2010级研究生弹性力学及有限元试题

2010级研究生弹性力学及有限元试题

弹性力学及有限元试题(2010级硕士研究生)

(一) 问答题 (20分)

1、试叙述弹性力学的基本假定及其意义。

2、什么是形函数? 在有限元方法中它起什么作用?

3、何谓逆解法和半逆解法?它们的理论依据是什么?

4、试分别叙述李滋法和伽辽金法的近似性。

(二)设有一刚体,具有半径为R 的圆柱型孔道,孔道内放置外半径为R 而内半径为r 的圆筒,圆筒内受压力q ,试求圆筒的压力。(20分)

(三)如图所示的薄板为正方形,边长a=b ,厚度为一个单位,μ=0。在x=a 的边界上受有均布压力q 的作用,试用瑞利-里茨变分法求解位移。(20分)

(四)分别给出位移微分方程、最小势能原理和虚功方程的表达式,并说明公式的含义和三者之间的关系。(20分)

(五)对于如图所示的四节点平面四边形单元,若取位移模式为

xy a y a x a a v xy

a y a x a a u 87654321+++≡+++≡

试考察此位移模式的收敛性条件,并列出求解其系数a 1~a 8的方程(20分)

基于弹性力学理论和有限元法分析应力集中问题的讨论

基于弹性力学理论和有限元法分析应力集中问题的讨论 材料在外形急剧变化的部位,局部应力可以超出名义应力的数倍,对于脆性材料局部过早开始破坏,从而,削弱了构件的强度,降低了构件的承载能力。因此在工程實际中,为了确保构件的安全使用,必须科学合理的分析计算应力集中现象,以便找寻到更好的避免措施。本文首先基于弹性力学理论分析带孔无限宽板的应力分布情况,将对象的受力转化成数学表达,结论应证了应力集中的几个特性。 标签:应力集中系数;有限元分析;无限宽板;弹性力学;Inventor运用;ANSYS 1、应力集中 1.1弹性力学中概念,指物体形状、材料性质不均匀导致的局部应力急剧增高的现象。 1.2应力集中系数 最大局部应力与名义应力的比值称为理论应力集中系数ɑ。可以明确地反应应力集中的程度。 最大局部应力σmax可根据弹性力学理论、有限元法计算得到,也可由实验方法测得;名义应力σn是假设构件的应力集中因素(如孔、缺口、沟槽等)不存在,构件截面上的应力。 2、孔周应力在理想状态下的弹性力学理论分析 2.1定义受单向均匀拉伸荷载的无限宽平板,孔径2α圆孔,建立如图一理想模型。 由于结构的对称性,仅分析图一上半段1/4部分x轴正向的状态: 1)圆孔右顶点单元,即当θ=0,r=α时,代入式(2)解算得σy=3σ; 2)距孔0.2倍孔半径外,即当θ=0,r=1.2α时,代入式(2)解算得σy=2.071σ; 3)距孔1倍孔半径外,即当θ=0,r=2α时,代入式(2)解算得σy=1.221σ; 4)距孔1.5倍孔半径外,即当θ=0,r=2.5α时,代入式(2)解算得σy=1.122σ; 5)距孔2倍孔半径外,即当θ=0,r=3α时,代入式(2)解算得σy=1.074σ;

