内支撑结构设计

内支撑结构设计
内支撑结构设计

一、内支撑结构可选用钢支撑、混凝土支撑、钢与混凝土的混合支撑。

二、内支撑结构选型应符合下列原则:

1、宜采用受力明确、连接可靠、施工方便的结构形式;

2、宜采用对称平衡性、整体性强结构形式;

3、应与主体地下结构的结构形式、施工顺序协调,应便于主体结构施工;

4、应利于基坑方开挖和运输;

5、需要时,可考虑内摘除结构作为施工平台。

三、内支撑结构应综合考虑基坑平面形状及尺寸、开挖深度、周边环境条件、主体结构形式等因素,选用有立柱或无立柱的下列内支撑形式:

1、水平对支撑或斜撑,可采用单杆、桁架、八字形支撑;

2、正交或斜交的平面杆系支撑;

3、环形杆或环形板系支撑;

4、坚向斜撑。

四、内支撑结构宜采用超静定结构。对个别次要构件失效会引起结构整体破坏的部位宜设置冗余约束。内支撑结构的设计应考虑地质和环境条件的复杂性、基坑开挖步序的偶然变化的影响。

五、内支撑结构分析应符合下列原则:

1、水平对撑与水平斜撑,应按偏心压力国建进行计算;支撑的轴向压力其支撑间距N 倍挡土构件的支点力之和;腰梁或冠梁应按宜支撑我支座的多跨连续梁计算,计算跨度可取相邻支撑点的中距;

2、矩形基坑支护的正交平面杆系支撑,可分解为纵横两个方向的结构单元,并分按偏心受压构件进行计算;

3、平面杆系支撑、环形杆系支撑,可按平面杆系结构采用平面有限元法进行计算;计算时应考虑基坑不同方向上的荷载不均匀性;建立的计算模型中,约束支座的设置应与支护结构实际位移状态相符,内支撑结构边界向基坑外应设置弹性约束支座,向基坑内位移处不应设置支座,与边界平行方向应根据支护结构实际位移状态设置支座;

4、内支撑结构应进行坚向荷载作用下的结构分析;设有立柱时,在坚向荷载作用下内支撑结构宜按空间框架计算,当作用在内支撑结构上的坚向荷载较小时,内支撑结构的水平构件和按连续梁计算,计算跨度可取相邻立柱的中法,对支撑、腰梁与冠梁、挡土构件进行整体分析。

六、内支撑结构分析时,应同时考虑下列作用:

1、有挡土都建传至内支撑结构的水平荷载;

2、支撑结构自重;当支撑作为施工平台时,尚应考虑施工荷载;

3、当温度改变引起的支撑结构内力不可忽略不计时,应考虑温度应力;

4、当支撑立柱下沉或隆起量较大时,应考虑支撑立柱与挡土构件之间差异沉降产生的作用。

七、混凝土支撑构件及其连接的受压、受弯、受剪承载力计算应符合现行国家标准《混凝土结构设计规范》GB50010水位规定;钢支撑结构构件及其连接受压、受弯、受剪承载力及各类稳定性计算应符合现行国家标准《钢结构设计规范》GB50017的规定。支撑的承载力计算应考虑施工偏心误差的影响,偏心距取值不宜小于支撑计算长度的1/1000,且对混凝土办职称不宜小于20mm,对钢支撑不宜小于40mm。

八、支撑构件的受压计算长度应按下列规定确定:

1、水平支撑在坚向平面内的受压计算长度,不设置立柱时,应取支撑的实际长度;设置立柱时,应取相邻立柱的中心距;

2、水平支撑在水平平面内的受压计算长度,对无水平支撑杆件交汇的支撑,应取与支撑相交的相邻水平支撑杆件的中心距;当水平支撑杆件的交汇点不子啊同一水平面内时,水平平面内的受压计算长度宜取与支撑相交的相邻水平支撑杆件中心距的1.5倍;

3、对坚向斜撑,应按条第1、2款的规定确定受压计算长度。

九、预加轴向压力的支撑,预加力值宜取支撑轴向压力标准值的(0.5~0.8)倍,且应与本规程中的支撑预加轴向压力一致。

十、立柱的受压承载力金额按下列规定计算:

内支撑结构设计

1、在坚向荷载作用下,内支撑结构按框架计算时,立柱应按偏心受压构件计算;内支撑结构的水平构件按连续梁计算时,立柱可按轴心受压构件计算;

2、立柱的受压计算长度应按下列规定确定:1)单层支撑的立柱、多层支撑底层立柱的受压计算长度应取底层支撑至基坑底面的净高度与立柱直径或边长的5倍之和;2)相邻两层水平支撑间的立柱受压计算长度应取此两层水平支撑的中心距;

3、立柱的基础应满足抗压和抗拔的要求。

十一、内支撑的平面布置应符合下列规定:

1、内支撑的布置应满足主体结构的施工要求,宜避开地下主体结构的墙、柱;

2、相邻支撑的水平间距应满足开挖的施工要求;采用机械挖土时,应满足挖土机械作业的空间要求,且不宜小于4m;

3、基坑支护形状支撑时,阳角处的支撑应在两边同时设置;

4、当采用环形支撑时,环梁宜采用圆形、椭圆形等封闭曲线形式,并应按使环梁弯矩、剪力最小的原则布置辐射支撑;环形支撑宜采用与腰梁或冠梁相切的布置形式;

5、水平支撑与挡土构件之间应设置连接腰梁;当支撑设置在挡土构件顶部时,水平支撑应与冠梁连接;在腰梁或冠梁上支撑点的间距,对钢腰梁不宜大于4mm,对混凝土梁不宜大于9m;

6、当需要采用较大水平间距的支撑时,宜根据支撑冠梁、腰梁的受力和承载力要求,在支撑端部两侧设置八字斜撑杆与冠梁、腰梁连接,八字斜撑杆宜在主撑两侧对称布置,且斜撑杆的长度不宜大于9m,斜撑杆与冠梁、腰梁之间的夹角宜取45°~60°;

7、当设置支撑立柱时,临时立柱应避开立柱结构的梁、柱及承重墙;对纵横双向交叉的支撑结构,立柱宜设置在支撑的交汇处;对用作主体结构柱的立柱,立柱在基坑支护阶段的负荷不得超过主体结构的设计要求;立柱与支撑端部及立柱之间的间距应根据支撑构件的稳定要求和坚向荷载的大小确定,且对混凝土支撑不宜大于15m,对钢支撑不宜大于20m;

8、当采用坚向斜撑时,应设置斜撑基础,且应考虑与主体结构底板施工的关系。

十二、支撑的坚向布置应符合下列规定:

1、支撑预挡土构件连接处不应出现拉力;

2、支撑应避开主体地下结构底板和楼板的位置,并应满足主体地下结构施工对墙、柱钢筋连接长度的要求;当支撑下方的主体结构楼板在支撑拆除前施工时,支撑地面与下方主体结构楼板坚的净距不宜小于700mm;

3、支撑至坑底的净高3m;

4、采用多层水平支撑时,各层水平支撑宜布置在同一坚向平面内,层间净高不宜小于3m。

十三、混凝土支撑的构造应符合下列规定:

1、混凝土的强度等级不应低于C25;

2、支撑构件的截面高度不宜小于其坚向平面内计算长度的1/20;腰梁的截面高度(水平尺寸)不宜小于其水平方向计算跨度的1/10;截面宽度(坚向尺寸)不应小于支撑的截面高度;

