带负荷测试报告

带负荷测试报告
带负荷测试报告

#2主变高压侧:

1.一次负荷潮流:

2.保护差流:

3.带负荷测试:(取低压侧UA为基准电压,电压超前电流)

4.向量图:

5. 使用仪器、仪表:

试验结果: 合格

试验人员:李金试验负责人:周剑君

工程名称:110kV大基头变电站#2主变更换工程试验日期:2014年07月15日#2主变低压侧:

1.一次负荷潮流:

2.保护差流:

3.带负荷测试:(取UA为基准电压,电压超前电流)

4.向量图:

5. 使用仪器、仪表:

试验结果: 合格

试验人员:李金试验负责人:周剑君

1 母线差动保护的带负荷校验

1 母线差动保护的带负荷校验 发电厂和变电所的母线是电力系统的重要设备。如果母线故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。因此,母线差动保护正常时均需投入运行。但在新投断路器时,则应在断路器充电前将母差保护停用,带负荷后,测量保护回路的电流极性正确后再加用。因此,母线差动保护回路的电流极性正确后再加用。因此,母线差动保护带负荷校验,具体的步骤如下:①将母线差动保护停用。②进行充电操作。③使断路器带上负荷后,由继电保护人员进行检验工作。④检验保护回路的电流极性正确后,将母线差动保护加用。 母线差动保护带负荷校验时的注意事项:①母线差动保护停用的方法要正确。应先停用母差保护断路出口联接片,再停用保护直流电源。取直流电源熔断器时,应先取正极,后取负极,也可根据现场需要不停用保护直流电源。②带负荷校验时险除测定三相电路及差回路电流外,必须测中性线的不平衡电流,以确保回路的完整正确。③校验完毕,母线差动保护加用的操作要正确。先加直流电源,在检查整个保护装置正常后,使用高内阻电压表测量出口联接片两端无电压后,使用高内阻电压表测量出口联接片两端无电压后,逐一加用各断路器出口联接片。④根据母线的运行方式、母差保护的类型正确将母线差动保护投入。要特别注意断路器电压回路切换和母差失灵保护出口联接片的切换。采用隔离开关重动继电器自动切换的,要注意检查重动继电器状态,防止重动继电器不励磁或不返回。 2 主变差动保护的带负荷校验 纵联差动保护是将变压器各侧的电流互感器按差接法接线。在变压器正常和外部短路时,其各侧流入和流出的一次电流之和为零,差动继电器不动作;内部故障时,各侧所供短路电流之和,流入差动继电器,差动继电器动作切除故障。 因此,对主变差动保护带负荷校验步骤如下:①主变差动保护在主变充电时应加用,因此即使某电流回路极性不正确,在主变充电时,仍能起到保护作用。但带上负荷后,若极性不正确,就会因有差流而误动作,所以,必须在带负荷前停用;停用后,再使主变带上负荷,检测各侧电流、二次接线及极性是否正确和检测差动继电器关压是否满足要求。②检验电流极性是否正确的方法一般采用测量电流相应(通称测六角图)的方法,高压侧对中压侧(低压侧断开)和高压侧对低压侧(中压侧断开)同相电流的相互差180°为正确。③六角图正确,还不能保证差动保护 继电器内部接线正确,因此,还应测差回路的不平衡电流或电压,证实二次接线及极性正确无误后,方可将差动保护投入运行。 主变差动保护校验时的注意事项:①变压器空载投入时,励磁涌流的值可达6 ~倍额定电流。励磁涌流的大小、波形与合闸前铁心内剩磁、合闸初相角、铁心饱 和磁通、系统电压和联系阻抗、变压器三相接线方式和铁心结构形式、电流互感器饱和特性和二次三相接线方式等因素有关。变压器空载合闸时的励磁涌流有可能使主变差动保护动作,但这不能用来判断就是电流回路或继电器内部接线错误,相反可以用来检查差动继电器的选型、整定、接线是否符合要求。②新投变压器充电,应将变压器的所有保护全部加用,差动保护、零序保护即使不能保证其极性正确也应加用。轻瓦斯保护采用短接线接跳闸回路,充电完毕后拆除短接线,恢复到原信号位置。③差动保护带负荷测试内容有两项:一是差动回路“六角相位”,以判别 差另回路接线的正确性,如TA极性接错与否,联接线别或相位正确与否,其二是继