2011有限元试题

西安交通大学 级研究生课程考试试题 考试(查)科目:有限元方法(II )时间 年 月 日下午 一、4 ) 4,4(),()5,5(),()2,6(),()2,2(),(4 4332211====y x , y x ,y x , y x 母体单元为22?的正方形,如图所示。 求:(1)单元坐标变换()(ξηξ,,, y y x x == (2)变换的Jacobi 行列式detJ 的解析表达式,并分析该变换是否存在奇异性(8分)。 二、分析以下两种单元的位移场是否具备收敛到真实解所需的各项条件。(30) (1) 13结点矩形平面应力单元 结点参数取为:)13~ 1( ,=i v u i i 位移场为: 3 132 2 123 113 102 92 83726524321xy y x y x y xy y x x y xy x y x u ααααααααααααα++++++++++++= 3 262 2 253 243 232 222 2132021918217161514xy y x y x y xy y x x y xy x y x v ααααααααααααα++++++++++++=(2) 6自由度三角形薄板弯曲单元 结点参数取为: ()3~1=i w i ()6~4=??? ????i n w i 位移场为: 2 652 4321y xy x y x w αααααα+++++= 三、13结点平面应力单元如图所示, 在计算单元刚度矩阵时取图示的9个 积分点。试分析在单元一级是否存在 出现零变形能位移模式的可能性。 ,u x 7 8 10 9 11 12 1 2 3 4 5 6

弹性力学及有限元介绍

弹性力学与有限单元法(报告) 姓名: 尚建波 学号: 201314010624 班级:土木F1307 第一题(20分) 变分法中的δ符号与微积分中的d 符号均表示微小变化,请问二者有何关 系?如何理解在理论上有了δ则不需要有d 符号。 第二题(20分) 设()y y x =,'(,)F y y 不显含x , 证明:当()y y x =满足固定边界条件()A y a =,()y b B =时,'[()](,)b a y x F y y dx ∏=?取极值的必要条件为:' 'F y F C y ?-=?,C 为常数。 第三题(20分) 以平面应力弹性力学问题为例,写出其8方程数学模型。并从中导出位移解法数学模型以及应力解法数学模型。 第四题(20分) 以平面应力弹性力学问题为例说明最小位能原理(能量法-泛函极值)对问 题的描述完全等价于第一题中的位移法描述(微分形式)。 第五题(20) 谈一谈有限单元法在工程上的使用(可结合具体实例);说明有限单元法今 后的发展方向(理论与软件两个层面)(20分)。 试 卷 要 求 1 要求字迹工整,书写清楚; 2 绝对不允许以任何形式整体拷贝讲义或他人试卷,如有雷同卷子(包括个别题的雷同),一律按不及格处理(评阅教师具有试卷雷同认定权); 3 本试卷页作为报告的扉页,与报告内容采用统一纸张装订; 4 不符合要求的报告按不及格处理(评阅教师具有不符合要求报告的认定权)。

解答报告 第一题(20分) 变分法中的符号与微积分中的符号均表示微小变化,请问二者有何关系?如何理解在理论上有了则不需要有符号。 解答:(1)二者的关系。 d 是无限小的增量,是一个微分符号,表示了一个函数的局部线性近似。对于函数,dx 反应的是一个函数在x=x0附近的微小变化,也就是自变量的变化。d 作为一个微分符号,dx 必须与其他微分符号如同dy 、dt 成对出现。 δ是无限小的量,这个符号表示变分,所谓变分是一种假想的移动量,比如我假象一条路径x(t)如果x 做了一个微小改变,那么记做δ x 。δ(x)反应的是对某个函数在其定义域内的变化,也就是如果f(x)是一个函数,f(x)+δ(x)也是一个函数,且||δ(x)||很小。这个涉及泛函。泛函是函数的一种推广,是以函数为自变量的映射J=J[y],该自变量不是以函数的值为自变量,而是以函数本身为自变量,比如一个函数在某个区间上的积分。同时,函数本身也可以当作特别的泛函。 由于δ作用于泛函类似于d 作用于函数,所以δ与d 的运算规律大体上是类似的。 (2)如何理解在理论上有了δ则不需要有d 符号? d 是无限小的增量,只是微分符号,表示函数的局部线性近似。δ是无限小的量,是一种假想的移动量是两个函数的线性近似,比d 更能表述函数的微小变化,所以我个人理解有δ的时候就不需要d 。 第二题(20分)设()y y x =,'(,)F y y 不显含x ,证明:当()y y x =满足固定 边界条件()A y a =,()y b B =时,'[()](,)b a y x F y y dx ∏=?取极值的必要条件为: ''F y F C y ?-=?,C 为常数。 证明:

弹性力学及有限元法学习总结

弹性力学及有限元法学习总结 摘要:本文就弹性力学的研究对象与方法,弹性力学的基本假设,研究方法,有限元法的基本思想,数学基础,有限元分析的基本步骤进行阐述。 正文:弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外 部作用一般包括:荷载、温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。 弹性力学的研究对象: 材料力学--研究杆件(如梁、柱和轴)材料力学的拉压、弯曲、剪切、扭转和组合变形等问题。 结构力学--在材料力学基础上研究杆系结构结构力学(如桁架、刚架等)。弹性力学--研究各种形状的弹性体,如杆弹性力学件、平面体、空间体、板壳、薄壁结构等问题。 弹性力学研究方法: 在研究方法上,弹力和材力也有区别:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立三套方程; 三套方程在边界s 上考虑受力或约束条件,建立边界条件并在边界条件下求解上边界条件; 边界条件述方程,得出较精确的解答。 弹性力学的基本假设: 1)连续性,假定物体是连续的。连续性因此,各物理量可用连续函数表示。 2)均匀性与各向同性假设假定固体材料是均匀的,并且在各个方向上物理特性相同,也即材料的物理性质在空间分布上是均匀的(或不变的)3)小变形假设假定固体材料在受到外部作用(荷载、温度等)后的位移(或变形)与物体的尺寸相比是很微小的,在研究物体受力后的平衡状态时,物体尺寸及位置的改变可忽略不计,物体位移及形变的二次项可略去不 计,由此得到的弹性力学微分方程将是线性的。 4)完全弹性假设假设固体材料是完全弹性的。 5)无初始应力假设假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外部作用(荷载、温度等)所 引起的。 有限元法的基本思想: 有限元是一种结构分析的方法,先把所有系统分解为他们的元件或单元,这些元件的行为已经被充分的了解,再把元件重新组装成原来的系统。及将连续的求解区域离散为一组由有限个单元组成并按一定方式相互连接在一起的单元组

重庆大学研究生有限元复习题及答案(2013)

1.结点的位置依赖于形态,而并不依赖于载荷的位置(×) 2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元。√ 3.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×) 4.用有限元法不可以对运动的物体的结构进行静力分析(×) 5.一般应力变化大的地方单元尺寸要划的小才好(√) 6.四结点四边形等参单元的位移插值函数是坐标x、y的一次函数√ 7.在三角形单元中其面积坐标的值与三结点三角形单元的结点形函数值相等。√ 8.等参单元中Jacobi行列式的值不能等于零。√ 9.四边形单元的Jacobi行列式是常数。× 10.等参元是指单元坐标变换和函数插值采用相同的结点和相同的插值函数。√ 11.有限元位移模式中,广义坐标的个数应与单元结点自由度数相等√ 12.为了保证有限单元法解答的收敛性,位移函数应具备的条件是位移函数必须能反映单元的刚体位移和常量应变以及尽可能反映单元间的位移连续性。√ 13.在平面三结点三角形单元中,位移、应变和应力具有位移呈线形变化,应力和应变为常量特征。√ 1.梁单元和杆单元的区别?(自己分析:自由度不同)杆单元只能承受拉压荷载,梁单元则可以承受拉压弯扭荷载。具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承担的,通常用于网架、桁架的分析;而梁单元则基本上适用于各种情况(除了楼板之类),且经过适当的处理(如释放自由度、耦合等),梁单元也可以当作杆单元使用。 2.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。 3.有限单元法的收敛性准则?完备性要求,协调性要求。位移模式要满足以下三个条件包含单元的刚体位移。当结点位移由体位移引起时,弹性体内不会产生应变。包含单元的常应变。与位置坐标无关的应变。位移模式在单元内要连续,在相邻单元之间的位移必须协调。当选择多项式来构成位移模式时,单元的连续性总得到满足,单元的协调性就是要求单元之间既不会出现开裂也不会出现重叠的现象。。 4.任何一个有限元分析问题都是空间问题,什么情况下可以简化为平面问题?轴对称问题?空

