有∑==p j ij i a v 1deg 成立。 (√) 9. 设G 是一个),(q p 图,若1-≥p q ,则]/2[)(q p G ≤χ。 (×) 10.图G 和1G 同构当且仅当G 和1G 的顶点和边分别存在一一对应关系。(×)

二.填空(本题40分,每空各2分) 1.设}},{,{φφ=S 则=S 2 }}}{,{}},{{},{,{φφφφφ 。 2.设B A ,是任意集合,若B B A =\,则A 与B 关系为 φ==B A 。 3.设1)(,0)()(,:};3,2{},1,0{},,,{===→===c f b f a f Y X f Z Y c b a X , 3)1(,2)0(,:==→g g Z Y g ,则)()(c f g a f g ,分别为 2,3 。 4.设X 和Y 是集合且X m =,Y n =,若n m ≤,则从X 到Y 的单射的 个数为 !m C m n 。 5.设}2,1{},,,2,1{==B n X ,则从X 到Y 的满射的个数为 22-n 。 6.设)}2,4(),1,3(),3,2{()},4,3(),2,2(),2,1{(},4,3,2,1{===S R X ,则 =)(R S R )}2,3(),4,2(),4,1{( 。 7. 设???? ??=???? ??=5123454321,415235432121σσ,则???? ??=235411234521σσ 。 8. 设)},(),,(),,{(},,,,{a c c b b a R d c b a X ==,则 )},(),,(),,(),,(),,(),,(),,(),,(),,{(b c a c a b c b c a b a c c b b a a R =+ 。 9. 设X 为集合且X n =,则X 上不同的自反或对称的二元关系的个数 为 22222222n n n n n n +--+- 。 10.设}}{},{},,{{},,,,{d c b a A d c b a X ==是X 的一个划分,则由A 确定的 X 上的等价关系为 )},(),,(),,(),,(),,(),,{(d d c c a b b a b b a a 。 11.}10,,2,1{ =S ,在偏序关系“整除”下的极大元为 6,7,8,9,10 。 12.给出一个初等函数)(x f ,使得它是从)1,0(到实数集合R 的一一对应, 这个函数为 x ctg π或-x ctg π或)2/(ππ-x tg 。 13. 设G 是),(p p 连通图,则G 的生成树的个数至多为 p 。

哈工大集合与图论习题

集合与图论习题 第一章习题 .画出具有个顶点地所有无向图(同构地只算一个). .画出具有个顶点地所有有向图(同构地只算一个). .画出具有个、个、个顶点地三次图. .某次宴会上,许多人互相握手.证明:握过奇数次手地人数为偶数(注意,是偶数). .证明:哥尼斯堡七桥问题无解. .设与是图地两个不同顶点.若与间有两条不同地通道(迹),则中是否有回路? .证明:一个连通地(,)图中≥. .设是一个(,)图,δ()≥[],试证是连通地. .证明:在一个连通图中,两条最长地路有一个公共地顶点. .在一个有个人地宴会上,每个人至少有个朋友(≤≤).试证:有不少于个人,使得他们按某种方法坐在一张圆桌旁,每人地左、右均是他地朋友.b5E2R。 .一个图是连通地,当且仅当将划分成两个非空子集和时,总有一条联结地一个顶点与地一个顶点地边. .设是图.证明:若δ()≥ ,则包含长至少是δ()地回路. .设是一个(,)图,证明: ()≥,则中有回路; ()若≥,则包含两个边不重地回路. .证明:若图不是连通图,则是连通图. .设是个(,)图,试证: ()δ()·δ()≤[()]([()]),若≡,,( ) () δ()·δ()≤[()]·[()],若≡( ) .证明:每一个自补图有或个顶点. .构造一个有个顶点而没有三角形地三次图,其中≥. .给出一个个顶点地非哈密顿图地例子,使得每一对不邻接地顶点和,均有 ≥ .试求中不同地哈密顿回路地个数. .试证:图四中地图不是哈密顿图. .完全偶图,为哈密顿图地充分必要条件是什么?

