光电效应资料

光电效应资料
光电效应资料

达到饱和值,饱和电流与光强成正比,而与入射光的频率无关。当变成

负值时,光电流迅速减小。实验指出,有一个遏止电位差存在,当电位差达到这

时,光电子不再能达到

(1)

子称为光子。每一光子的能量为,其中为普朗克常量,为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量之后,一部分

(2)

由此可见,光电子的初动能与入射光频率成线性关系,而与入射光的强度无

实验指出,当光的频率时,不论用多强的光照射到物质都不会产生光电效

,称为红限。

。当用不同频率()的单色光分别做光源时,就有

可由直线的斜率求出。

用的检流计的分度值应在A/

流计,可测量A

作的关系曲线,用一元线性回归法计算光电管阴极材料的红限频率、逸出功及值,并与公认值比较。

源与光电管的距离,光强正比于,利用此测量光电管的光电特性曲线。

光强正比于,利用此测量光电管的光电特性

中国科学技术大学2003 by USTC

(整理)5光电效应实验.

光电效应实验 一定频率的光照射在金属表面时, 会有电子从金属表面逸出,这种现象称为光电效应。1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。1905年,爱因斯坦在普朗克能量子假设的基础上,提出了光量子理论,成功地解释了光电效应的全部规律。 实验原理 光电效应的实验原理如图1所示。用强度为P 的单色光照射到光电管阴极K 时,阴极释放出的光电子在电场的加速作用下向阳极板A 迁移,在回路中形成光电流。 图1 实验原理图 图2 光电管同一频率不同光强的 伏安特性曲线 用实验得到的光电效应的基本规律如下: 1、 光强P 一定时,改变光电管两端的电压AK U ,测量出光电流I 的大小,即可得 出光电管的伏安特性曲线。随AK U 的增大,I 迅速增加,然后趋于饱和,饱和 光电流m I 的大小与入射光的强度P 成正比。 2、 当光电管两端加反向电压时,光电流将逐步减小。当光电流减小到零时,所对 应的反向电压值,被称为截止电压U 0(图2)。这表明此时具有最大动能的光 电子刚好被反向电场所阻挡,于是有 0202 1eU mV =(式中m 、V 0、e 分别为电子的质量、速度和电荷量)。(1) 不同频率的光,其截止电压的值不同(图3)。 3、 改变入射光频率ν时,截止电压U 0随之改变,0U 与ν成线性关系(图4)。实 验表明,当入射光频率低于0ν(0ν随不同金属而异,称为截止频率)时,不论光 的强度如何,照射时间多长,都没有光电流产生。

图3光电管不同频率的伏安特性曲线 图4截止电压U 0与频率ν的关系 4、光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0ν,在开始照射后立即有光电子产生,延迟时间最多不超过910-秒。 经典电磁理论认为,电子从波阵面上获得能量,能量的大小应与光的强度有关。因此对于任何频率,只要有足够的光强度和足够的照射时间,就会发生光电效应,而上述实验事实与此直接矛盾。显然经典电磁理论无法解释在光电效应中所显示出的光的量子性质。 按照爱因斯坦的光量子理论,光能是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为ν的光子具有能量ν=h E ,h 为普朗克常数。当光束照射金属时,是以光粒子的形式打在它的表面上。金属中的电子要么不吸收能量,要么就吸收一个光子的全部能量νh ,而无需积累能量的时间。只有当这能量大于电子摆脱金属表面约束所需的逸出功A 时,电子才会以一定的初动能逸出金属表面。按照能量守恒原理,爱因斯坦提出了著名的光电效应方程: A mV hv +=2021 (2) 式中,A 为金属的逸出功,202 1mV 为光电子获得的初始动能。 由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大。光子的能量A h 0<ν时,电子不能脱离金属,因而没有光电流产生。产生光电效应的最低频率(截止频率)是h A 0=ν。 将(2)式代入(1)式中可得: A h eU 0-ν= (3) )(00v v e h U -= 此式表明截止电压0U 是频率ν的线性函数。只要用实验方法得出不同的频率的截止电压,由直线斜率和截距,就可分别算出普朗克常数h 和截止频率0ν。基于此,在爱因斯坦光量子理论提出约十年后,密立根用实验证实了爱因斯坦的光电效应方程,并精确地测定了普朗克常数。两位物理大师在光电效应等方面的杰出贡献,分别于1921