弹性力学及有限元基础复习权威版(最新)

《弹性力学及有限元基础》复习思考题 ★1.对弹性体所做的基本假设? 答:连续性假设;均匀性假设;各向同性假设;弹性假设;小变形假设; ★2.用D'Alember 原理由平衡方程推导运动微分方程? 答:微元体的平衡微分方程的表达式为: 31 112111 2332 122221 23 132333 31 23000f x x x f x x x f x x x σσσσσσσσσ????+++=?????????+++=? ????????+++=? ???? 根据D'Alember 原理,将运动物体看成是静止的,将惯性力22()u t ρ?-?当作体力加到微元体上,由上式 可以直接写出弹性动力学问题的运动微分方程: 23111211 12123232 12222221 2321323333321 23()()() u f x x x t u f x x x t u f x x x t σσσρσσσρσσσρ?????+++=????????????+++=? ???????????+++=?????? ☆3.什么是应力张量? 我们说一点的应力状态是什么涵义? 答:应力张量是一点应力状态的完整描述,它有面元方向和分解方向两个方向性,共有九个分量,由于存在对称性,其独立分量只有六个。应力张量是与坐标选择无关的不变量,但其分量与坐标有关,当已知某坐标系中的九个分量时,其他坐标系中的分量均可由应力转换公式确定。 一点的应力状态是一个具有双重方向性的物理量,其中第一个是面元的方向,用其法矢量ν表示,第二个是作用在该面元上的应力矢量方向,一般用其三个分量来表示。 4.在引出 Cauchy 应力公式时, 我们假设四面体处于平衡状态, 如不处在平衡状态则如何? 答:如果不处在平衡状态,Cauchy 应力公式仍然满足,关系式的成立与是否平衡无关。 5.在什么情况下剪应力互等定律不成立? 答:无论在变形体的内部或者表面上,若存在体力偶时,剪应力互等定律不成立。 6.任意斜截面上的正应变和剪应变的意义是什么? 答:应变张量的三个对角分量x ε、y ε、z ε称为正应变,分别等于坐标轴方向三个线元的单位伸长率,伸长为正,缩短为负。应变张量的三个非对角分量xy ε、yz ε、zx ε称为剪应变,分别等于变形前沿该分量下标所示两坐标方向的、相互正交的线元在变形后的夹角减小量之半。 7.刚性位移,刚性转动,刚体位移,刚体转动有何区别? 答:(1)刚性位移:物体内任意两点间无相对位移;(2)刚性转动:应变张量为0,转动张量不为0;(3)刚体位移:运动分为变形运动和刚体运动,每点都发生相同的位移就叫作刚体位移;(4)刚体转动:用刚性

2013-2014学年弹性力学与有限元分析复习题讲诉

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、我们把剪应力为零的面称为主平面,把该面的法线方向称为主方向,把该面上的正应力称为主应力。 8、弹性力学平面问题的基本方程包括:2个平衡微分方程,3个物理方程和3个几何方程。 9、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 10、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 11、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 12、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 13、表示应力分量与体力分量之间关系的方程为平衡微分方程。 14、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 15、按应力求解平面问题时常采用逆解法和半逆解法。 二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”) 1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(√) 2、均匀性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(×) 3、把两块不同的金属焊接在一起,就成为一块不连续但均匀的物体。(×)