.菱形面体地表面上有无哈密顿回路? .设是一个(≥)个顶点地图.和是地两个不邻接地顶点,并且≥.证明:是哈密顿图当且仅当是哈密顿图. .设是一个有个顶点地图.证明:若>δ(),则有长至少为δ()地路. .证明具有奇数顶点地偶图不是哈密顿图. .证明:若为奇数,则中有()个两两无公共边地哈密顿回路. .中国邮路问题:一个邮递员从邮局出发投递信件,然后返回邮局.若他必须至少一次走过他所管辖范围内地每条街道,那么如何选择投递路线,以便走尽可能少地路程.这个问题是我国数学家管梅谷于年首先提出地,国外称之为中国邮路问题.p1Ean。 ()试将中国邮路问题用图论述语描述出来. ()中国邮路问题、欧拉图问题及最短路问题之间有何联系. 第三章习题 .分别画出具有、、个顶点地所有树(同构地只算一个). .证明:每个非平凡树是偶图. .设是一棵树且Δ()≥,证明:中至少有个度为地顶点. .令是一个有个顶点,个支地森林,证明:有条边. .设是一个个顶点地树.证明:若图地最小度δ()≥,则有一个同构于地子图. .一棵树有个度为地顶点,个度为地顶点,…,个度为地顶点,则有多少个度为地顶点? .设是一个连通图.试证:地子图是地某个生成树地子图,当且仅当 没有回路. .证明:连通图地任一条边必是它地某个生成树地一条边. .设是一个边带权连通图,地每条边均在地某个回路上.试证:若地边地权大于地任一其他边地权,则不在地任一最小生成树中.DXDiT。 . 设(,,)是一个边带权连通图,对任意∈,()≥.试证:地一个生成树是地最小生成树,当且仅当时地任一与地距离为地生成树′′满足条件:在中而不在′′中地边地权()不大于在′′中而不在中地边′地权(′).RTCrp。 .某镇有人,每天他们中地每个人把昨天听到地消息告诉他认识地人.已知任何 消息,只要镇上有人知道,都会经这种方式逐渐地为全镇上所有人知道.试证:可选出个居民代表使得只要同时向他们传达某一消息,经天就会为全镇居民知道.5PCzV。 个顶点地图中,最多有多少个割点? .证明:恰有两个顶点不是割点地连通图是一条路.

图论试题浙师大

思考练习 第一章 1对任意图,证明。 证:,故。 2 在一次聚会有个人参加,其中任意6个人中必有3个人互相认识或有3个人互不认识。举例说明,将6个人改成5个人,结论不一定成立。 证:构图如下:图的顶点代表这6个人,两个顶点相邻当且仅当对应的两个人 互相认识。则对于图中任意一个点或。 不妨设及它的3个邻点为。若中有任意两个点,不妨设为 ,相邻,则对应的3个人互相认识;否则,中任意两个点不邻, 即它们对应的3个人互不认识。 若这5个人构成的图是5圈时,就没有3个人互相认识或有3个人互不认识。 3 给定图 画出下列几个子图: (a) ; (b); (c)

解:(a) (b) (c) 第二章 1设是一个简单图,。证明:中存在长度至少是的路。 证:选取的一条最长路,则的所有邻点都在中,所以

,即中存在长度至少是的路。 2证明:阶简单图中每一对不相邻的顶点度数之和至少是,则是连通图。 证:假设不连通,令、是的连通分支,对,有 ,与题设矛盾。故连通。 3设是连通图的一个回路,,证明仍连通。 证:,中存在路, 1、若,则是中的路; 2、若,则是中的途径,从而中存在 路。 故连通。 4图的一条边称为是割边,若。证明的一条边是割边当且仅当不含在的任何回路上。 证:不妨设连通,否则只要考虑中含的连通分支即可。 必要性:假设在的某一回路上,则由习题2.13有连通,,与是割边矛盾。故不在回路中。 充分性:假设不是割边,则仍连通,存在路,则就是含的一个回路,与不在回路中矛盾。故是割边。 5证明:若是连通图,则。 证:若是连通图,则。