3、支撑构件的纵向钢筋直径不宜小于16mm,沿截面周边的间距不宜大于200mm;箍筋的直径不宜小于8mm,间距不宜大于250mm。

十四、钢支撑的构造应符合下列规定:

1、钢支撑构件可采用钢管、型钢及组合截面;

2、钢支撑受压力杆件的细比不应大于150,受拉杆件长细比不应大于200;

3、钢支撑连接宜采用螺栓连接,必要时采用焊接连接;

4、当水平支撑预腰梁斜交时,腰梁上应设置牛腿或采用其他够承受剪力的连接措施;

5、采用坚向斜撑时,腰梁和支撑基础上应设置牛腿或采用其他能够承受剪力的连接措施;腰梁与挡土构件之间采用能够承受剪力的连接措施,斜撑基础应满足坚向承载力和水平承载力要求。

十五、立柱的构造应符合下列规定:

1、立柱可采用钢格构、钢管、型钢或钢管混凝土等形式;

2、当采用灌注桩作为立柱基础时,钢立柱锚入桩内的长度不宜小于立柱长边或直径的4倍;

3、立柱长细比不宜大于25;

4、立柱与水平支撑的连接可采用铰接;

5、立柱穿过主体结构底板的部位,应有效的止水措施。

十六、混凝土支撑构件的构造,应符合现行国家标准《混凝土结构设计规范》GB50010的规定。钢支撑构件的构造,应符合现行国家标准《钢结构设计规范》GB50017的有关规定。

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

深基坑内支撑梁施工工艺

深基坑内支撑梁施工工艺 一、支撑施工总体原则 本工程采用钢筋混凝土结构作为水平支撑,土方开挖的顺序、方法必须与设计工况一致,并遵循“先撑后挖、限时支撑、分层开挖、严禁超挖”的原则进行施工,尽量减小基坑无支撑暴露时间和空间。同时应根据基坑工程等级、支撑形式、场内条件等因素,确定基坑开挖的分区及其顺序。宜先开挖周边环境要求较低的一侧土方,并及时设置支撑。环境要求较高一侧的土方开挖,宜采用抽条对称开挖、限时完成支撑或垫层的方式。 基坑开挖应按支护结构设计,降排水要求等确定开挖方案,开挖过程中应分段、分层、随挖随撑、按规定时限完成支撑的施工,作好基坑排水,减少基坑暴露时间。基坑开挖过程中,应采取措施防止碰撞支护结构、工程桩或扰动原状土。支撑的拆除过程时,必须遵循“先换撑、后拆除”的原则进行施工。 二、技术参数 该项目基坑面积约33000㎡,周长810m,深度23~25m,基坑围护体采用地下连续墙作为围护体,基坑竖向设置四道钢筋混凝土支撑,支撑采用圆环支撑平面布置形式,支撑信息图表所示: 表一支撑信息一览表

并结合对称和角撑,截面尺寸详见支撑平面布置图; (2)、支撑梁混凝土强度等级(除第二~四道环撑为C40外)为C35,主筋保护层:30mm; (3)、支撑梁采用两侧支模浇筑,并在支撑梁底设置隔离膜,混凝土应整体浇筑,在冠梁、支撑腰梁施工前需将支护桩表面附着物完

全清除;、 (4)、主筋连接采用搭接焊接,单面焊10d,接头在同一截面处数量应不超过50%; 三、施工流程 四、施工方法 混凝土支撑首先进行施工分区和流程的划分,支撑的分区一般结合土方开挖方案,按照盆式开挖、“分区、分块、对称”的原则确定,随着土方开挖的进度及时跟进支撑的施工,尽可能减少围护体侧开挖

轴系结构设计

小白进阶篇—电机选型案例集 目的:掌握轴系零件设计规范并计算校核轴的强度 课程内容: 1.轴的分类 按所受载荷特点分三种: 心轴:只承受弯矩; 传动轴:只承受转矩; 转轴:同时承受弯矩和转矩;

按轴的结构形状分: 直轴,曲轴,光轴,阶梯轴,挠性轴。 2.轴的材料 碳素钢比合金钢价格低廉,对应力集中的敏感性低,可通过热处理改善其综合性能,加工

工艺性好,故应用最广;一般用途的轴,多用含碳量为0.25~0.5%的优质碳素钢,尤其是45号钢。 合金钢具有比碳钢更好的机械性能和淬火性能,但对应力集中比较敏感,且价格较贵; 多用于对强度和耐磨性有特殊要求的轴。如20Cr、20CrMnTi等低碳合金钢,经渗碳淬火处理后可提高耐磨性;20CrMoV、38CrMoAl等合金钢,有良好的高温机械性能,常用于在高温、高速和重载条件下工作的轴。 球墨铸铁吸振性和耐磨性好,对应力集中敏感低,价格低廉,使用铸造制成外形复杂的轴。例如:内燃机中的曲轴。对于形状复杂的轴,如曲轴、凸轮轴等,也采用球墨铸铁或高强度铸造材料来进行铸造加工,易于得到所需形状,而且具有较好的吸振性能和好的耐磨性,对应力集中的敏感性也较低。 3.轴的结构设计 合理的轴系结构必须满足下列基本要求: 1)轴和轴承在预期寿命内不失效;

2)轴上零件在轴上准确定位与固定,以及轴系在箱体上的可靠固定;3)轴系结构有良好的工艺性; 4)好的经济性。 轴肩与轴环定位 优点:方便可靠、不需要附加零件,能承受的轴向力大; 缺点:会使轴径增大,阶梯处形成应力集中,阶梯过多将不利于加工。用途:这种方法广泛用于各种轴上零件的定位。

内支撑结构设计

一、内支撑结构可选用钢支撑、混凝土支撑、钢与混凝土的混合支撑。 二、内支撑结构选型应符合下列原则: 1、宜采用受力明确、连接可靠、施工方便的结构形式; 2、宜采用对称平衡性、整体性强结构形式; 3、应与主体地下结构的结构形式、施工顺序协调,应便于主体结构施工; 4、应利于基坑方开挖和运输; 5、需要时,可考虑内摘除结构作为施工平台。 三、内支撑结构应综合考虑基坑平面形状及尺寸、开挖深度、周边环境条件、主体结构形式等因素,选用有立柱或无立柱的下列内支撑形式: 1、水平对支撑或斜撑,可采用单杆、桁架、八字形支撑; 2、正交或斜交的平面杆系支撑; 3、环形杆或环形板系支撑; 4、坚向斜撑。 四、内支撑结构宜采用超静定结构。对个别次要构件失效会引起结构整体破坏的部位宜设置冗余约束。内支撑结构的设计应考虑地质和环境条件的复杂性、基坑开挖步序的偶然变化的影响。 五、内支撑结构分析应符合下列原则: 1、水平对撑与水平斜撑,应按偏心压力国建进行计算;支撑的轴向压力其支撑间距N 倍挡土构件的支点力之和;腰梁或冠梁应按宜支撑我支座的多跨连续梁计算,计算跨度可取相邻支撑点的中距; 2、矩形基坑支护的正交平面杆系支撑,可分解为纵横两个方向的结构单元,并分按偏心受压构件进行计算; 3、平面杆系支撑、环形杆系支撑,可按平面杆系结构采用平面有限元法进行计算;计算时应考虑基坑不同方向上的荷载不均匀性;建立的计算模型中,约束支座的设置应与支护结构实际位移状态相符,内支撑结构边界向基坑外应设置弹性约束支座,向基坑内位移处不应设置支座,与边界平行方向应根据支护结构实际位移状态设置支座;