内外光电效应

光照射到某些物质上,引起物质的电性质发生变化,这类光致电变的现象统称为光电效应。光电效应一般分为外光电效应和内光电效应。内光电效应是被光激发所产生的载流子(自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生伏特的现象。外光电效应是被光激发产生的电子逸出物质表面,形成真空中的电子的现象。 一、外光电效应在光线的作用下,物体内的电子逸出物体表面向外发射的现象称为外光电效应。向外发射的电子叫做光电子。基于外光电效应的光电器件有光电管、光电倍增管等。 光子是具有能量的粒子,每个光子的能量:E=hvh—普朗克常数,6.626×10-34J·s;ν—光的频率(s-1)根据爱因斯坦假设,一个电子只能接受一个光子的能量,所以要使一个电子从物体表面逸出,必须使光子的能量大于该物体的表面逸出功,超过部分的能量表现为逸出电子的动能。外光电效应多发生于金属和金属氧化物,从光开始照射至金属释放电子所需时间不超过10-9s。 根据能量守恒定理 E=hv-W 该方程称为爱因斯坦光电效应方程。 二、内光电效应当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。分为光电导效应和光生伏特效应(光伏效应)。 1 光电导效应在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化。当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大。基于这种效应的光电器件有光敏电阻。 2 光生伏特效应在光作用下能使物体产生一定方向电动势的现象。基于该效应的器件有光电池和光敏二极管、三极管。 ①垒效应(结光电效应)光照射PN结时,若hf≧Eg,使价带中的电子跃迁到导 带,而产生电子空穴对,在阻挡层内电场的作用下,电子偏向N区外侧,空穴 偏向P区外侧,使P区带正电,N区带负电,形成光生电动势。 ②侧向光电效应(丹培效应)当半导体光电器件受光照不均匀时,光照部分产生 电子空穴对,载流子浓度比未受光照部分的大,出现了载流子浓度梯度,引起 载流子扩散,如果电子比空穴扩散得快,导致光照部分带正电,未照部分带负 电,从而产生电动势,即为侧向光电效应。 ③光电磁效应半导体受强光照射并在光照垂直方向外加磁场时,垂直于光和磁场 的半导体两端面之间产生电势的现象称为光电磁效应,可视之为光扩散电流的 霍尔效应。④贝克勒耳效应是指液体中的光生伏特效应。当光照射浸在电解液 中的两个同样电极中的一个电极时,在两个电极间产生电势的现象称为贝克勒 耳效应。感光电池的工作原理基于此效应。 三、应用 1制造光电倍增管 光电倍增管能将一次次闪光转换成一个个放大了的电脉冲,然后送到电子线路去,记录下来。算式在以爱因斯坦方式量化分析光电效应时使用以下算式: 光子能量 = 移出一个电子所需的能量+ 被发射的电子的动能代数形式: hf=φ +Em φ=hf0 Em=(1/2)mv^2 其中 h是普朗克常数,h = 6.63 ×10^-34 J·s, f是

浅谈光的粒子性

一、浅谈光的粒子性 序 人类的认识往往是在曲折中前进的,对光的认识也是如此。最初,人们对光的本质的认识有两种观点,一种认为光是一种波,而另一种观点认为光是一种粒子,即有光的粒子说和波动说两种说法并存。牛顿认为光是一种匀质硬性小球,这种观点能够较好地解释光的反射、折射及光的直线传播现象。但随着光的干涉、衍射现象的发现,使光的波动说又占了上风;而光电效应的发现,使光的粒子说又重新登上了历史的舞台。但麻烦随之而来,因为光的粒子说无法解释干涉、衍射现象,而光的波动说也无法解释光电效应。于是,有聪明人把波动性和粒子性这两种截然不同的特性揉在一起,创造出了所谓的光的波粒二象性,并且自以为对物质的认识又前进了一大步,这还不算,他们又进而推广认为一切物质都有波粒二象性,这恐怕也是没有办法的办法。就在人们为波粒二象性这种新提法而洋洋自得的时候,殊不知,却丧失了一次认识光子内部结构的极好机会。而此后,人们若要揭示光的本性,就要承受更大的压力,排除更多的干扰,做更多不必要的工作。本文将从光的干涉、衍射现象入手,全面揭示光的本性--粒子性…… 1、光的本性――粒子性 光的本性是什么?这个问题似乎无需讨论。物理学家会告诉你,光具有波粒二象性,是一种物质波;实际上一切物体都具有波动性,只不过宏观物质的物质波较短,更多时候其表现出粒子性而已。这样

的回答不禁使人想起一个幽默: 有人问:“地球为什么是圆的?” 答曰:“因为它在转” 又问:“地球为什么在转?” 答曰:“因为它是圆的” 光是什么?━━光是一种物质波。 光为什么是物质波?━━因为它有波粒二象性。 光为什么有波粒二象性呢?━━因为它是一种物质波。 我们痛心地发现,这个简单的近乎无聊的逻辑被人滥用到了令人吃惊的程度,在当今物理学中,似乎不谈物质波、相对论就显得落伍、水平不高什么的。那么,物质波是什么东西呢?恐怕只有极少数的聪明人才知道!我从来就认为光是一种粒子。这种观点可以解释光的直线传播、反射等等现象,但是光子说的确“无法解释光的干涉、衍射现象”。长久以来,我一直在思考如何解释这个问题,而光的干涉现象、衍射现象无疑是建立光子说的最大障碍。所以要想建立光子说,必须首先突破干涉现象、衍射现象的瓶颈。如何认识光的干涉现象、衍射现象呢?我们认为需要从两个方面入手,一方面是光子内部结构问题,另一方面是引力场的问题,这两方面要统筹考虑。。牛顿的光子说仅仅把光子看作一种简单的匀质硬性小球,这实际上是对光子的内部复杂结构认识不足,我们认为,光子并不是“匀质硬性小球”,它有极其复杂的内部结构,而光的干涉现象和衍射现象实际上是我们通过引力场认识光子内部结构的极好机会。