第三章 1 证明:简单图是树当且仅当中存在一个顶点到中其余每个顶点有且只有一条路。 证:必要性:由定理3.1.1立即可得。 充分性:首先可见连通。否则,设有两个连通分支、,且, 则到中的顶点没有路,与题设矛盾。 其次,中无回路。否则,若有回路。由于连通,到上的点有路, 且设与的第一个交点为,则到上除外其余点都至少有两条路,又与题设矛盾。 故是树。 2 设图有个连通分支,。证明含有回路。 证:假设中不含回路。设的个连通分支为,则每个连通无回路,是树。从而 , 与题设矛盾,故无回路。 3是连通简单图的一条边。证明在的每个生成树中当且仅当是的割边。 证:必要性:假设不是的割边,即连通,有生成树,与在的每个生成树矛盾。故不是的割边。 充分性:假设存在一棵生成树,使得不在中,从而连通,与是的割边矛盾。故在的每个生成树中。 4设是至少有3个顶点的连通图,证明中存在两个顶点,使得仍

运筹学期末试题

《运筹学》试题样卷(一) 一、判断题(共计10分,每小题1分,对的打√,错的打X ) 1. 无孤立点的图一定是连通图。 2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。 3. 如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。 5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量 都可以被选作换入变量。 6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。 7. 度为0的点称为悬挂点。 8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。 二、建立下面问题的线性规划模型(8分) 某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。三种作物每年需要的人工及收入情况如下表所示: 试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为 (1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分) (3)直接由上表写出对偶问题的最优解。(1分) 四、用单纯形法解下列线性规划问题(16分) 3212max x x x Z +-= s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1 , x 2 , x 3 ≥0 五、求解下面运输问题。 (18分) 某公司从三个产地A 1、A 2、A 3 将物品运往四个销地B 1、B 2、B 3、B 4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 问:应如何调运,可使得总运输费最小? 六、灵敏度分析(共8分) 线性规划max z = 10x 1 + 6x 2 + 4x 3 s.t. x 1 + x 2 + x 3 ≤ 100 10x 1 +4 x 2 + 5 x 3 ≤ 600 2x 1 +2 x 2 + 6 x 3 ≤ 300 x 1 , x 2 , x 3 ≥ 0

离散数学图论部分经典试题及答案

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???0101 010******* 11100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2∣E ∣ B .deg(V )=∣E ∣ C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 ο ο ο ο ο c a b e d ο f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ) . 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结 点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 ο ο ο ο c a b f

图论1-3藏习题解答

学号:0441 姓名:张倩 习题1 4.证明图1-28中的两图是同构的 证明:将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )?u i (1? i ? 10) 容易证明,对?v i v j ?E((a)),有f(v i v j )?u i u j ?E((b)) (1? i ? 10, 1?j? 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: (a) v 1 v 2 v 3 v v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

m=4: m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 ()1 1 123121,1,,1,,,=d d n d d d d d π++---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 12.证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v1,v2,…,vn},对于G 中的路v1v2…vk,若vk 与v1邻接,则构成一个圈。若vi1vi2…vin 是一条路,由于?? 2,因此,对vin ,存在点vik 与之邻接,则vik?vinvik 构成一个圈 。 17.证明:若G 不连通,则G 连通。 证明 对)(,_ G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。