4、内支撑结构应进行坚向荷载作用下的结构分析;设有立柱时,在坚向荷载作用下内支撑结构宜按空间框架计算,当作用在内支撑结构上的坚向荷载较小时,内支撑结构的水平构件和按连续梁计算,计算跨度可取相邻立柱的中法,对支撑、腰梁与冠梁、挡土构件进行整体分析。 六、内支撑结构分析时,应同时考虑下列作用: 1、有挡土都建传至内支撑结构的水平荷载; 2、支撑结构自重;当支撑作为施工平台时,尚应考虑施工荷载; 3、当温度改变引起的支撑结构内力不可忽略不计时,应考虑温度应力; 4、当支撑立柱下沉或隆起量较大时,应考虑支撑立柱与挡土构件之间差异沉降产生的作用。 七、混凝土支撑构件及其连接的受压、受弯、受剪承载力计算应符合现行国家标准《混凝土结构设计规范》GB50010水位规定;钢支撑结构构件及其连接受压、受弯、受剪承载力及各类稳定性计算应符合现行国家标准《钢结构设计规范》GB50017的规定。支撑的承载力计算应考虑施工偏心误差的影响,偏心距取值不宜小于支撑计算长度的1/1000,且对混凝土办职称不宜小于20mm,对钢支撑不宜小于40mm。 八、支撑构件的受压计算长度应按下列规定确定: 1、水平支撑在坚向平面内的受压计算长度,不设置立柱时,应取支撑的实际长度;设置立柱时,应取相邻立柱的中心距; 2、水平支撑在水平平面内的受压计算长度,对无水平支撑杆件交汇的支撑,应取与支撑相交的相邻水平支撑杆件的中心距;当水平支撑杆件的交汇点不子啊同一水平面内时,水平平面内的受压计算长度宜取与支撑相交的相邻水平支撑杆件中心距的1.5倍; 3、对坚向斜撑,应按条第1、2款的规定确定受压计算长度。 九、预加轴向压力的支撑,预加力值宜取支撑轴向压力标准值的(0.5~0.8)倍,且应与本规程中的支撑预加轴向压力一致。 十、立柱的受压承载力金额按下列规定计算:

内支撑结构(DOC)

第一章工程概况 一、编制依据 1、昆铁家园小区基坑支护工程施工设计图。 2、采用规范、标准: 《建筑地基基础工程施工质量验收规范》(GB50202—2002) 《建筑工程施工质量验收统一标准》(GB50300—2001) 《钢结构工程施工质量验收规范》GB50205-2001) 《建筑施工安全检查标准》 其他有关现行国家标准及规范、规程。 二、工程概况 本工程支撑结构格构柱,格构柱主要包括格构柱和立柱桩两部分,上部格构柱为钢构件,下部立柱桩为钢筋混凝土钻孔灌注桩基础,部分为利用工程桩作为立柱桩。立柱桩共计60颗,利用工程桩作为立柱桩40颗。工程桩桩径为A800mm,立桩桩桩径为A1000mm,东西栈桥区域格构柱共9颗,尺寸为600×600mm,非栈桥区域格构柱91颗,尺寸460×460mm。桩身砼强度等级为C30水下混凝土。 三、地质、水文条件 根据甲方提供的岩土勘察报告,拟建场地地质分布为: (一)第四系人工活动层(Qml) ①1杂填土:杂色,中压缩性(a1-2=0.40MPa-1)土体结构松散、欠压实,含大量建筑垃圾及砖、瓦碎片等,局部地段上部为混凝土路面。该层填土为原有房屋建筑时回填土,属新近填土,厚度0.50~

9.70m,平均3.77m,整个场地均有分布。 ①2素填土:褐黄、褐红色,中压缩性(a1-2=0.35MPa-1)。主要由粘性土组成,局部地段为粉土。属新近填土,顶板埋深0.50~5.70m,厚度1.10~6.10m,平均3.44m,整个场地大部分地段均有分布。 (二)第四系冲洪积层(Qal+pl) ②粉质粘土:褐、褐黄色,可塑~硬塑状,中压缩性 (a1-2=0.48MPa-1)。切面稍有光泽,韧性中等,干强度中等,顶板埋深1.80~9.70m,厚度0.50~3.40m,平均1.68m,场地的大部分地段有分布。 (三)第四系冲积层(Qal) ③1圆砾:褐黄色,稍密~中密,砾石磨圆中等,粒径1~30mm,成份为砂岩、石英砂岩、灰岩,其成分较杂,由粉质粘土、砾砂充填,级配较为均匀;顶板埋深1.90~11.80m,厚度0.50~6.80m,平均2.88m,整个场地均有分布。 ③a1粉质粘土:灰、深褐灰色,可塑~硬塑状,中压缩性 (a1-2=0.37MPa-1)。切面稍有光泽,韧性中等,干强度低,顶板埋深6.80~9.20m,厚度0.60~4.80m,平均1.93m,呈透镜体分布于③1圆砾中。 ③2圆砾:兰灰色,稍密~中密,砾石磨圆中等,粒径3~40mm,成份为砂岩、石英砂岩、灰岩,由粗中砂充填,级配较为均匀;顶板埋深3.50~20.00m,厚度1.00~14.20m,平均7.60m,整个场地均有分布。

大跨度空间结构工程案例样本

大跨度空间结构案例及分析

1、大跨度空间结构选型的概念 跨度超过30米的空间结构就是大跨度空间结构。大跨度空间结构使建筑实现较大的跨度, 满足建筑大空间的使用要求, 而且结构轻巧, 造型优美, 受力合理, 实用耐久, 用钢量低。大跨度空间结构不但使空间的水平分隔的灵活性增大, 而且也增大了垂直方向的自由调整的可能性。大跨度空间结构的选型即大跨度空间结构体系方案的优化选择, 实际上就是对适合建筑设计的多种结构体系方案进行分析、比较、判断、假设、择优的过程。 2、大跨度空间结构选型的原则 大跨度建筑迅速发展的原因一方面是由于社会发展使建筑功能愈来愈复杂; 另一方面则是新材料、新结构、新技术的出现, 促进了大跨度建筑的进步。因此大跨度空间结构的发展是在结构受力合理, 造型美观等诸多因素的限制下发展起来的。各种结构不同的优势与劣势, 只有将它们合理的运用起来, 才能达到技术与艺术都最合适的结构选择, 甚至创造出完美的建筑。 在大跨度空间结构中引入现代预应力技术, 不但使结构体形更为丰富而且也使其先进性、合理性、经济性得到充分展示。经过适当配置拉索, 或可使结构获得新的中间弹性支点或使结构产生与外载作用反向的内力和挠度而卸载。前者即为斜拉结构体系, 后者则为预应力结构体系。这一类”杂交”结构体系将改进原结构的受力状态, 降低内力峰值, 增强结构刚度、经济效果明显提高。