最新光电效应练习题(含答案)

光电效应规律和光电效应方程 一、选择题 1.下列关于光电效应实验结论的说法正确的是() A.对于某种金属,无论光强多强,只要光的频率小于极限频率就不能产生光电效应 B.对于某种金属,无论光的频率多低,只要光照时间足够长就能产生光电效应 C.对于某种金属,超过极限频率的入射光强度越大,所产生的光电子的最大初动能就越大 D.对于某种金属,发生光电效应所产生的光电子,最大初动能与入射光的频率成正比 【解析】选A. 发生光电效应的条件是入射光的频率大于金属的极限频率,与入射光的强度、光照时间无关,所以光的频率小于极限频率就不能产生光电效应,故A正确,B错误.根据光电效应方程E k=hν-W0,可知入射光的频率大于极限频率时,频率越高,光电子的最大初动能越大,与入射光强度无关,故C错误.根据光电效应方程E k=hν-W0,可知光电子的最大初动能与入射光的频率是一次函数关系,故D错误. 2.在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是() A.增大入射光的强度,光电流增大 B.减小入射光的强度,光电效应现象消失 C.改用频率小于ν的光照射,一定不发生光电效应 D.改用频率大于ν的光照射,光电子的最大初动能变大 【解析】选AD.增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故选项A正确;光电效应是否发生取决于照射光的频率,而与照射强度无关,故选项B错误;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,选项C错误;根据hν-W0= 2 1 mv2可知,增加照射光频率,光电子的最大初动能也增大,故选项D正确. 3.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开了一个角度,如图所示,这时() A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带正电D.锌板带负电,指针带负电 精品文档

光电子学知识点

一、绪论 1、激光发明年份; 2、什么叫光电子学、光电子技术? 3、列举几种光电子技术或光电子器件,至少6种; 4、典型的光电子(通信)系统由哪几部分构成。 二、光与物质相互作用基础 1、光的本性,传播时表现为波动性,与介质相互作用时表现为粒子性; 2、对于线性、均匀、各向同性介质,极化率χ为标量;而在各向异性介质中,电极化强度矢量P 和外电场E 不再平行,此时极化率χ变为二阶张量:0i ij j P E εχ= 3、P 、D 、E 之间的关系 4、辐射度量和光度量的区别 5、辐射通量、光通量之间的换算关系 6、亮度和照度的区别 7、能带理论基本概念(价带、导带、禁带、禁带宽度)

三、光波导(30分) 1、平面介质波导的结构(各层名称),各层介质的折射率关系;对称波导、非对称波导; 2、各层中的场分布:波导层中横向(光受限的方向)为驻波场,纵向为行波场;衬底和覆盖层中横向为振幅成指数规律衰减的消逝场,纵向为行波场;消逝系数、穿透深度 3、全反射时界面的相移公式;(不要求记忆,但要会用) 4、横向传播常数、纵向传播常数;有效折射率(模折射率) 5、模式本征方程,m 为模序数;本征方程的图解(画图说明对称波导基模不会截止) 6、模式截止条件:02k n β=,c θθ=;截止波长;模式数量;单模传输条件; (注意对称波导和非对称波导的区别) 7、TE 模、TM 模的含义; 8、光纤的结构参数:直径2a 、数值孔径、相对折射率、弱导条件、归一化频率、单模条件; 9、偏射光线的纵向传播常量01cos k n β?=,其中?为轴线角,即光线和光纤轴的夹角;偏射光线可分为三类:非导引光线、导引光线(即导模)和泄露光线,对应θ和?的范围要知道。 10、光纤的损耗公式 dB/km