土木有限元(研究生)算例练习试题.doc

例1某三角形3节点单元,3个节点的坐标分别为(0, 0)、(3, 0)、(0, 4)o 作用在单元内的点(1, 1)处作用有一个大小等于10N、方向沿x轴正向的集中 力P。求该集中力的等效节点荷载。 解:(1)形函数及形函数矩阵计算 根据面积比或形函数公式,可计算得到各形函数为: Ar 5 Ar 4 3 A, = —、A 9——、A’ 3 =— 12 12 °12 形函数矩阵为: (2)等效节点荷载计算 例2图示三角形3节点单元,设13边的长度为3m,在13边作用有如图所示的分布荷载,求该分布荷载的等效节点荷载。 解:(1)形函数及形函数矩阵计算 在13边上,节点2的形函数% = 0,设t为节点1到节点3的位置参数, 在节点1处取0,在节点3处取1,则在13边上有: A* =! —/■> M = t 1 O

-20此一10N3 - 20(1 -/- Wt lot - 20 =3f 1 -1 1 一 I 10£ - 20 dt = 3 Jo d - t) (io* - 20)' o *(10* - 20) >d t 25 T o o o 20 5 1 - t0 0 0 Z 0 LA;J = 0 1 — f 0 0 0 匕 (2)分布荷载的参数表示 在13 边上,q v = 0 ,设 / = a + bt ,由: t = 0, q x = -20 t = 1 , q x = -10 可求得: a = -20 b = 10 于是有: lOt - 20 Cly 另外,由于在边上为一次函数,也可直接根据形函数插值建立分布函数: (3)等效节点荷载计算 \dl -25 - 20

重庆交通大学研究生有限元 - 复习题(36闭卷)

《结构有限元分析》复习题(闭卷) 一、绪论 1.概述有限元法分析问题的过程。 二、平面问题 2.对平面问题T3单元,推导其位移模式。 3.对平面问题T3单元,证明形函数在本节点取值为1,在其它节点取值为0。 4.对平面问题T3单元,证明形函数在任意一点上取值之和为1。 5.对平面问题T3单元,证明边界上一点的形函数,与相对顶点的坐标无关。 6.对平面问题T3单元,证明边界上的位移协调性。 7.对平面问题T3单元,说明单元边界上无限点的约束等效于对该边节点的约束。 8.对平面问题T3单元,证明Li=Ni(i=i、j、m)。 9.对平面问题T3单元,证明∑NiXi=X,∑NiYi=Y。 10.对平面问题T3单元,利用最小势能原理,推导单元刚度矩阵的矩阵表达式。 11.说明刚度矩阵的性质和物理意义。 12.对平面问题T3单元,推导单元自重的等效节点力。 13.对平面问题T3单元,推导单元边界上均布压力的等效节点力。 14.对平面问题T3单元,推导单元边界上三角形分布压力的等效节点力。 15.对平面问题R4单元,推导其位移模式。 16.对平面问题R4单元,证明边界上的位移协调性。 17.试写出处理约束的两种方法(划0置1法,乘大数法)的过程。 三、空间问题和轴对称问题 18.对轴对称问题T3单元,推导其位移模式。 19.对轴对称问题T3单元,采用简化计算,推导单元自重的等效节点力。 20.对轴对称问题T3单元,采用简化计算,推导离心力的等效节点力。 21.对轴对称问题T3单元,采用简化计算,推导边界上梯形分布压力的等效节点力。 四、等参单元 22.对平面问题Q4等参单元,构造其位移模式。 23.对平面问题Q4等参单元,推导其几何矩阵。 24.对平面问题Q4等参单元,说明雅可比行列式的意义,并加以数学证明。 25.对平面问题Q4等参单元,证明其完备性、协调性。 26.对平面问题Q4-8变节点等参单元,构造其形函数。 27.对空间问题Hex8-20变节点等参单元,构造其形函数。

试题及其答案--弹性力学与有限元分析(DOC)

如下图所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。 ① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 A. ①③ B. ②④ C. ①④ D. ③⑤ 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规 定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。 其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部