一 差动保护整定计算

一 差动保护整定计算 1.基本侧确定 按额定电压及变压器的最大计算容量计算各侧额定电流 A U S I N TN N 10531102000031 1=== A U S I N TN N 11563102000322== = 选择电流互感器变比 36.335 3105511===N CON CH I K n 399.976531156512=== N CON CH I K n 可选用变比为: 20050 21==CH CH n n 各侧电流互感器的二次额定电流为 A I K I N CON N .1250 1055112=== A I K I N CON N 5.78200311565222=== 所以选择10KV 侧为基本侧 2. 保护装置动作电流的确定 躲过电压器的励磁涌流 A I K I N rel O P 1502.81156*3.121=== 躲过外部短路时最大不平衡电流 A f U f K I K I er er ts unb rel O P 4.348)05.01.005.0(34.1*3.1)(3.1max .2=++=++== 所以选用A I O P 1502.8= 3.确定基本侧线圈匝数 A n I K I TA cal OP CON cal r OP 12.999200 31502.8...===

4.612.999 60..1===cal r OP O I AW W 应选用5匝 4. 动作电流整定 基本侧实际动作电流为: A W AW I O r OP 13.044.6 601.=== 保护一次动作电流 A I I n I b OP O TA OP 07.51513 13.04*200.Pr 2=== 5.灵敏度校验 21.331.507 316.1.min ≥===b OP CON sen I I K K 保护满足要求 2)过电流保护整定计算: 躲过最大负荷电流整定: A K I K I re l rel OP 296.4785 .0210*2.1max .1=== 考虑切除一台变压器后产生的过负荷 A I m m I N OP 210105*21 2==-= 考虑负荷中电动机启动的最大电流 A I K I N SS O P 210105*23=== 应选用:A I OP 102= 保护灵敏度校验 212372 .063.4min ≥===OP sen I I K 保护满足要求 3)过负荷保护 按躲过变压器的额定电流整定: 130A 85 .0051*05.1.1===re B N rel OP K I K I

继电保护装置带电负荷校验的步骤及注意事项.docx

继电保护装置带电负荷校验的步骤及注意事项摘要:继电保护对于电力设备及变电站的安全、可靠运行具有重要意义,因此要重视校验电力系统中的继电装置,以确保继电装置的保护作用能够得到充分的发挥。为了提高继电装置校验水平,本文结合实际工作经验,对带电符合校验的具体步骤以及注意事项进行了分析,以供参考。 一、带电负荷校验的作用 带电负荷校验是建设电力系统时必须开展的一项工作,只有进行负荷校验才能够有效判断竣工后的输电工程、投入使用的新型电力设备是否处于正常工作状态。在进行负荷校验的过程中,控制好继电装置,使其处于可靠运行以及安全运行状态,是保障电力工程当中的一次设备能够投入使用的前提条件,同时也是校验二次设备运行质量的重要途径。此外,在建设电力基础设施的过程中,也必须开展负荷校验工作,只有校验带电负荷,才能够对电力系统当中的接线方式以及保护装置设计方案进行有效检查,便于及时找出错误的接线方式,并完善保护装置设计方案。 二、继电保护装置带电负荷校验的步骤及注意事项分析 1.母线差动保护的带负荷校验 发电厂和变电所的母线是电力系统的重要设备。如果母线故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。因此,母线差动保护正常时均需投入运行。但在新投断路器时,则应在断路器充电前将母差保护停用,带负荷后,测量保护回路的电流极性正确后再加用。因此,母线差动保护回路的电流极性正确后再加用。因此,母线差动保护带负荷校验,具体的步骤如下: ①母线差动保护停用。 ②进行充电操作。