光电效应教案

第二节光的粒子性 一、教学目标 1.应该掌握的知识方面. (1)光电效应现象具有哪些规律. (2)人们研究光电效应现象的目的性. (3)爱因斯坦的光子说对光电效应现象的解释. 2.培养学生分析实验现象,推理和判断的能力方面. (1)观察用紫外线灯照射锌板的实验,分析现象产生的原因. (2)观察光电效应演示仪的实验过程,掌握分析现象所得到的结论. 3.结合物理学发展史使学生了解到科学理论的建立过程,渗透科学研究方法的教育. 二、重点、难点分析 1.光电效应现象的基本规律、光子说的基本思想和做好光电效应的演示实验是本节课的重点. 2.难点是(1)对光的强度的理解,(2)发生光电效应时光电流的强度为什么跟光电子的最大初动能无关,只与入射光的强度成正比. 三、教具 锌板、验电器、紫外线灯、白炽灯、丝绸、玻璃棒、光电效应演示仪. 四、主要教学过程 (一)新课的引入 光的波动理论学说虽然取得了很大的成功,但并未达到十分完美的程度.光的有些现象波动说遇到了很大的困难,请观察光电效应现象. (二)教学过程的设计 1.演示实验. 将锌板与验电器用导线连接,用细砂纸打磨锌板表面.把丝绸摩擦过的玻璃棒放在锌板附近,用紫外线灯照射锌板. 边演示边提问:紫外线灯打开前后,验电器指针有什么变化?这一现象说明了什么问题?引导学生分析并得出结论:光线照射金属表面,金属失去了电子导致验电器指针张开一角度.明确指出光电效应是光照射金属表面,使物体发射电子的现象.照射的光可以是可见光,也可以是不可见光.发射出的电子叫光电子. 说明:这个实验如果按照课本上的装置进行效果很不理想,因为紫外线照射锌板飞出电子时锌板带正电,在锌板附近形成电场又将电子吸附回去.锌板电势升到很小的值就使逸出和返回的电子达到动态平衡,很难使验电器指针明显地张开. 2.进一步研究光电效应. 以上实验改用很强的白炽灯照射,却不能发生光电效应.向学生提出问题:光电效应的发生一定是有条件的,存在着一定规律.有什么规律呢?让我们进一步研究. 向学生介绍光电效应演示仪.在黑板上画一示意图,如图所示.S为抽成真空的光电管,C 是石英窗口,光线可通过它照射到金属板K上,金属板A和K组成一对电极与外部电路相连接.光源为白炽灯,在光源和石英窗口C之间插入不同颜色的滤光片可以改变入射光的频率,光源的亮度可以通过另一套装置调节.

浅谈普朗克常数的重大意义

浅淡普朗克常数的重大意义 雷力峰 (雁北师范学院物理系大同 037000) 摘要该文从普朗克常数的提出,它导致量子论建立和发展的过程,它所诱发的物理学领域和许多其它各科领域的发展以及它所带给人们思想影响方面,探讨了它的划时代的重大意义. 关键词普朗克常数量子 分类号 N09 就普朗克常数h的意义,物理学家金斯曾说过这样一段话:“虽然h的数值很小,但是我们应当承认它是关系到保证宇宙的存在的.如果说h严格地等于零,那么宇宙间的物质能量将在十亿万之一秒的时间内全部变为辐射.”普朗克常数引入后,以普朗克常数为根本特征的量子论给我们提供了新的关于自然界的表述方法和思考方法,物理学理论发生了巨大变革,使人类认识由低速宏观领域扩展到高速微观领域.h的提出引出了一系列解释性假说,促进了量子论的建立与推广,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础,并且这些科研成果在化学等有关学科和许多近代技术中也得到了广泛的应用.可以说,h的出现具有划时代的重大意义.本文就此作一简要论述. 1普朗克其人 普朗克(Max Planck 1858-1947),近代伟大的德国物理学家、量子论的奠基人.1854年4月23日生于德国基尔.1874-1877年在慕尼黑大学学习物理和数学.1877-1878年间,到柏林大学,在赫尔姆霍兹和基尔霍夫指导下学习.1879年,以《论热力学的第二定律》的论文获得慕尼黑大学博士学位.1880年,普朗克任慕尼黑大学物理讲师.1885年,任基尔霍夫大学理论物理学特约教授,.1889年,受聘于柏林大学继任基尔霍夫的职位,并兼任新设立的物理研究所所长,在那里一直工作到1926年退休为止.1900年,他在黑体辐射研究中引入能量量子,由于这一发现对物理学的发展作出的贡献,他获得者1918年诺贝尔物理学奖.1947年10月4日在格丁根逝世. 2普朗克常数的提出 普朗克长期从事热力学的研究工作,从1894年起,他的注意力转移到黑体辐射问题上.辐射问题是在1859年到1860年间提出的.当时,基尔霍夫第一个强调指出:“黑体发射率是一个由波长和温度决定的函数—至少与迄今已发现的一样,是一个简单的函数.”1896年,帕邢与维恩合作,以辐射空腔模拟黑体,作了特殊假设之后,得到维恩辐射定律:

光电效应测普朗克常数-实验报告要点

综合、设计性实验报告 年级***** 学号********** 姓名**** 时间********** 成绩_________

一、 实验题目 光电效应测普朗克常数 二、 实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY —GD —3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、 实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为 的光波,每个光子的能量为 式中, 为普朗克常数,它的公认值是 =6.626 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1) 式中, 为入射光的频率,m 为电子的质量,v 为光电子逸出金属表面的初 速度, 为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最 大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子