(绝密试题)弹性力学与有限元分析试题及其答案

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa , 则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为

弹性力学及有限元试题

弹性力学及有限元试题 (一) 问答题(20分) 1、什么是圣维南原理?举例说明怎样把它应用于工程问题 的简化中。 2、什么叫做一点的应力状态?如何表示一点的应力状态(要 求具体说明或表达)。 3、何谓逆解法和半逆解法?它们的理论依据是什么? 4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。 5、要保证有限元方法解答的收敛性,位移模式必须满足那些条 件? (二) (10分) 1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。 2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。 (三)已知,其他应力分量为零,求位移场。(10分) (四)设有矩形截面的悬臂粱,在 自由端受有集中荷载F;体力可以不

计。试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。 (五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。 提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ). (六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。设μ=0,试取位移分量的表达式为 用瑞利—里茨法求解(15分)。

(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。 (八)用刚度集成法求下图所示结构的整体刚度矩阵K。(10分) 要求:单元刚度矩阵元素用e k形式表示;单元刚度矩阵用e K形式表 ij 示,其中e为单元号。

最新弹性力学与有限元分析试题答案

最新弹性力学与有限元分析复习题及其答案 一、 填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

《弹性力学及有限元》教学大纲

《弹性力学及有限元》教学大纲 大纲说明 课程代码:5125004 总学时:40学时(讲课32学时,上机8学时) 总学分:2.5学分 课程类别:必修 适用专业:土木工程专业(本科) 预修要求:高等数学、理论力学、材料力学 课程的性质、目的、任务: 本课程是土木工程专业限选修的一门专业基础课。本课程的教学目的,是使学生在理论力学和材料力学等课程的基础上进一步掌握弹性力学的基本概念、原理和方法,了解弹性力学问题的求解思路、方法和解答,为学习相关专业课程打下初步的弹性力学基础。在此基础上,使学生掌握有限单元法的基本概念、理论、方法,了解和应用ANSYS大型结构分析程序求解简单的弹性力学问题。 课程教学的基本要求: 本课程教学环节主要包括:课堂讲授、习题课、作业、答疑、上机计算、考试。采用课堂授课方式,重点章节安排习题课。课后布置一定量的习题,以便掌握弹性力学与有限单元法的基本概念、原理和方法,用弹性力学的求解方法及大型结构分析有限单元程序求解简单的弹性力学问题。考试采用开卷方式。 大纲的使用说明: 本大纲适用于土木工程本科专业40课时的《弹性力学及有限元》课程. 大纲正文 第一章绪论学时:6学时(讲课6学时) 本章讲授要点:了解弹性力学的研究内容,理解体力、面力、应力、应变和位移等基本概念,熟悉体力、面力、应力、应变、位移等力学量的记号和符号的有关规定,理解弹性力学的基本假定;了解有限单元法的发展,掌握泛函、变分和泛函极值等基本概念;了解加权残值、里兹与伽辽金等方法。 重点:弹性力学中的应力、应变和位移等基本概念;泛函、变分、驻值等基本概念;加权残值、里兹与伽辽金等方法。 难点:应力、应变;泛函、变分、驻值;加权残值法、里兹法与伽辽金法。 第一节弹性力学的内容 第二节弹性力学中的几个基本概念 第三节弹性力学中的基本假定 第四节有限单元法的发展简介 第五节变分原理.泛函.变分.驻值 第六节加权残值法、里兹法与伽辽金法

重庆大学研究生有限元大作业教学内容

重庆大学研究生有限 元大作业

课程研究报告 科目:有限元分析技术教师:阎春平姓名:色学号: 2 专业:机械工程类别:学术 上课时间: 2015 年 11 月至 2016 年 1 月 考生成绩: 阅卷评语: 阅卷教师 (签名)