一、案例 南京医科大学新建新基础医学教学与科研楼/教研服务中心工程, 位于南京市江宁大学城,分教学楼和教研服务中心两部分。其建筑群皆为四周办公楼中间设中庭的结构形式,中庭跨度约55米,屋面采用折叠钢屋架结构,钢屋架上铺设玻璃采光天窗,有效的解决了楼内的采光问题,外观造型线条优美,气势磅礴,在满足使用功能的同时,又给人以美的享受。 1.1 工程概况 中庭钢结构屋面, 结构形式为一倾斜的折叠钢屋架。位于一区、二区、三区、四区之间, 高端支撑于一区和四区的屋面钢结构上, 经过固定支座与一区和四区的屋面钢结构相连; 低端支撑于二区和三区的屋面钢结构上, 经过滑动支座与一区和四区的屋面钢结构相连, 边榀下设箱型柱支撑。 中庭折叠钢屋架由5榀正三角形管桁架组成, 两边悬挑。低端钢桁架下弦标高从15.831米至17.271米, 上弦标高从17.940米至19.080米, 高约2米, 宽23.477米; 高端下弦标高20.490米至22.274米, 上弦标高从24.752米至26.524米, 高约4米; 跨度: 第一榀40.306米, 第二榀48.133米, 第三榀56.825米, 第四榀58.673米, 第五榀53.862米, 钢折梁屋面部

大跨空间结构设计与分析读书报告

《大跨空间结构设计与分析》读书报告 近30年来,各种类型的大跨空间结构在美、日、欧、澳等发达国家发展很快。建筑物的跨度和规模越来越大,采用了许多新材料和新技术,创造了丰富的空间结构形式。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名人文景观。目前,大跨度和超大跨度建筑物及作为其核心的空间结构技术已成为代表一个国家建筑科技发展水平的重要标志之一。因此,对大跨空间结构设计和分析是非常有必要的。 《大跨空间结构设计与分析》可作为土木工程专业研究生教学用书,也可供相关工程技术人员参考,这种理论和实践并重的学术著作让我产生了浓重的学习兴趣,结合自身所学知识,我对杜新喜先生的《大跨空间结构设计与分析》进行了阅读和学习。《大跨空间结构设计与分析》系统地介绍了大跨空间结构的设计要点和难点,全书共分为7章,前4章介绍空间结构设计,后3章介绍网格结构性能研究,由于时间的制约,本次我只对该书的前四章进行了阅读,但只是前四章就已经让我对大跨空间结构设计有了新的认识。 《大跨空间结构设计与分析》第一章为空间结构类型及建模,在这一章里面,杜新喜先生系统的将空间结构分为网架结构、网壳结构、悬索结构等等,这种系统的分类更加清晰的明确了不同大跨空间结构的性质和特点,在第一章的理论支持下,结合其他学者的理论著作,我将大跨空间结构的部分类别和优缺点进行了统计,具体如下: 1 钢筋混凝土薄壳结构 薄壳结构主要是依靠膜内力来支承自重及外荷载。它的这一特点,使其得以充分发挥钢筋混凝土材料的强度。 薄壳结构的主要优点有:(1)可覆盖大跨度的空间而中间不设柱,造型美观,活泼新颖;(2)节约材料,经济效果好,即用一种材料同时起到承重和维护功能;(3)自重轻,刚度大,整体性好,有良好的抗震和动力性能。 相应的,薄壳结构的缺点有:(1)现浇薄壳需耗费大量模板,施工费时、

钢框架支撑结构设计实例(书稿例题)

钢框架-支撑结构设计实例 4.10.1 工程设计概况 本建筑为某公司办公楼,位于沈阳市区,共七层。总建筑面积约59002m ,总高度30.6m ,室内外高差0.600m ;底层层高4.5m ,顶层层高4.5m ,其余层均为4.2m 。设两部楼梯和两部电梯。墙体采用聚氨酯PU 夹芯墙板。屋面为不上人屋面。 结构形式为钢框架—支撑体系。设计基准期50年,雪荷载0.502 m kN ,基本风压:0.552 m kN 。抗震设防烈度为7度,设计基本加速度为0.1g ,结构抗震等级四级。结构设计基准期50年。 地质条件:拟建场地地形平坦,地下稳定水位距地坪-9.0m 以下,冰冻深度-1.20m ,地质条件见表4-24,Ⅱ类场地。 4.10.2 方案设计 1.建筑方案概述 1)设计依据 《民用建筑设计通则》GB50352-2005 《办公建筑设计规范》JGJ67-2006 《建筑设计防火规范》GB50016-2006 2)设计说明 (1)屋面(不上人屋面) 防水层:SBS 改性沥青卷材(带保护层); 40mm 厚1:3水泥沙浆找平层; 70mm 厚挤塑板保温层; 1:6水泥炉渣找坡(最薄处30mm,坡度2%); 压型钢板混凝土组合板(结构层折算厚度100mm ); 轻钢龙骨吊顶。 (2)楼面: 20mm 厚大理石面层; 20mm 厚1:3干硬性水泥沙浆找平层; 压型钢板混凝土组合(结构层折算厚度100mm ); 轻钢龙骨吊顶。 (3)门窗 本工程采用实木门和塑钢玻璃窗。 (4)墙体 外墙为双层聚氨酯PU 夹芯墙板300mm (内塞岩棉); 内墙为双层聚氨酯PU 夹芯墙板180mm 厚聚氨酯PU 夹芯墙板; 2. 结构方案概述 1)设计依据 本设计主要依据以下现行国家规范及规程设计: 《建筑结构荷载规范》(GB50009-2001)(2006版) 《钢结构设计规范》(GBJ50017-2003) 《建筑抗震设计规范》(GB50011-2010) 《混凝土结构设计规范》(GB50010-2002)