都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0 U 被称为 光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最 低频率是h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功, 因而 0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强 度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频 率 0γγ=时,截止电压00=U ,没有光电子逸出。图中的直线的斜率 e h k = 是一 个正的常数: (5) 由此可见,只要用实验方法作出不同频率下的 γ -0U 曲线,并求出此曲线的 斜率,就可以通过式(5)求出普朗克常数h 。其中 是电子的电 量。

光电效应现象

17.2 光电效应现象 班级:姓名: 【教学目标】 1.知道什么是光电效应现象; 2.知道光电效应的实验规律; 3.体会经典电磁理论不能完全解释光电效应现象,会用爱因斯坦光电效应方程解释光电效应现象; 4.会推导光子动量表达式; 【教学重点】 1.光电效应规律及其产生的原因分析; 2.光的粒子性 【预学单】 1、在研究微观粒子能量时,焦耳(J)这个单位太大了,人们常用eV来表示能量的单位。一个带电量等于元电荷e的粒子,经1V电压加速获得的能量即为1eV,试推导1eV等于多少焦耳? 2、光的本质是什么? 【研学单】 主题一:认识光电效应现象; 实验:把一块锌板连接在验电器上,并使锌板带负电,验电器指针张开。用 紫外线灯照射锌板(如图所示),观察验电器指针的变化。 这个现象说明了什么问题? 活动小结: 1、光电效应现象:在光(包括不可见光)的照射下,金属中的从表面逸 出的现象叫做光电效应现象。逸出的叫做。 主题二:光电效应规律; 实验: (1)存在截止频率: 如图所示电路,AK间电场方向由级指向级。 当入射光的颜色(频率)高于某个值时,打开窗口,发现电流表示数, 这表明在光的照射下K级电子溢出(填“有”或“无”)。 当入射光的颜色(频率)低于某个值时,打开窗口,发现电流表示数, 这表明在光的照射下K级电子溢出(填“有”或“无”)。 这个值称为截止频率。 (2)存在饱和电流: 实验表明:对于一定颜色(频率)的光,强度一定时,光电流随所加电压的增大而,当电压增大到一定程度后,光电流趋于一个;入射光越强,饱和电流。

(3)存在遏止电压: 将AK 反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用, 光电子克服电场力作功,当电压达到某一值 U c 时,光电流恰为0, Uc 称遏止电压。 思考:遏止电压与哪些因素有关? 实验表明:对于一定颜色(频率)的光,无论光的强弱如何,遏止电 压都是 ;光的频率变高时,遏止电压 。这表明,光 电子的能量只与入射光的 有关,与入射光的 无 关。 (4)具有瞬时性: 当入射光频率超过截止频率时,无论入射光怎样微弱,几乎在光照射 到K 级的瞬间立刻产生光电流,精确测量表明,时间不超过 s 。 当入射光频率低于截止频率时,无论入射光有多强,照射时间有多长,都不会产生光电流。 主题三:光电效应现象的解释; ①经典物理学解释: 问题一:如图所示,电子绕原子核做圆周运动,思考是什么力提供向心力?若电 子运动速度增大,电子将怎样运动?事实上在金属表面,有无数个原子,不同原 子中的电子绕原子核运动的轨道半径不同,逃离原子核束缚时需克服静电力做功 不同,我们把电子脱离金属表面所做功的最 值叫 。 问题二:经典物理学有哪些观点?与实验所得到的规律一致吗? ②爱因斯坦光子说解释: 光子:光由一个个不可分割的能量子组成的,这个能量子后来称为光子,光在发射、吸收和传播时都是以光子形式一份一份进行的。 若光的频率为γ,则光子能量为E= 。 思考:①光子说如何解释极限频率? 光电效应方程: ②光子说如何解释瞬时性? ③光子说如何解释饱和电流? Uc

光电效应知识题(有答案解析)

黑体辐射和能量子的理解 一、基础知识 1、能量子 (1)普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.(2)能量子的大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=6.63×10-34 J·s. 2、光子说: (1)定义:爱因斯坦提出的大胆假设。内容是:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=hν,其中h是普朗克常量,其值为6.63×10-34 J·s. 二、练习 1、下列可以被电场加速的是( B) A.光子B.光电子C.X射线D.无线电波 2、关于光的本性,下列说法中不正确的是(B ) A.光电效应反映光的粒子性 B.光子的能量由光的强度所决定 C.光子的能量与光的频率成正比 D.光在空间传播时,是不连续的,是一份一份的,每一份叫做一个光子

对光电效应实验的理解 一、基础知识(用光电管研究光电效应的规律) 1、常见电路(如图所示) 2、两条线索 (1)通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大. (2)通过光的强度分析:入射光强度大→光子数目多→产生的光电子多→光电流大. 3、遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c.