③使断路器带上负荷后,由继电保护人员进行检验工作。 ④检验保护回路的电流极性正确后,将母线差动保护加用。 ⑤母线差动保护带负荷校验时的注意事项: ⑥母线差动保护停用的方法要正确。应先停用母差保护断路出口联接片,再停用保护 直流电源。取直流电源熔断器时,应先取正极,后取负极,也可根据现场需要不停 用保护直流电源。 ⑦带负荷校验时险除测定三相电路及差回路电流外,必须测中性线的不平衡电流,以 确保回路的完整正确。 ⑧校验完毕,母线差动保护加用的操作要正确。先加直流电源,在检查整个保护装置 正常后,使用高内阻电压表测量出口联接片两端无电压后,使用高内阻电压表测量 出口联接片两端无电压后,逐一加用各断路器出口联接片。 ⑨根据母线的运行方式、母差保护的类型正确将母线差动保护投入。要特别注意断路 器电压回路切换和母差失灵保护出口联接片的切换。采用隔离开关重动继电器自动 切换的,要注意检查重动继电器状态,防止重动继电器不励磁或不返回。 2.主变差动保护的带负荷校验 纵联差动保护是将变压器各侧的电流互感器按差接法接线。在变压器正常和外部短路时,其各侧流入和流出的一次电流之和为零,差动继电器不动作;内部故障时,各侧所供短路电流之和,流入差动继电器,差动继电器动作切除故障。 因此,对主变差动保护带负荷校验步骤如下: ①变差动保护在主变充电时应加用,因此即使某电流回路极性不正确,在主变充电时, 仍能起到保护作用。但带上负荷后,若极性不正确,就会因有差流而误动作,所以, 必须在带负荷前停用;停用后,再使主变带上负荷,检测各侧电流、二次接线及极

400T吊车负荷试验方案

哈密三塘湖第一风电场C区200MW工程风机 和箱变安装工程 400T 履 带 吊 负 荷 试 验 方 案 西北水利水电工程有限责任公司 三塘湖风电工程项目部 2015年7月

QUY400吊车负荷试验方案 一、前言部分 1.编制说明 现根据相关技术资料及技术标准和规,特编制该施工方案,用于指导及监控管理整个施工全过程。 2.编制依据 1)《电力建设安全工作规程》 2)QUY400履带式起重机使用手册 3)QUY400履带式起重机起重性能表 二、工程概况及特点 哈密风电基地二期项目三塘湖第一风电场C区200MW工程由中国电建集团哈密新能源开发开发建设。场址区位于维吾尔自治区哈密地区巴里坤县北部,距离巴里坤县城约121km,距离三塘湖乡约80km,距哈密市直线距离约285km,风电场区域的海拔高度约在1180~1330m,场地开阔,地形较平坦,地势南部高、北部低。场址区域位于东经E:92°43′~92°47′、北纬N:44°13′~44°19′之间,场址开发面积约35km2。场址区中部、北部、东部、西部均有风场干道通过,交通便利。本风电场共安装134台单机容量为1500kW的金风科技GW82-1500/70型风力发电机组,总装机容量201MW。 风电场道路路面宽度6米,道路坡度小于10%(小于6°)。三、危险点分析 1)、起重机支垫不平 2)、吊物捆绑不牢 3)、吊物超载 四、实验方案 1、履带吊

1、负荷试验参数 2、作业准备 2.1本工程吊车为400吨中联重工履带式吊车,主臂78米,固定副臂12米,配重190吨。 2.2准备好试验重物,试验重物的的重量=负荷试验荷重。试验重物重量45吨。 3、作业程序 3.1静负荷试验 目的是检验起重机构架的强度和刚度。 在做静负荷试验前,应先做额定负荷试验,吊机先对试验重物缓慢试吊几次,检查人员要仔细观察,确认无问题后再吊起离开地面100mm,静止悬挂5min,经检查确认无异常现象,即可进行该工况下的额定起重量1倍的静负荷试验,试验方法同前,当悬空5min 卸去荷载后,起重机构架不应有永久变形即为静负荷试验合格。3.2动负荷试验 动负荷试验是在静负荷试验合格后再进行检验起重机各转动部分的运行情况是否正常。试验荷重为该工况下额定起重量的0.9倍,起重机吊起试验重物反复提升、下降、旋转,此过程中各部的运行情况正常良好,则确认合格。 4、合格标准:

微机保护整定计算举例汇总

微机继电保护整定计算举例

珠海市恒瑞电力科技有限公司 目录 变压器差动保护的整定与计算 (3) 线路保护整定实例 (6) 10KV变压器保护整定实例 (9) 电容器保护整定实例 (13) 电动机保护整定计算实例 (16) 电动机差动保护整定计算实例 (19)

变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH 、UM 、UL(KV),各侧二次电流分别为IH 、IM 、IL(A),各侧电流互感器变比分别为n H 、n M 、n L 。 一、 平衡系数的计算 电流平衡系数Km 、Kl 其中:Uhe,Ume,Ule 分别为高中低压侧额定电压(铭牌值) Kcth,Kctm,Kctl 分别为高中低压侧电流互感器变比 二、 差动电流速断保护 差动电流速断保护的动作电流应避越变压器空载投入时的励磁涌流和外部故障的最大不平衡电流来整定。根据实际经验一般取: Isd =(4-12)Ieb /nLH 。 式中:Ieb ――变压器的额定电流; nLH ――变压器电流互感器的电流变比。 三、 比率差动保护 比率差动动作电流Icd 应大于额定负载时的不平衡电流,即 Icd =Kk [ktx × fwc +ΔU +Δfph ]Ieb /nLH 式中:Kk ――可靠系数,取(1.3~2.0) ΔU ――变压器相对于额定电压抽头向上(或下)电压调整范围,取ΔU =5%。 Ktx ――电流互感器同型系数;当各侧电流互感器型号相同时取0.5,不同时取1 Fwc ――电流互感器的允许误差;取0.1 Δfph ――电流互感器的变比(包括保护装置)不平衡所产生的相对误差取0.1; 一般 Icd =(0.2~0.6)Ieb /nLH 。 四、 谐波制动比 根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护被闭锁。 五、 制动特性拐点 Is1=Ieb /nLH Is2=(1~3)eb /nLH Is1,Is2可整定为同一点。 kcth Uhe Kctm Ume Km **= 3**?=kcth Uhe Kctl Ule Kl

周口供电公司用电负荷组织方案

周口供电公司用电负荷组织方案

二O一一年六月二十七日 周口供电公司用电负荷组织方案 2011年度夏期间河南电网将进行大负荷冲击试验,届时河南电网最大负荷预计将突破4000千万千瓦,周口电网最大负荷将达到150万千瓦。为保障大负荷冲击实验期间电网安全稳定运行和大负荷冲击试验成功,特制订周口供电公司用电负荷组织方案。 一、2011年迎峰度夏期间本地区负荷预测情况和供电能力分析 (一)、全社会、网供最大负荷和预计出现日期 根据目前周口电网实际用电情况分析,预计2011年度夏期间周口电网全社会最大负荷150万千瓦,网供最大负荷147万千瓦;与2010年度夏最大负荷120.4万千瓦(考虑断面受限