大跨度空间结构中的钢网架结构设计分析

大跨度空间结构中的钢网架结构设计分析 发表时间:2019-11-15T16:04:56.187Z 来源:《建筑细部》2019年第12期作者:苏海丽[导读] 近些年,在社会发展的影响下,我国的城市建筑技术快速进步,以及人们生活空间需求的增大,城市建设中超大型复杂结构的建筑物不断涌现,钢结构有多方面的优势,在此类建筑中广泛运用。苏海丽 华电重工股份有限公司北京 100070 摘要:近些年,在社会发展的影响下,我国的城市建筑技术快速进步,以及人们生活空间需求的增大,城市建设中超大型复杂结构的建筑物不断涌现,钢结构有多方面的优势,在此类建筑中广泛运用。文章分析了大跨度空间钢网架结构的设计要点,供业内人士参考。 关键词:大跨度;钢网架结构;设计 引言 近些年来,钢网架结构设计在我国的空间结构设计中得到了广泛的应用,主要是因为自身重量较强,实际安装操作比较简便,受力传递比较合理,具有较强的刚度以及抗震性,所以设计师可以利用这些优点,根据自己的想象进行自由创作,为其提供了丰富的创作空间,可以将自己的想法充分的展现在建筑结构设计中。在建筑平面设计方面,可以适用圆形、矩形、多边形等多种形状,在外形上可以形成椭圆面、球面以及旋转抛物面等各种形式,所以能够展现出良好的外观。因为钢网架的杆件以及节点能够进行定型化,所以可在工厂中进行批量的定制,实施工业化生产,可有效的提高施工效率,节约施工成本。在实际设计的过程中,还需要根据建筑的用途以及周围环境进行合理构思,在保证各项技术参数合理的情况下,还要考虑到经济性,从而达到最高的性价比。 1钢网架结构的选型 钢网架结构是使用比较普遍的一种大跨度屋顶结构。这种结构整体性强,稳定性好,空间刚度大,防震性能好。网构架高度较小,能利用较小杆形构件拼装成大跨度的建筑,有效地利用建筑空间。适合工业化生产的大跨度网架结构,外形可分为平板型网架和壳形网架两类,能适应圆形、方形、多边形等多种平面形状。平板型网架多为双层,壳形网架有单层和双层之分,并有单曲线、双曲线等屋顶形式。钢网架结构较为复杂,需要进行科学的选型,才能确认整体结构。钢网架结构是空间铰接杆系结构,一定要全面考虑到整体结构在力学上的问题,确保结构更加稳定。按现行标准要求,网架结构设计要满足受力需要,对外部压力、受力方向要严格遵守设计要点,保证在受到任何外力作用下,网架结构均稳定平衡,不发生几何变形问题,实现结构整体的安全性。要想从根本上确保网架结构稳定,就需要对网架结构做合理的选型,合理的选型结构直接关系到整体结构,所以要根据实际情况确定选型,保证安全稳定。选型时,一要全面考虑几何问题,因为结构几何不确定则会出现更多的可变量,影响到结构稳定。在实际施工过程中,网架结构样式非常多,要根据使用功能、所处区域特征做好选型,在具体选择时,要看建筑平面、尺寸、荷载、网架、安装及成本,做好全面选择,以经济性原则为出发点,从几个设计方案中择优选择一个设计思路。在选型时,要全方位考虑,一是看用钢量多少,用钢量是主要考虑的方向,要在经济性原则基础上,确保用量最少,材料最少;二是连接节点造价,杆件与节点连接部位造价也要保证安全的前提下,成本最低;三是安装费用,各种材料运输和安装费用也关系到经济效益,所以要综合考虑各项经济指标。通过实践证明,选型最好的结构是三角锥网格和四角锥网格,按这种几何单元确定的网架结构非常稳定,是施工中经常用到的几何单元形式,能够保证各个结构单元上的稳固,具有不变性的明显特点。 2大跨度钢网架结构的设计要点 大跨度钢网架结构的荷载形式应被重点关注,设计时应全面考虑荷载类型,荷载类型则主要包含永久荷载、可变荷载、偶然荷载三个方面。设计取值时,永久荷载应采用标准值作为代表值;可变荷载则根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值;偶然荷载,是按照设计的建筑结构使用的特点确定其代表值。下面就这几种荷载类型做具体说明。 2.1永久荷载 大跨度钢网架结构在设计时,永久荷载包含网架结构的自重、檩条的自重以及屋面覆盖材料的自重。网架结构的自重计算可由计算机自动完成,屋面覆盖材料的自重计算可由计算机自动完成或采用经验公式计算得出,檩条的自重根据檩距、拉条及撑杆的布置进行计算。屋面覆盖材料通常是指防水层、屋面板、屋面保温层等所有上盖材料的自重总和,此外,检修马道、屋内吊顶或设备管道等装修构造,则按实际情况计算。 2.2可变荷载 (1)屋面活荷载。根据《建筑结构荷载规范》(GB5009-2012)相关规定,屋面活荷载一般按屋面的水平投影面计算。对不上人的大跨度钢网架结构屋面,屋面活荷载标准值采用0.5kN/m2,但当施工或维修荷载较大时,应按实际情况设计取值,或在维修施工中采取特殊措施。 (2)雪荷载。屋面雪荷载取值主要考虑屋面几何形状、朝向和风向等相关要素。屋面雪荷载通常小于基本雪压,但有时也会产生积雪,如双跨或多跨曲面屋顶的交接处等,此时应该考虑雪荷载不均匀分布的情况。 (3)风荷载。当建筑周围的空气流动受到建筑物的阻挡时,就会在建筑物表面的方向形成吸力或压力,这些吸力或压力即设计时须考虑的建筑物所受的风荷载。由于风的特性,使得风荷载取值设计时须考虑风的静力和动力作用的双重特点。对风敏感的或大跨度(大于60m)的柔性屋盖结构,须考虑风压脉动对大跨度钢网架结构屋盖产生风振的影响。这种情况须先进行风洞试验,根据结果按随机振动理论计算确定风荷载取值。 3钢网架结构设计方法 3.1网架结构杆件设计 钢网架是网架结构设计中比较常用的一种形式,主要以Q235和Q345钢材较多。这两种钢材具有很好的力学性能,并且焊接性能较佳,具有很强的稳定性,所以应用范围较广。作为钢网架结构中的杆件,其截面形式有很多种,其中的空腹载面较好,包括圆钢管和方钢管,这两种截面形式在各向惯性矩方面都较强,易于承受一定的外力作用。在空腹截面焊接封闭后,内部不易受到腐蚀,并且在表面不易积水积灰,所以防腐性能较佳,也是应用比较广泛的原因。

内支撑式支护技术

内支撑式支护技术 一、原理: 内支撑式支护是由内支撑系统和挡土结构两个部分组成,基坑开挖所产生 的土压力和水压力主要是由挡土结构来承担,同时也是由挡土结构来将这两部 分侧向压力传递给内支撑,有地下水时也可防止地下水渗漏,是稳定基坑的一 种临时支挡方式。一般情况下,支撑结构的布置形式有水平支撑体系和竖向支 撑体系两种。 二、支撑的结构型式(支撑材料的选择) 1)支撑结构可采用钢支撑; 优点:自重轻、安装和拆除方便、施工速度快、可以重复利用(环保、绿色)。且安装后能立即发挥支撑作用,减少由于时间效应而增加的基坑位移是十分有 效的。 缺点:节点构造和安装相对比较复杂,施工质量和水平要求较高。适用于对撑、角撑等平面形状简单的基坑。 2)支撑结构可采用钢筋混凝土支撑; 优点:刚度大,整体性好,布置灵活,适应于不同形状的基坑,而且不会因节 点松动而引起基坑位移,施工质量容易得到保证。 缺点:现场制作和养护时间较长,拆除工程量大,支撑材料不能重复利用。 3)支撑结构可采用钢支撑与钢筋混凝土支撑的组合; 4)选型时应考虑的因素:

基坑的平面形状、尺寸和开挖深度;基坑周边环境条件;围护结构(桩、墙)的型式;土方开挖与支撑安装工序;支撑拆除方式;主体结构的设计与施工要求。 三、施工流程: 第一层土方开挖→人工修底→安装第一道腰梁、内支撑梁底模板→绑扎第一道腰梁、支撑梁钢筋→安装梁侧模→浇筑混凝土→养护→第二层土方开挖→人工修底→安装第二道支撑、腰梁底模板→绑扎支撑、腰梁钢筋→安装支撑、腰梁侧模→凝土浇筑→砼养护→开挖第三层基坑土方→人工修底平整、做坑底排水明沟。 四、工程案例: 1、工程概况 某工程建筑总面积96157m2,其中地下室面积11828m2,地下室3层,局部设夹层,埋深12.8-16.3m,地下室平时作为车库使用。本工程为深基坑施工工程,基坑呈矩形,平面尺寸为111.5×44.5m,设二道钢筋砼支撑,相对标高分别为-6m 和-10.5m,设计主要采用人工挖孔桩垂直支护档土,桩顶设圈梁一道,基坑内设钢筋混凝土内支撑梁、腰梁两道,梁顶标高分别为-5.55m及-10.05m,每道支撑由腰梁、角撑、对撑和支顶柱组成。腰梁沿基坑周边布置,基坑四角各设二条斜角撑,基坑中部均匀布设三根对撑。对撑和角撑下共设10个钢格构支柱。腰梁截面尺寸1000×900mm,配筋40φ25+8φ20 2、工程地质情况分析 本工程地处建筑物密集地区, 工程周围环境较为复杂。根据地质勘测报告反映, 场地土质分布为人工填土、冲洪积层、残积层及白垩统砂岩组成, 按工程地质自上而下分布为四个大层, 层序号为a、b、c、d四层。a、b层为人工填土层和冲洪积层;c层为风化残积土,多为紫红色粉质粘土,总的状态趋势上部为可塑一一硬可塑,下部硬可塑一坚硬。近底部夹强风化残留岩块, 岩块厚度分别为0.7m,1.4m,0.8m,本层顶板埋深 5.2~7.1m,平均6.04m , 厚度2.8~12.8m,平均厚度8.56m。d层为上白垩统砂岩, 由紫红色泥质粉砂岩、砂岩、砂砾岩组成,形成了强度各异的岩石, 如强风化岩、中风化岩及微风化岩, 按场地内风化岩石分布及组合特点,自上而下分为两个岩带,即混合风化岩带和微风化岩带。平均厚度6.04m,岩性为紫红色粉砂岩, 砂岩为主夹砂砾岩、岩石呈厚层状, 坚硬、完整。场地地下水较贫乏,地下水水位根据测孔测得有混合地下水位为0.4~7.0m之间。 3、施工流程 第一层土方开挖→人工修底→安装第一道腰梁、内支撑梁底模板→绑扎第一道腰梁、支撑梁钢筋→安装梁侧模→浇筑混凝土→养护→第二层土方开挖→人工修底→安装第二道支撑、腰梁底模板→绑扎支撑、腰梁钢筋→安装支撑、腰梁侧模→凝土浇筑→砼养护→开挖第三层基坑土方→人工修底平整、做坑底排水明沟