有限元分析技术作业 姓名: 色序号: 是学号: 2 一、题目描述及要求 钢结构的主梁为高160宽100厚14的方钢管,次梁为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间。主梁和次梁之间是固接。试对在垂直于玻璃平面方向的2kPa 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。 二、题目分析 根据序号为069,换算得钢结构框架为11列13行。由于每个格子的大小为1×1(单位米),因此框架的外边框应为11000×13000(单位毫米)。 三、具体操作及分析求解 1、准备工作 执行Utility Menu:File → Clear&start new 清除当前数据库并开始新的分析,更改文件名和文件标题,如图1.1。选择GUI filter,执行 Main Menu: Preferences → Structural → OK,如图1.2所示

图1.1清除当前数据库并开始新的分析 图1.2 设置GUI filter 2、选择单元类型。 执行Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add→ select→ BEAM188,如图2.1。之后点击OK(回到Element Types window) →Close

重庆大学研究生有限元大作业

姓名:色学号:2 专业:机械工程类别:学术 上课时间:2015年11 月至2016 年 1 月考生成绩: 阅卷评语: 阅卷教师(签名)

有限元分析技术作业 姓名: 色序号: 是学号: 2 一、题目描述及要求 钢结构的主梁为高160宽100厚14的方钢管,次梁为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间。主梁和次梁之间是固接。试对在垂直于玻璃平面方向的2kPa的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。 二、题目分析 根据序号为069,换算得钢结构框架为11列13行。由于每个格子的大小为1×1(单位米),因此框架的外边框应为11000×13000(单位毫米)。 三、具体操作及分析求解 1、准备工作 执行Utility Menu:Fi le→Clear&start new 清除当前数据库并开始新的分析,更改文件名和文件标题,如图 1.1。选择GUI filter,执行Main Menu: Preferences→Structural→OK,如图1.2所示 图1.1清除当前数据库并开始新的分析 1

2 图1.2 设置GUI filter 2、选择单元类型。 执行Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add→ select→ BEAM188,如图2.1。之后点击OK(回到Element Types window) →Close 图2.1选择单元 3、定义材料属性 该钢结构材料为碳素结构钢Q235,其弹性模量为210GPa ,执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic ,此处协调单位制为mmkgs ,故EX 设为2.1E8, PRXY 设置

弹性力学与有限元分析试题及参考答案

弹性力学与有限元分析试题及参考答案 四、分析计算题 1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。 (1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。 解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ????? ??=??+??=??+??0 0x y y x xy y yx x τστσ;(2)在区域内的相容方程()02222=+??? ? ????+??y x y x σσ;(3)在边界上的应力边界条件()()()() ???? ?=+=+s f l m s f m l y s xy y x s yx x τστσ;(4)对于多连体的位移单值条件。 (1)此组应力分量满足相容方程。为了满足平衡微分方程,必须A =-F ,D =-E 。此外还应满足应力边界条件。 (2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。上两式是矛盾的,因此,此组应力分量不可能存在。 2、已知应力分量312x C Qxy x +-=σ,22 23xy C y -=σ,y x C y C xy 2 332--=τ,体力不计,Q 为常数。试利用平衡微分方程求系数C 1,C 2,C 3。 解:将所给应力分量代入平衡微分方程 ???? ?? ?=??+??=??+??00x y y x xy y yx x τστσ 得 ?? ?=--=--+-0 230 33322322212xy C xy C x C y C x C Qy 即 ()()()?? ?=+=+--0 230 333222231xy C C y C Q x C C 由x ,y 的任意性,得