图论模拟题

浙江师范大学《图论》考试卷 (2007-2008学年第一学期) 考试类别 闭卷 使用学生 行知数学 051.052. 考试时间 150 分钟 出卷时间 2008年1月4日 说明:考生应将全部答案都写在答题纸上,否则作无效处理。 一、填空题 (25%) 1、给定图G 11 (1)给出图G 的一条最长路_______; (2)给出图G 的二个参数值λ(G)= ,κ(G)= ; (3)给出图G 的一个最大独立集 ; (4)作出子图G[u 2,u 5,u 7,u 9,u 11,u 12]________,G-{u 8,u 9,u 12}____________, G-{u 1u 3,u 1u 4,u 1u 7,u 1u 10}_________ _______; 2、图G 是二分图的充分必要条件是 ; 3、G=(X,Y,E)是二分图,无孤立点,则β1(G) 与α0(G)的关系是 ; 4、Ramsey 数r(k,t)、r(k-1,t) 和r(k,t-1) 的关系是 ; 5、G 是含有56个顶点的无回路图,且对G中任两个不相邻的顶点v u ,,G+uv 有唯一的回路,则G的边数为____________; 6、图G 有Euler 环游的充要条件是____; 二、设七个字母在通迅中出现频率分别为a;25%,b;22%,c;20%,d;12%,e;10%,f;6%,g;5%。编一个最优前缀码,并画出相应的最优二元树。 (15%) 三、 证明:非平凡连通图G 至少有二个非割点。 (10%) 四、 G 是点色数χ(G)=2的k —正则简单图。证明G 有k 个边不交的完美对集M 1,M 2, ┄, M k , 使 E(G)= M 1∪M 2∪┄∪M k 。 (13%) 五、 给出平面图G 的顶点数p(G)、边数q(G)、面数 )(G ?和连通分支数ω(G)的一个关系式, 并给予证明。 (15%) 六、 G 是p 个顶点的简单图,对G 中每一对不相邻的顶点u 、v,均有d G (u)+d G (v)≥p-1。 (1) 证明G 有Hamilton 路;(2) G 是二连通图吗?为什么?。 (12%) 七、设G是连通图,若对每个真子集V 0?V(G) ,只要∣V 0∣≤k-1,G- V 0仍连通.证明q(G)≥ kp(G)/2 。 (10%)

图论与组合数学期末复习题含答案

组合数学部分 第1章 排列与组合 例1: 1)、求小于10000的含1的正整数的个数; 2、)求小于10000的含0的正整数的个数; 解:1)、小于10000的不含1的正整数可看做4位数,但0000除外.故有9×9×9×9-1=6560个.含1的有:9999-6560=3439个 2)、“含0”和“含1”不可直接套用。0019含1但不含0。在组合的习题中有许多类似的隐含的规定,要特别留神。不含0的1位数有19个,2位数有29个,3位数有39个,4位数有49个 不含0小于10000的正整数有() ()73801919999954321=--=+++个含0小于10000的正整数9999-7380=2619个。 例2: 从[1,300]中取3个不同的数,使这3个数的和能被3整除,有多少种方案? 解:将[1,300]分成3类: A={i|i ≡1(mod 3)}={1,4,7,…,298}, B={i|i ≡2(mod 3)}={2,5,8,…,299}, C={i|i ≡0(mod 3)}={3,6,9,…,300}. 要满足条件,有四种解法: 1)、3个数同属于A; 2)、3个数同属于B ; 3)、3个数同属于C; 4)、A,B,C 各取一数;故共有3C(100,3)+1003=485100+1000000=1485100。 例3:(Cayley 定理:过n 个有标志顶点的数的数目等于2-n n ) 1)、写出右图所对应的序列; 2)、写出序列22314所对应的序列; 解: 1)、按照叶子节点从小到大的顺序依次去掉节点(包含与此叶子 节点相连接的线),而与这个去掉的叶子节点相邻的另外一个点值则记入序列。如上图所示,先去掉最小的叶子节点②,与其相邻的点为⑤,然后去掉叶子节点③,与其相邻的点为①,直到只剩下两个节点相邻为止,则最终序列为51155.。 2)、首先依据给定序列写出(序列长度+2)个递增序列,即1234567,再将给出序列按从小到大顺序依次排列并插入递增序列得到:7。我们再将给出序列22314写在第一行,插入后的递增序列写在第二行。如下图第一行所示: ??→????? ??--②⑤67112223344522314??→???? ? ??--②⑥11223344672314 ??→????? ??--③②11233447314??→???? ? ??--①③11344714

哈工大图论习题

哈工大图论习题

————————————————————————————————作者:————————————————————————————————日期:

1.画出具有4个顶点的所有无向图(同构的只算一个)。 2.画出具有3个顶点的所有有向图(同构的只算一个)。 3.画出具有4个、6个、8个顶点的三次图。 4.某次宴会上,许多人互相握手。证明:握过奇数次手的人数为偶数(注意,0是偶数)。 5.证明:哥尼斯堡七桥问题无解。 6.设u与v是图G的两个不同顶点。若u与v间有两条不同的通道(迹),则G中是否有回路? 7.证明:一个连通的(p,q)图中q ≥p-1。 8.设G是一个(p,q)图,δ(G)≥[p/2],试证G是连通的。 9.证明:在一个连通图中,两条最长的路有一个公共的顶点。 10.在一个有n个人的宴会上,每个人至少有m个朋友(2≤m≤n)。试证:有不少于m+1个人,使得他们按某种方法坐在一张圆桌旁,每人的左、右均是他的朋友。 11.一个图G是连通的,当且仅当将V划分成两个非空子集V1和V2时,G总有一条联结V1的一个顶点与V2的一个顶点的边。 12.设G是图。证明:若δ(G)≥ 2,则G包含长至少是δ(G)+1的回路。 13.设G是一个(p,q)图,证明: (a)q≥p,则G中有回路; (b)若q≥p+4,则G包含两个边不重的回路。 14.证明:若图G不是连通图,则G c 是连通图。 15.设G是个(p,q)图,试证: (a)δ(G)·δ(G C)≤[(p-1)/2]([(p+1)/2]+1),若p≡0,1,2(mod 4) (b) δ(G)·δ(G C)≤[(p-3)/2]·[(p+1)/2],若p≡3(mod 4) 16.证明:每一个自补图有4n或4n+1个顶点。 17.构造一个有2n个顶点而没有三角形的三次图,其中n≥3。 18.给出一个10个顶点的非哈密顿图的例子,使得每一对不邻接的顶点u和v,均有 degu+degv≥9 19.试求Kp中不同的哈密顿回路的个数。 20.试证:图四中的图不是哈密顿图。 21.完全偶图Km,n为哈密顿图的充分必要条件是什么? 22.菱形12面体的表面上有无哈密顿回路? 23.设G是一个p(p≥3)个顶点的图。u和v是G的两个不邻接的顶点,并且degu+degv ≥p。证明:G是哈密顿图当且仅当G+uv是哈密顿图。 24.设G是一个有p个顶点的图。证明:若p>2δ(G),则有长至少为2δ(G)的路。 25.证明具有奇数顶点的偶图不是哈密顿图。 26.证明:若p为奇数,则Kp中有(p-1)/2个两两无公共边的哈密顿回路。 28.中国邮路问题:一个邮递员从邮局出发投递信件,然后返回邮局。若他必须至少一次走过他所管辖范围内的每条街道,那么如何选择投递路线,以便走尽可能少的路程。这个问题是我国数学家管梅谷于1962年首先提出的,国外称之为中国邮路问题。 (1)试将中国邮路问题用图论述语描述出来。 (2)中国邮路问题、欧拉图问题及最短路问题之间有何联系。

12年图论试题

电子科技大学研究生试卷 (测试时间:至,共__2_小时) 课程名称图论及其使用教师学时60 学分 教学方式讲授考核日期_2012__年___月____日成绩 考核方式:(学生填写) 一、填空题(填表题每空1分,其余每题2分,共30分) 1.n 阶k 正则图G 的边数()m G =___ ___2 nk ; 2.3个顶点的不同构的简单图共有___4___个; 3.边数为m 的简单图G 的不同生成子图的个数有__2___m 个; 4. 图111(,)G n m =和图222(,)G n m =的积图12G G ?的边数为1221____n m n m +; 5. 在下图1G 中,点a 到点b 的最短路长度为__13__; 6. 设简单图G 的邻接矩阵为A ,且 23 112012********* 102001202A ?? ? ? ?= ? ? ??? ,则图G 的边数为 __6__; 7. 设G 是n 阶简单图,且不含完全子图3K ,则其边数一定不会超过2___4n ?? ????; 8.3K 的生成树的棵数为__3__; 9. 任意图G 的点连通度()k G 、边连通度()G λ、最小度()G δ之间的关系为 __()()()____k G G G λδ≤≤; 10. 对下列图,试填下表(是??类图的打〝√ 〞,否则打〝?〞)。 ① ② ③ 学号姓名学院 ……………………密……………封……………线……………以……………内……………答……………题……………无……………效…………………… 4 5 6 6 4 1 1 2 7 2 4 3 a b G 1