(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极 限频率).不同的金属对应着不同的极限频率. (3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功. 二、练习 1、如图所示,当开关S断开时,用光子能量为2.5 eV的一束光照射阴极 P,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表 读数小于0.60 V时,电流表读数仍不为零;当电压表读数大于或等于0.60 V时,电流表读数为零. (1)求此时光电子的最大初动能的大小; (2)求该阴极材料的逸出功. 答案(1)0.6 eV (2)1.9 eV 解析设用光子能量为2.5 eV的光照射时,光电子的最大初动能为E km,阴极材料逸出功为W0 当反向电压达到U0=0.60 V以后,具有最大初动能的光电子达不到阳极,因此eU0=E km 由光电效应方程知E km=hν-W0 由以上二式得E km=0.6 eV,W0=1.9 eV. 2、如图所示是光电管的原理图,已知当有波长为λ0的光照到阴 极K上时,电路中有光电流,则(说明:右侧为正极) ( ) A.若换用波长为λ1(λ1>λ0)的光照射阴极K时,电路中一定没 有光电流 B.若换用波长为λ2(λ2<λ0)的光照射阴极K时,电路中一定有 光电流 C.增加电路中电源电压,电路中光电流一定增大

浅析武汉光电子信息产业发展的机遇与挑战

浅析武汉光电子信息产业发展的机遇与挑战 [摘要]在经济全球化、信息化时代背景下,光电子信息产业作为一个新兴的高技术产业,对我国的经济发展和国际竞争力提高起着重要的作用。武汉光电子信息产业在迅速发展的同时,也面临着机遇与挑战。发展武汉光电子信息产业必须要充分运用自身的优势资源,抓住来之不易的机遇,不断迎接新的挑战。 [关键词]武汉;光电子信息产业;机遇与挑战 1武汉光电子信息产业发展历程 自我国首先在武汉东湖高新技术开发区创建武汉·光谷以来,光电子信息产业就作为武汉的四大产业之一开始迅速发展。近几年来,东湖高新技术开发区正对武汉国家光电子信息产业基地的基础设施建设进行全力推进,形成了一批以光纤通信、移动通信为主导,激光、光电显示、消费电子、集成电路等竞相发展的产业格局,而光电子信息产业也逐渐发展为武汉市四大主导产业之一。武汉光电子信息技术及产业水平在国内渐渐占据了领先地位,在全球市场上,武汉·光谷也成为了我国在光电子信息领域中与世界强国相竞争的知名品牌。发展到2010年,武汉的光电子信息产业已成为继武汉汽车产业后,第二个资产规模过千亿的产业。到2011年,武汉光电子信息产业总收入高达1440亿元,在世界产业集群中占到了一个举足轻重的地位。 东湖高新技术开发区在2009年光电子信息企业有800多家,总收入达到8356亿元,净利润高达525亿元,出口创汇约120亿元,从事光电子信息产业的人员近10万人。最近几年,武汉·光谷几乎承担了中国所有的光通信系统的建设和90%以上的国家863光纤通信项目。随着东湖高新技术开发区涌现出一大批拥有自主知识产权的光纤光缆顶尖技术和光电子元件制造技术,光纤通信技术与电视、电话、移动通信和互联网等一同进入了中国家庭。有关数据显示,到目前为止,武汉·光谷共生产光纤1518万芯公里,销售2077万芯公里,产销率高达1368%;共生产光缆722万芯公里,销售1242万芯公里,产销率高达172%。其中,长飞光纤产量仍稳居全球首位,光纤预制棒产量居世界前三位。特别是烽火通信光纤预制棒生产线投产,从此打破了国外对光纤预制棒技术的垄断,使武汉·光谷光纤产业的整条产业链被打通。 在这近十多年来的发展过程中,武汉·光谷的光电子信息产业在全球产业分工中逐渐占有一席之地。其光谷光纤光缆生产规模成为全球第一;光电器件在国内市场的占有率达到60%,国际市场的占有率达到12%;激光产品在国内的市场占有率也一直保持在50%左右。 2武汉光电子信息产业发展的机遇 (1)光纤入户活动的开展。随着时代的发展,信息的传播速度成为一个国家是

光电效应与光的波粒二象性.pdf

光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v =0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV C.5.0 eV D.6.5 eV 解析:本题考查光电效应方程及逸出功. 由W hv E k ?= 得W =hv -k E =5.0 eV-1.5 eV=3.5 eV 则入射光的最低能量为h min v =W =3.5 eV

光电效应测普朗克常数-实验报告要点

光电效应测普朗克常数-实验报告要点

综合、设计性实验报告 年级***** 学号********** 姓名**** 时间********** 成绩_________

一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象, 爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能 量为 式中,为普朗克常数,它的公认值是=6.626 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1) 式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初 速度,为被光线照射的金属材料的逸出功, 2 2 1 mv 为从金属逸出的光电子的

最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0 U 被称为光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最 低频率是h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功, 因而 0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强 度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频 率 0γγ=时,截止电压00=U ,没有光电子逸出。图中的直线的斜率 e h k = 是一 个正的常数: (5) 由此可见,只要用实验方法作出不同频率下的 γ -0U 曲线,并求出此曲线的 斜率,就可以通过式(5)求出普朗克常数h 。其中 是电子的电 量。