研究生有限元考试

研究生课程有限元试题 笔试部分,50分 一、简答题(共20分,每题5分) 1、简述有限单元法结构刚度矩阵的特点。 2、简述有限元法中选取单元位移函数(多项式)的一般原则。 3、简述有限单元法的收敛性准则。 4、常用于大型结构有限元分析的方法有哪些?指出你所了解的现代有限元分析 商业软件系统。 二、分析计算题:(每题15分,共30分) 5、已知一矩形等截面(如右图示)弹性体扭转问题的泛函表达式为: ()dxdy y x I a a b b ?? --????????-???? ????+??? ????=φφφφ422 式中,φ为应力函数,且在边界上()0,=y x φ 试求: (1)求其泛函极值必要条件所应满足的微分方程。 (2)若选取φ的近似解形式为: ()() 222 2b y a x --=αφ ,求使泛函I 取极值的具体近似解(α为待定系数)。 6、如图a 所示为正方形薄板,其板厚度为t ,四边受到均匀荷载的作用,荷载集度为21/N m ,同时在y 方向相应的两顶点处分别承受大小为2/N m 且沿板厚度方向均匀分布的荷载作用。设薄板材料的弹性模量为E ,泊松比0ν=。

试求 (1)利用对称性,取图(b)所示1/4结构作为研究对象,并将其划分为4个面积大小相等、形状相同的直角三角形单元。给出可供有限元分析的计算模型(即根据对称性条件,在图(b)中添加适当的约束和荷载,并进行单元编号和结点编号)。 (2)设单元结点的局部编号分别为i、j、m,为使每个单元刚度矩阵e K相同,试在图(b)中正确标出每个单元的合理局部编号;并求单元刚度矩阵e K。(3)计算等效结点荷载。 (4)应用适当的位移约束之后,给出可供求解的整体平衡方程(不需要求解)。

弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析 弹性力学是固体力学的一个重要分支,是研究弹性固体在受外力作用、温度改变、边界约束或其他外界因素作用下而发生的应力、形变和位移状态的科学。有限单元法是力学、数学、物理学、计算方法、计算机技术等多种学科综合发展和结合的产物,是随着计算机技术的广泛应用而迅速发展起来的一种数值分析方法。有限元法的基本思想就是化整为零,分散分析,再集零为整。即用结构力学方法求解弹性力学问题,实质是将复杂的连续体划分为有限多个简单的单元体,单元体之间仅仅通过结点相连,实现化无限自由度问题为有限稀有度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。 有限元方法经过近半个世纪的发展,目前已经成为各种工程问题特别是结构分析问题的标准分析方法,而有限元软件也已成为现代结构设计中不可缺少的工具。有限元软件是有限元理论通向实际工程应用的桥梁,它的应用极大地提高了力学学科解决自然科学和工程实际问题的能力,进一步促进了有限元方法的发展。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,广泛用于机械制造、石油化工、航空航天、汽车交通、土木工程、造船、水利等一般工业及科学研究。 ANSYS软件的组成: (一)前处理模块 该模块为用户提供了一个强大的实体建模及网格划分工具,可以方便的构造有限元模型,软件提高了100种以上的单元类型,用来模拟工程中的各种结构和材料。包括: 1.实体建模:参数化建模,布尔运算及体素库,拖拉、旋转、拷贝、蒙皮、倒角等。 2.自动网格划分,自动进行单元形态、求解精度检查及修正。 3.在集合模型上加载:点加载、分布载荷、体载荷、函数载荷。 4.可扩展的标准梁截面形状库。 (二)分析计算模块 该模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。 (三)后处理模块 将计算结果以彩色等值线、梯度、矢量、粒子流、立体切片、透明及半透明等图形方式显示出来,也可以用图表、曲线形式显示或输出。 由于现在只是对ANSYS工程软件有初步的了解和掌握,所以本次作业仅以(1)结构静力学分析为例,运用ANSYS软件对汽车连杆进行受力分析;(2)

弹性力学与有限元分析试题及其答案

一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa , 50=y σMPa ,5010=xy τ MPa ,则主应 力=1σ150MPa ,=2σ0MPa , =1α6135' 。 8、已知一点处的应力分量, 200=x σMPa , 0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa , =1α-37°57′。 9、已知一点处的应力分量, 2000-=x σMPa ,1000=y σMPa , 400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别 建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)

相关文档
最新文档