能一笔画的图 Hamilton 图 偶图 可平面图 ① ? √ ? √ ② ? ? ? √ ③ ? √ √ √ 二、单项选择(每题2分,共10分) 1.下面命题正确的是(B ) 对于序列(7,5,4,3,3,2),下列说法正确的是: (A) 是简单图的度序列; (B) 是非简单图的度序列; (C) 不是任意图的度序列; (D)是图的唯一度序列. 2.对于有向图,下列说法不正确的是(D) (A) 有向图D 中任意一顶点v 只能处于D 的某一个强连通分支中; (B) 有向图D 中顶点v 可能处于D 的不同的单向分支中; (C) 强连通图中的所有顶点必然处于强连通图的某一有向回路中; (D)有向连通图中顶点间的单向连通关系是等价关系。 3.下列无向图可能不是偶图的是( D ) (A) 非平凡的树; (B)无奇圈的非平凡图; (C) n (1)n ≥方体; (D) 平面图。 4.下列说法中正确的是( C ) (A)连通3正则图必存在完美匹配; (B)有割边的连通3正则图一定不存在完美匹配; (C)存在哈密尔顿圈的3正则图必能1因子分解; (D)所有完全图都能作2因子分解。 5. 关于平面图,下列说法错误的是( B ) (A) 简单连通平面图中至少有一个度数不超过5的顶点; (B)极大外平面图的内部面是三角形,外部面也是三角形; (C) 存在一种方法,总可以把平面图的任意一个内部面转化为外部面; (D) 平面图的对偶图也是平面图。 三、 (10分)设G 和其补图G 的边数分别为12,m m ,求G 的阶数。 解:设G 的阶数为n 。 因12(1) 2n n m m -+=…………………………………4分 所以:212220n n m m ---=……………………..2分

电子科技大学2017年图论期末试卷

1 2017年图论课程练习题 一.填空题 1.图1中顶点a 到顶点b 的距离d (a ,b )= 。 a b 9 图1 1 2.已知图G 的邻接矩阵0 11011 01001 1010001011001 0A = ,则G 中长度为2的途径总条数为 。 3.图2中最小生成树T 的权值W (T )= 。 4.图3的最优欧拉环游的权值为 。 12 图 2

2 图3 5.树叶带权分别为1,2,4,5,6,8的最优二元树权值为 。 二.单项选择 1.关于图的度序列,下列说法正确的是( ) (A) 对任意一个非负整数序列来说,它都是某图的度序列; (B) 若非负整数序列12(,,,)n d d d π= 满足1n i i d =∑为偶数,则它一定是图序 列; (C) 若图G 度弱于图H ,则图G 的边数小于等于图H 的边数; (D) 如果图G 的顶点总度数大于或等于图H 的顶点总度数,则图G 度优 于图H 。 2.关于图的割点与割边,下列说法正确的是( ) (A) 有割边的图一定有割点; (B) 有割点的图一定有割边; (C) 有割边的简单图一定有割点; (D) 割边不在图的任一圈中。 3.设()k G ,()G λ,()G δ分别表示图G 的点连通度,边连通度和最小度。下面说法错误的是( )