高中物理光电效应知识点汇总

一、光电效应和氢原子光谱 知识点一:光电效应现象 1.光电效应的实验规律 (1)任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于这个极限频率则不能发生光电效应. (2)光电子的最大初动能与入射光的强度无关,其随入射光频率的增大而增大. (3)大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少)与入射光强度成正比. (4)金属受到光照,光电子的发射一般不超过10-9 _s. 2.光子说 爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光 子具有的能量与光的频率成正比,即:ε=hν,其中h =6.63×10-34 J·s. 3.光电效应方程 (1)表达式:hν=E k +W 0或E k =hν-W 0. (2)物理意义:金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来 克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能E k =12 mv 2 . 知识点二: α粒子散射实验与核式结构模型 1.卢瑟福的α粒子散射实验装置(如图13-2-1所示) 2.实验现象 绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子甚至被撞了回来.如图13-2-2所示. α粒子散射实验的分析图 3.原子的核式结构模型 在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转. 知识点三:氢原子光谱和玻尔理论 1.光谱 (1)光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱. (2)光谱分类 有些光谱是一条条的亮线,这样的光谱叫做线状谱. 有的光谱是连在一起的光带,这样的光谱叫做连续谱. (3)氢原子光谱的实验规律. 巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R (122-1 n 2)(n =3,4,5,…), R 是里德伯常量,R =1.10×107 m -1,n 为量子数.

(2)光电效应的基本规律

(2)光电效应的基本规律 2012-4-3 命题人:邓老师 学号________. 姓名________. 第Ⅰ卷(选择题) 一.选择题 (请将你认为正确的答案代号填在Ⅱ卷的答题栏中,本题共25小题) 1. 已知某单色光的波长为λ,在真空中的传播速度为c,普朗克常量为h,则该电磁波辐射的能量子的值为( ) A.hcλ B. c h λ C. λ h D. λhc 2. 在做光电效应实验中,某金属被光照射发生了光电效应,实验测出了光电子的最大初动能E K 与入射光的频率ν的关系如图所示,由实验图像可求出( ) A.该金属的逸出功 B.该金属的极限频率 C.单位时间内逸出的光电子数 D.普朗克恒量 3. 某金属在一束绿光的照射下发生了光电效应( ) A.若增加绿光的照射强度,则单位时间内逸出的光电子数不变 B.若增加绿光的照射强度,则逸出的光电子最大初动能增加 C.若改用紫光照射,则逸出的光电子的最大初动能增加 D.若改用紫光照射,则单位时间内逸出的光电子数目一定增加 4. 下列说法正确的是( ) A.光的干涉现象说明光具有粒子性,能发生光电效应现象说明光有波动性 B.电磁波谱中波长最长的γ射线,波长最短的是无线电波 C.光子具有波粒二象性,实物粒子只具有粒子性,不具有波动性 D.通常说光波是一种概率波,意思是光子在空间分布的概率是受波动规律支配的 5. 表1给出了各色光在真空中的波长和频率,表2给出了几种金属的极限频率υ0和极限波长λ0,请你判断下列说法正确的是( ) 表1 A.用黄光和绿光照射金属钾表面时都能发生光电效应 B.用绿光照射钾发射出的某光电子P 与用紫光照射钾发射出的某光电子Q 相比,P 的动能一定小于Q 的动 能 C.黄光能使表中的4种金属发生光电效应 D.用蓝光照射铯和钾时,发射出光电子的最大初动能分别为E k 1和E k2,E k 1一定大于E k 2 6. 一束细平行光经过玻璃三棱镜后分解为互相分离的三束光(如图所示),分别照射到相同的金属板a 、b 、c 上,如图所示,已知金属板b 有光电子放出,则可知( ) A.板a 一定不放出光电子 B.板a 一定放出光电子 C.板c 一定不放出光电子 D.板c 一定放出光电子 7. 某单色光从真空射入某介质时( ) A.波长变长,速度变小,光量子能量变小 B.波长变长,速度变大,光量子能量不变 C.波长变短,速度变小,光量子能量不变 D.波长变短,速度变小,光量子能量变大 8. 分别用波长为λ和 34 λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1:2,以h 表示普朗克 常量,c 表示真空中的光速,则此金属板的逸出功为( ) a c b