轴的结构设计范例

四、低速轴系的结构设计 1、根据轴的工作条件,选择材料及热处理方法,确定许用应力,由(二)(三)已算得从动齿轮转速n 2=71.7r/min 。齿轮分度圆直径d 2=360mm 。选用45号钢调质。查①表11-1得抗拉强度MPa 650b =σ,查①表11-9得许用弯曲应力[]MPa 60b 1=-σ。 2、按扭转强度估算最小直径 由(二)知,P 2=3.87kw ,T 2=516.1N.m 查①表11-5取A=110,按①式(11-3)计算得: mm 57.417 .7187.3110n P A d 33 2==≥ 考虑轴和联轴器用一个键联接,故将轴放大5%并取标准值,即取d=45mm 。 3、轴的结构设计 (1)将轴设计成阶梯轴,按T=516.1N.m ,从②查用TL8型弹性联轴器,孔径为45mm ,长L=112mm ,与轴头配合长度为84mm 。取轴头直径为45mm ,故靠近轴头的轴身直径为52mm ,轴颈直径取55mm 。轴两端选用6011型轴承,轴承宽度B=18mm ,外径D=90mm 。轴承由套筒和轴肩实现轴向定位,圆角r=1mm 。取齿轮轴头直径为60mm ,定位环高度h=5mm ,其余圆角r=1.5mm ,挡油盘外径取D=89mm 。 (2)在(三)已经求得轮毂长为90mm ,因此轴头长度为88mm ,轴颈长度与轴承宽度相等为18mm ,齿轮两端与箱体内壁间距离各取15mm ,由于转速较低,故轴承用润滑脂,所以轴承端面与箱体内壁距离取10mm 。这样可定出跨距为158mm 。伸出箱体的轴段长度取44mm 。为了保证轴端挡圈只压在半联轴器上,应将头长度取短一些,故取轴头长度为75mm 。 3、由于是单级齿轮减速器,因此齿轮布置在中央,轴承对称布置,齿轮与轴环、套筒实现轴向定位,以平键联接及选用过渡配合H7/n6实现周向固定。齿轮轴头有装配锥度,两端轴承分别以轴肩和套筒实现轴向定位,采用过盈配合k6实现周向固定。整个轴系以两端轴承盖实现轴向定位,联轴器以轴肩、平键和选用过渡配合H7/k6实现轴向定位和周向固定。 4、草图如下:

大跨度空间结构选型

建筑设计原理Ⅲ课程论文 --------大跨度空间结构选型 班级:09城市规划(2)班 学号:09202020211 姓名:刘赛 指导教师:段伟 建筑与规划学院建筑系 2011-12

目录前言 1、大跨度空间结构选型的概念 2、大跨度空间结构的发展及现状 3、大跨度空间结构的形式及特点 3—1、点连接玻璃幕墙支承结构 3—2、膜结构 3—3、薄壳结构 3—4、悬索结构 3—5、网壳结构 3—6、网架结构 4、大跨度空间结构选型的原则 4—1、满足功能 4—2、造型美观 4—3、实用耐久 4—4、受力合理 4—5、安装简便 4—6、经济合理 5、结语

大跨度空间结构选型 前言 在人类社会的发展历程中,能够提供更大跨度和空间的结构常常是人们追求的梦想和目标,空间结构的发展很大程度上反映了人类建筑史的发展。大跨度空间结构的发展使其结构选型的复杂性和重要性日益明显。各种大跨度空间结构形式的产生和发展,一方面为土木工程师能力的发挥提供了更大的余地,另一方面,由于大跨度结构设计问题的复杂性,选择余地的增大意味着选择的结构体系和类型不恰当的可能性大大增加。结构选型是建筑结构设计是最大的问题。结构的好坏直接关系到建筑物是否安全、适用、经济、美观。建筑结构也关系着建筑的整体强度、刚度、抗震能力、经济性能等等。大跨度结构的选型具有十分重要的意义。 摘要:大跨度结构发展迅速,应用广泛。大跨度空间结构设计应正确合理地运用不同的计算理论和程序方法进行精确的分析,同时在空间结构的形体设计中不能只注重美观,还必须注重结构受力的合理性和工程成本的等因素。本文简单概述了大跨度空间结构的发展现状,着重就大跨度空间结构主要形式的特点进行详细的介绍,然后以汽车站设计为例说明了大跨度空间结构选型的原则。 关键词:大跨度空间结构发展形式特点原则 1、大跨度空间结构选型的概念 跨度超过30米的空间结构就是大跨度空间结构。大跨度空间结构不仅可以使建筑实现较大的跨度,满足建筑大空间的使要求,而且结构轻巧,造型优美,受力合理,实用耐久,用钢量低。大跨度空间结构不仅使空间的水平分隔的灵活性增大,而且也增大了垂直方向的自由调整的可能性。大跨度空间结构的选型即大跨度空间结构体系方案的优化选择,实际上就是对适合建筑设计的多种结构体系方案进行分析、比较、判断、假设、择优的过程。 2、大跨度空间结构的发展及现状 建筑物的跨度和规模越来越大,尺度达150m以上的超大规模建筑已非个别;大跨度空间结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。例如 1975年建成的美国新奥尔良“超级穹顶”,直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成直径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。1988年东京建成的“后乐园”棒球馆,采用膜结构技术,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。 日本福冈体育馆“后乐园”棒球馆“佐治亚穹顶” 3、大跨度空间结构的形式及特点 3—1、点连接玻璃幕墙支承结构 由点支撑装置和支撑结构构成玻璃幕墙的结构为点连接玻璃 幕墙支承结构。点式玻璃幕墙的玻璃是用不锈钢爪件穿过玻璃上 预钻的孔固定的。 点连接玻璃幕墙支撑结构的建筑具有很多优点。(1)通透性 好:玻璃面板仅通过几个点连接到支撑结构上,几乎无遮挡,透 过玻璃视线达到最佳,视野达到最大,将玻璃的透明性应用到极 限。(2)灵活性好:在金属紧固件和金属连接件的设计中,为减 少、消除玻璃板孔边的应力集中,使玻璃板与连接件处于铰接状 态,使得玻璃板上的每个连接点都可自由地转动,并且还允许有 少许的平动,用于弥补安装施工中的误差。采用点支式玻璃幕墙 技术可以最大限度地满足建筑造型的需求。(3)安全性好:由于 点支式玻璃幕墙所用玻璃全都是钢化玻璃的,属安全玻璃,并且点连接玻璃幕墙 使用金属紧固件和金属连接件与支撑结构相连接,耐候密封胶只起密封作用,不承受荷载,即使玻璃意外破坏,钢化玻璃破裂成碎片,形成所谓的“玻璃雨”,不会出现整块玻璃坠落的严重伤人事故。(4)工艺感好:点支式玻璃幕墙的支撑结构有多种形式,支撑构件加工精细、表面光滑,具有良好的工艺感和艺术感。(5)环保节能性好:点支式玻璃幕墙的特点之一是通透性好,因此在玻璃的使用上多选择无光污染的白玻、超白玻等,尤其是中空玻璃的使用,节能效果更加明显。 3—2、膜结构 膜结构是以性能优良的织物为材料,或是向膜内充气,由空气压力支撑膜面,或是利用柔性钢索或刚性骨架将膜面绷紧,从而形成具有一定刚度并能覆盖大跨度结构体系。 膜结构既能承重又能起围护作用,与传统结构相比,其重量却大大减轻。膜结构跨度大;建筑造型自由丰富;施工方便;具有良好的经济性和较高的安全性;透光性和自结性好。但是耐久性较差。 3—3、薄壳结构 薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋

轴系结构设计实验报告-new1

轴系结构设计实验报告 实验者:同组者: 班级:日期: 一、实验目的 1、熟悉并掌握轴系结构设计中有关轴的结构设计,滚动轴承组合设计的基本方法; 2、熟悉并掌握轴、轴上零件的结构形状及功用、工艺要求和装配关系; 3、熟悉并掌握轴及轴上零件的定位与固定方法; 4、了解轴承的类型、布置、安装及调整方法以及润滑和密封方式。 二、实验设备 1、组合式轴系结构设计分析试验箱。 试验箱提供能进行减速器援助齿轮轴系,小圆锥齿轮轴系及蜗杆轴系结构设计实验的全套零件。 2、测量及绘图工具 300mm钢板尺、游标卡尺、内外卡钳、铅笔、三角板等。 三、实验步骤 1、明确实验内容,理解设计要求; 已知条件(包括传动零件类型、载荷条件、速度条件): 绘制传动零件支撑原理简图: 2、复习有关轴的结构设计与轴承组合设计的内容与方法(参看教材有关章 节); 3、构思轴系结构方案 (1)根据齿轮类型选择滚动轴承型号; 轴承类别选择依据 (2)确定支承轴向固定方式(两端固定或一端固定、一端游动); 轴承轴向固定方式选择依据 (3)根据齿轮圆周速度(高、中、低)确定轴承润滑方式(脂润滑、油润滑); 润滑方式选择依据 (4)选择端盖形式(凸缘式、嵌入式)并考虑透盖处密封方式(毡圈、皮碗、油沟); 密封方式选择依据 (5)考虑轴上零件的定位与固定,轴承间隙调整等问题; 如何定位 选择依据

(6)绘制轴系结构方案示意图。 4、组装轴系部件 根据轴系结构方案,从实验箱中选取合适零件并组装成轴系部件、检查 所设计组装的轴系结构是否正确。 6、将所有零件放入试验箱内的规定位置,交还所借工具。 7、根据结构草图及测量数据,在图纸上绘制轴系结构装配图,要求装配关 系表达正确,注明必要尺寸(如支承跨距、齿轮直径与宽度、主要配合 尺寸),填写标题栏和明细表。 8、写出实验报告。 四、实验结果分析 1、轴上各键槽是否在同一条母线上。 2、轴上各零件(如齿轮、轴承)能否装到指定位置。 3、轴上零件的轴向、周向固定是否可靠。 4、轴承能否拆下。

第三章支撑结构设计计算

第三章支撑结构设计计算 本方案第一层和第二层支撑均采用钢筋砼支撑结构,现计算如下: 3.1 第一层钢筋砼支撑结构设计计算 根据上述计算和支撑设计平面布置,R=141.48kN/m,对撑间距为9.5米,角支撑间距为7米,最大间距为10米,立柱桩间距10米。 支撑梁截面为500×600,砼等级为C30,受力筋采用HRB335,箍筋采用HPB235。 3.1.1 支撑轴力计算 角撑:N=141.48×10×1.25×1.0/sin45o =2501 kN 对撑:N=141.48×9.5×1.25×1.0 =1680.1kN 3.1.2 支撑弯矩计算 ①第一类支撑配筋计算(角撑) (1)1.支撑梁自重产生的弯矩: q=1.25×0.5×0.6×25=9.375 kN/m M1=1/10×9.375×102=93.75 kNm/m 2.支撑梁上施工荷载产生的弯矩:取q=10.0 kN/m M2=1/10×10×102=100 kN-m/m 3.支撑安装偏心产生的弯矩: M3=N×e=2501×10×3‰=75.03 kNm 则支撑弯矩为:M=93.75+100+75.03=268.78 kNm

(2)初始偏心距e i e0 =M/N=268.78×103/2501=107.5mm 取e a =h/30=20 mm 则e i= e0+e a=107.5+20=127.5 mm (3)是否考虑偏心距增大系数η ∵l0/h=10/0.6=16.7>8.0 ∴要考虑 由η=1+1 1400e i h0(l0 h ) 2 ζ 1 ζ 2 ζ1=0.5×f c×A N =0.5×14.3×500×600 2501×103 =0.857 ζ 2 =1.15?0.01×l0=1.15?0.01×10=0.983 η=1+1 1400×127.5 565 16.72×0.857×0.983=1.74 e=ηe i+h/2-a s=1.74×127.5+600/2-35=486.85mm (4)配筋计算: ηe i =1.74×127.5=221.85>0.32h0=180.8 属于大偏心受压 x=N ?f c b = 2501000 14.3 500 =349.8mm A s=A s′=Ne??f c bx(h0?0.5x) f y′(h0?a′) =2501×103×486.85?1×14.3×500×349.8×(565?0.5×349.8) =1521.6mm ρmin =0.45f t f y =0.45×1.43×300=2.145×10?3 A s=A s′=1521.6mm2>ρ min bh=643mm2 实配:上下均为5Φ20,As=A s’=1570mm2 20