3 (A) 存在图G ,使得()k G =()G δ=()G λ; (B) 存在图G ,使得()()()k G G G λδ<<; (C) 设G 是n 阶简单图,若()2n G δ ≥ ,则G 连通,且()()G G λδ=; (D) 图G 是k 连通的,则G 的连通度为k 。 4.关于哈密尔顿图,下列命题错误的是( ) (A) 彼得森图是非哈密尔顿图; (B) 若图G 的闭包是哈密尔顿图,则其闭包一定是完全图; (C) 若图G 的阶数至少为3且闭包是完全图,则图G 是哈密尔顿图; (D) 设G 是三阶以上简单图,若G 中任意两个不邻接点u 与v ,满足 ()()d u d v n +≥,则G 是哈密尔顿图。 5.下列说法错误的是( ) (A) 有完美匹配的三正则图一定没有割边; (B) 没有割边的三正则图一定存在完美匹配; (C) 任意一个具有哈密尔顿圈的三正则图可以1因子分解; (D) 完全图21n K +是n 个哈密尔顿圈的和。 三、 设无向图G 有10条边,3度与4度顶点各2个,其余顶点度数均小于3,问G 中至少有几个顶点?在最少顶点数的情况下,写出G 的度序列,该度序列是一个图序列吗?。

哈工大年集合论与图论试卷

-- 本试卷满分90分 (计算机科学与技术学院09级各专业) 一、填空(本题满分10分,每空各1分) 1.设B A ,为集合,则A B B A = )\(成立的充分必要条件是什么?(A B ?) 2.设}2,1{},,,2,1{==Y n X ,则从X 到Y 的满射的个数为多少?(22-n ) 3.在集合}11,10,9,8,4,3,2{=A 上定义的整除关系“|”是A 上的偏序关系, 则 最大元是什么? ( 无 ) 4.设{,,}A a b c =,给出A 上的一个二元关系,使其同时不满足自反性、反自 反性、对称性、反对称和传递性的二元关系。({(,),(,),(,),(,)}R a a b c c b a c =) 5.设∑为一个有限字母表,∑上所有字(包括空字)之集记为*∑,则*∑是 否是可数集? ( 是 ) 6.含5个顶点、3条边的不同构的无向图个数为多少? ( 4 ) 7.若G 是一个),(p p 连通图,则G 至少有多少个生成树? ( 3 ) 8. 如图所示图G ,回答下列问题: (1)图G 是否是偶图? ( 不是 ) (2)图G 是否是欧拉图? ( 不是 ) (3)图G 的色数为多少? ( 4 ) 二、简答下列各题(本题满分40分) 1.设D C B A ,,,为任意集合,判断下列等式是否成立?若成立给出证明,若不 成立举出反例。(6分) (1))()()()(D B C A D C B A ??=? ; (2)()()()()A B C D A C B D ?=??。 解:(1)不成立。例如}{,a c B D A ====φ即可。 (2)成立。(,)x y ?∈()()A B C D ?,有,x A B y C D ∈∈,即 ,,,x A x B y C y D ∈∈∈∈。所以(,),(,)x y A C x y B D ∈?∈?,因此 (,)()()x y A C B D ∈??,从而()()A B C D ??()()A C B D ??。 反之,(,)x y ?∈()()A C B D ??,有,,,x A x B y C y D ∈∈∈∈。即 (,)x y ∈()()A B C D ?,从而()()A C B D ???()()A B C D ?。

运筹学期末试题

一、判断题(共计10分,每小题1分,对的打√,错的打X) 1.无孤立点的图一定是连通图。 2.对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。 3.如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。 5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都可以被选作换入变量。 6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。 7. 度为0的点称为悬挂点。 8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。 二、建立下面问题的线性规划模型(8分) 某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元/ 人日,秋冬季收入为20元/ 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。 养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只 三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中5 4 ,x x 为松弛变量,问题的约束为?形式(共8分)

(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分) (3)直接由上表写出对偶问题的最优解。(1分) 四、用单纯形法解下列线性规划问题(16分) 3212max x x x Z +-= s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0 五、求解下面运输问题。 (18分) 某公司从三个产地A 1、A 2、A 3 将物品运往四个销地B 1、B 2、B 3、B 4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 六、灵敏度分析(共8分) 线性规划max z = 10x 1 + 6x 2 + 4x 3 s.t. x 1 + x 2 + x 3 ≤ 100 10x 1 +4 x 2 + 5 x 3 ≤ 600 2x 1 +2 x 2 + 6 x 3 ≤ 300 x 1 , x 2 , x 3 ≥ 0 的最优单纯形表如下:

相关文档
最新文档