光电效应

17.2光的粒子性(第一课时) ——光电效应 【三维目标】 (一)知识与技能 1.通过实验了解光电效应的实验规律。 2.知道爱因斯坦光电效应方程以及意义。 3.会用光电效应规律解决简单的问题。 (二)过程与方法 经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律,达到学以致用。 (三)情感、态度与价值观 回顾先辈探索物理知识的必由之路,领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 【教学重点】光电效应的实验规律 【教学难点】爱因斯坦光电效应方程以及意义 【第一课时】 【教学过程】 第一课时光电效应 (一)引入新课 提问:1.抬头看教室内工作的日光灯,你为什么能看到日光灯 2.光到底是什么 回顾前面的学习,总结人类对光的本性的认识的发展过程(多媒体投影,见课件。)教师讲述: 光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无 法解释的新现象——光电效应现象。对这一现象及其他相关 问题的研究,使得人们对光的又一本质性认识得到了发展。 (二)进行新课 一.光电效应 教师:实验演示。(课件辅助讲述) 用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。

学生:认真观察实验。 教师提问:上述实验说明了什么 学生:表明锌板在射线照射下带电。 教师:用丝绸摩擦过的玻璃棒靠近锌板,金属箔片张角变大,说明了什么 学生:锌板带正电。 概念:1.光电效应:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。 2.光电子:发射出来的电子叫做光电子。 3.光电流:光电效应现象中形成的电流叫光电流。 课堂练习: 1.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一个角度,如图所示,这时( ) A.锌板带正电,指针带负电 B.锌板带正电,指针带正电 C.锌板带负电,指针带正电 D.锌板带负电,指针带负电 二.光电效应的实验规律 (1)光电效应实验 如图所示,光线经石英窗照在阴极上,便有电子逸 出----光电子。 光电子在电场作用下形成光电流。 (2)光电效应实验规律 1、存在饱和电流 (1)当A接正极,K接负极时,控制入射光的强度一定,使U AK从0开始增大,观察到电流表的示数一开始增大,到某一数值后就不再增大。这个最大电流就叫做饱和电流。 (2)对存在饱和电流的解释: K板逸出的电子向各个方向运动,如果不加电压,很多电子无法到达A板,无法形成较大电流。加上电压后,越来越多的电子到达A板,电流越来越大。但是,如果所有电子都达到了A板,继续增大电压,就无法再增大电流。

光电效应的规律及几个相关概念分析

“光电效应”的规律及几个相关概念分析 重庆市潼南塘坝中学 张大洪 402678 从物理教材上的演示实验(图1示)可发现,当用波长较短的可见光或紫外光照射到某些金属表面上时,金属中的电子就会从光束中吸取能量并从金属表面逸出到空中去,我们将此现象称作“光电效应”现象。“光电效应”现象从事实上揭示了光的粒子本性,爱因斯坦在此基础上提出了“光子说”;但本节中将涉及到以下几组相关概念的理解与分析却成了学习的难点,为此本文将对几组相关概念作出细致的研析以期对广大学生的学习起到事半功倍的作用。 “光电效应”定义:在光(包括不可见光)的照射下,从物体发射出电子的现象叫做光电效应。金属板释放的电子称为光电子,光电子在电场作用下在回路中形成的电流称光电流。 “光电效应”的规律:①各种金属都存在极限频率()00γλ或极限波长,只有入射光的频率 ()00γγλλ≥≤或入射光波长 才能发生光电效应; ②瞬时性:光电效应的产生几乎是瞬时的(光电子的产生不超过9 10 s -); ③光电子的最大初动能与入射光的强度无关,只随入光的频率增大而增大; ④当入射光的频率大于极限频率时,光电流的强度与入光的强度成正比。 从上可以发现有以下几组相关概念: 1. “光子”与“光电子”:光子是指在空间传播的光束能量的最小单位,它是一份能量(即能量是不连续的),光子不带电,是微观领域中一种只含有能量的粒子,且光子的运动质量为2 2h m c c φε ν= = 、动量为h h p m c c φνλ ===,光子的静止质量为0;而光电子是金属表面受到光照时发射出来的电子,因此其本质就是电子(带电19 1.610q C -=-?,静止质量 319.110m kg -=?). 2.“光子的能量”与“入射光的强度”:光子的能量是一份一份的,频率为γ的光子的能量为hc h εγλ == ,故光子的能量只由其频率(或波长)大小决定;而入射光的强度P 将由 “光的能流密度I ——单位时间内通过单位面积的某一频率的光子数N ”决定,且I N h γ=?,那么入射光的强度P I s N h s γ=?=??(式中s 为被光束照射的金属表面的面积——即某一给定面积,且N s ?为单位时间内到达金属表面——“即单位时间内通过给定面积”的光子 数),故入射光的强度必由单位时间到达金属表面——“即单位时间内通过给定面积”的某一频率的光子数目决定;根据爱因斯坦光子理论当金属中一个自由电子从入射光中吸收一个光子后,就获得能量hc h εγλ == ,如果hc h εγλ == 大于电子从金属表面逸出时所需的逸 出功W ,这个电子就从金属中逸出。 3.“光电子的最大初动能”与“光电子的动能”:光照射到金属时,电子吸收一个光子的能量h ν后,就可能向各个方向运动,一部分消耗于克服核的引力及其它原子阻碍做功,剩 图1

相关文档
最新文档