建筑综合体的空间结构与寻路设计

建筑综合体的空间结构与寻路设计 摘要:本文以多年的工作经验,针对建筑综合体空间认知与寻路研究的重要意义,旨在提高改善该类建筑空间认知与寻路的设计原则和手法,并将之总结为理 解性和操作性的理论方式。 关键词:建筑设计;空间结构;信息交流 1.建筑综合体空间认知与寻路设计的研究意义研究发现:在各种不同的空间 情况中,使用者由于空间认知状况不良会产生迷路现象,迷路者会有不同程度的 灰心和紧张,会导致各种设施及服务的效率降低,引起公共空间的安全事故,甚 至造成人员伤亡。当代城市环境和建筑学发展的主要趋势之一,就是空间的复合化、立体化,以及空间功能的交叉与综合,这在大空间建筑综合体的环境中表现 得尤为明显。大型的、立体交叉的建筑综合体空间内,包容了商业、交通、餐饮、休闲、办公等不同功能,使用者可以在一个建筑中解决多种需求,但是其空间也 出现了诸多问题,如: (a)空间相对封闭,缺乏自然光、绿化和地面景观,这在一些商业综合体和交通枢纽 综合体中表现得尤为明显; (b)方向感差,与外界连接点有限,相似的建筑构件容易使人混淆自己身处的地点; (c)建筑综合体的地下部分可能会引起人们潜意识中的负面联想,如黑暗、潮湿、病、隔离,以及对置身于有限、狭窄或封闭空间中的恐惧心理; 2.建筑综合体空间认知与寻路的设计总原则建筑综合体作为体量巨大、功能混合的复杂 建筑空间,建筑空间的认知与寻路存在较其他类型建筑更大的问题,作者通过文献分析及对 典型综合体空间的实验研究,总结出以下3点总体设计原则:(a)简化空间复杂程度;(b)提供足够的空间信息;(c)保证信息交流的效率和效果。 3.建筑综合体认知与寻路的设计方法 3.1.整体设计 整体设计关键要坚持第一条原则,即简化空间复杂程度。具体方法如下: (1)空间布局提供清晰的逻辑原则。布局的逻辑关系希望采取分级分区的原则,将建 筑的各个功能归类在自身所属的明确功能区域里。当建筑综合体仅由一个大型体块组成时, 分区方式多以分层的方法解决,当建筑具有两个或两个以上的体块时,分区要首先明确该功 能应该属于哪个体块,然后再明确究竟属于该体块的哪一个楼层。 (2)对位关系。各层之间的拓扑关系要尽量对位,要多采用标准层的形式设计建筑, 地上与地下的拓扑关系也要对位,这样可以减少空间的复杂程度,大大减少使用者寻路所要 处理的空间信息。 (3)平面的构图形式。格式塔的完形形式为人们所熟知,更易形成概观性空间知识, 有利于使用者的整体认知。采用格式塔型交通系统组织建筑交通,再在建筑入口处配以简化 处理的平面图,可以方便地让使用者在刚进入建筑时就对建筑的空间形式有大概了解,增强 其寻路时的信心。 (4)竖向交通布置。优先考虑在决策点布置竖向交通,起到快速引导人流的作用。实 验显示,更多的使用者愿意尽快从垂直方向上接近目的地,然后再从水平方向上接近,因此,在开始寻路时就让寻路者方便地看到垂直交通,更符合使用者的寻路习惯。 3.2.局部设计 与整体布局要坚持的原则不同,局部设计更需要注重坚持第二条原则,提供足够的空间 信息。具体手法如下: (1)增加空间差异性。 如果说格式塔型空间容易让使用者了解整体关系,那么必要的空间差异性将协助使用者 辨识出具体的空间信息,进而在整个空间中定位自己。由于格式塔型空间特有的对称、重复 等构图特点在带来空间知识简化的同时,也会导致空间的匀质性,这种匀质空间相对非格式 塔型空间缺少空间差异性的问题将会格外突出,因此在这类空间中特意添加或夸大空间差异

内支撑结构设计

、内支撑结构可选用钢支撑、混凝土支撑、钢与混凝土的混合支撑。 二、内支撑结构选型应符合下列原则: 1、宜采用受力明确、连接可靠、施工方便的结构形式; 2、宜采用对称平衡性、整体性强结构形式; 3、应与主体地下结构的结构形式、施工顺序协调,应便于主体结构施工; 4、应利于基坑方开挖和运输; 5、需要时,可考虑内摘除结构作为施工平台。 三、内支撑结构应综合考虑基坑平面形状及尺寸、开挖深度、周边环境条件、主体结构形式等因素,选用有立柱或无立柱的下列内支撑形式: 1、水平对支撑或斜撑,可采用单杆、桁架、八字形支撑; 2、正交或斜交的平面杆系支撑; 3、环形杆或环形板系支撑; 4、坚向斜撑。 四、内支撑结构宜采用超静定结构。对个别次要构件失效会引起结构整体破坏的部位宜设置冗余约束。内支撑结构的设计应考虑地质和环境条件的复杂性、基坑开挖步序的偶然变化的影响。 五、内支撑结构分析应符合下列原则: 1、水平对撑与水平斜撑,应按偏心压力国建进行计算;支撑的轴向压力其支撑间距N 倍挡土构件的支点力之和;腰梁或冠梁应按宜支撑我支座的多跨连续梁计算,计算跨度可取 相邻支撑点的中距; 2、矩形基坑支护的正交平面杆系支撑,可分解为纵横两个方向的结构单元,并分按偏心受压构件进行计算; 3、平面杆系支撑、环形杆系支撑,可按平面杆系结构采用平面有限元法进行计算;计 算时应考虑基坑不同方向上的荷载不均匀性;建立的计算模型中,约束支座的设置应与支护结构实际位移状态相符,内支撑结构边界向基坑外应设置弹性约束支座,向基坑内位移处不应设置支座,与边界平行方向应根据支护结构实际位移状态设置支座;

4、内支撑结构应进行坚向荷载作用下的结构分析;设有立柱时,在坚向荷载作用下内 支撑结构宜按空间框架计算,当作用在内支撑结构上的坚向荷载较小时,内支撑结构的水 平构件和按连续梁计算,计算跨度可取相邻立柱的中法,对支撑、腰梁与冠梁、挡土构件进行整体分析。 六、内支撑结构分析时,应同时考虑下列作用: 1、有挡土都建传至内支撑结构的水平荷载; 2、支撑结构自重;当支撑作为施工平台时,尚应考虑施工荷载; 3、当温度改变引起的支撑结构内力不可忽略不计时,应考虑温度应力; 4、当支撑立柱下沉或隆起量较大时,应考虑支撑立柱与挡土构件之间差异沉降产生的作用。 七、混凝土支撑构件及其连接的受压、受弯、受剪承载力计算应符合现行国家标准《混凝土结构设计规范》GB50010水位规定;钢支撑结构构件及其连接受压、受弯、受剪承载力 及各类稳定性计算应符合现行国家标准《钢结构设计规范》GB50017的规定。支撑的承载力 计算应考虑施工偏心误差的影响,偏心距取值不宜小于支撑计算长度的1/1000 ,且对混凝 土办职称不宜小于20mm对钢支撑不宜小于40mm 八、支撑构件的受压计算长度应按下列规定确定: 1、水平支撑在坚向平面内的受压计算长度,不设置立柱时,应取支撑的实际长度;设 置立柱时,应取相邻立柱的中心距; 2、水平支撑在水平平面内的受压计算长度,对无水平支撑杆件交汇的支撑,应取与支 撑相交的相邻水平支撑杆件的中心距;当水平支撑杆件的交汇点不子啊同一水平面内时,水平平面内的受压计算长度宜取与支撑相交的相邻水平支撑杆件中心距的倍; 3、对坚向斜撑,应按条第1、2款的规定确定受压计算长度。 九、预加轴向压力的支撑,预加力值宜取支撑轴向压力标准值的(~)倍,且应与本规 程中的支撑预加轴向压力一致。 十、立柱的受压承载力金额按下列规定计算: 内支撑结构设计 1、在坚向荷载作用下,内支撑结构按框架计算时,立柱应按偏心受压构件计算;内支

相关文档
最新文档