压负荷影响,最大负荷可达到127万千瓦)相比增加29.6万千瓦,同比增长25%。根据往年度夏负荷曲线分析,周口电网负荷从6月初开始迅猛增长,8月上旬负荷达到最大值。2010年周口电网最大负荷出现时间为8月4日21时,据此预计今年最大负荷出现时间为8月7日左右。 (二)、迎峰度夏期间地方电厂装机情况,运行方式安排和发电能力,可调整区间。迎峰度夏期间本地区供电能力分析,分全社会和网供。 目前周口供电区内有地方生物电厂2座,分别是鹿邑生物电厂装机25MW和扶沟生物电厂装机12MW。地方电厂总装机容量达到37MW,其中可调出力为30MW。 度夏期间周口电网通过2回500千伏邵周线和3回220千伏线路(邵淮线、薛淮线、Ⅰ邵川线)与省网联络,供电能力达到1450兆瓦;隆达电厂2×135兆瓦机组作为网供不足的有效补充,在度夏期间仍然发挥着积极作用。两座生物电厂机组容量小、可调出力仅有30兆瓦,对度夏期间周口电网影响不大。 夏季大负荷时系统送周口断面最大145万千瓦,在隆达电厂和鹿邑、扶沟两座生物电厂全开机方式下,全网最大供电能力173万千瓦,备用23万千瓦,能够满足度夏供电需求。 二、大负荷试验期间用电负荷组织方案 (一)、成立领导小组,加强组织领导,落实工作责任。 建立健全大负荷冲击组织机构,明确各部门职责,要求各县

变压器差动保护投运后的带负荷试验

第27卷第3期2008年9月青 海 电 力Q I N GHA I ELECT R I C P OW ER Vol .27No .3  Sep.,2008 作者简介:姚卫东(1968-),男,大专学历,从事电气调试工作。 收稿日期:2007-08-17; 修回日期:2008-03-21 变压器差动保护投运后的带负荷试验 姚卫东 (青海火电工程公司电调室,青海西宁810003) 摘 要:新安装就位即将投入运行的变压器差动保护,在设计、施工、整定过程中有可能出现各种问题,因此,对投运后的变压器差动保护实行带负荷测试是十分必要的,也是差动保护正确投入后不可缺少的试验项目。文章对变压器差动保护投运时带负荷测试内容、数据进行多方面分析判断,结合实际提出了相关处理方法。关键词:带负荷测试; 差流; 差压; 测试内容; 数据分析 中图分类号:T M403.5 文献标识码:B 文章编号:1006-8198(2008)03-0028-03 On -load Test after Comm issi on i n g of Tran sform er D i fferen ti a l Protecti on Y AO W ei -dong Abstract:Some potential p r oble m s may be occurred on the ne wly -installed transf or mer during the p r ocess of design,constructi on and setting,thus the on -l oad test after comm issi oning is rather necessary,and it ’s an indis pensable i 2te m which ensures the accurate operati on of differential p r otecti on .The paper makes a comp rehensive analysis on the on -l oad test content and data,and p r oposes relevant s olving method combining with p ractical situati on .Keywords:on -l oad test; differential current; differential voltage; test ite m; data analysis 差动保护原理简单、使用电气量比较单一、保护范围明确、保护动作不带延时,一直是作为变压器的主保护来配置的,其正确的投入情况直接关系到变压器的安全运行。对于差动保护的运行情况只有用负荷电流才能检测出来,才能正确的判断差动保护在整定、接线后的准确性。但检验时要测哪些量、测得的数据又如何分析、判断,针对这些问题做以下讨论。 1 变压器差动保护带负荷测试的必要性 变压器差动保护的原理看起来简单,但具体实现的方式比较复杂,加上生产制造厂家的差异,各种差动保护装置在实现方式细节上的各不相同,又由于从事保护人员的技术力量良莠不齐,人为出错几率较大,增加了具体使用中的复杂性。 比如许继公司的微机变压器差动保护装置Y -△接线变压器Y 侧额定二次电流采样时不乘以系数,而南瑞公司的保护装置就要乘以系数等,这些细小的差别使得设计、安装、整定人员很容易疏忽、混淆,从而造成保护不能正确投入。为了保证变压器差动保护的正确投入,使变压器安全可靠的运行防患于未然,就必须在变压器差动保护投运时进行带负荷测试。 2 变压器差动保护带负荷测试内容 要排除设计、安装、整定过程中的疏漏,如安装工艺质量不佳、接线错误、CT 极性接反、CT 变比不匹配、平衡系数算错等,就要仔细测试数据以便正确分析判断。 2.1 差流(或差压)

母线差动保护的整定计算

母线差动保护的整定计算 计算母差保护的主要工作量在于以下几个值的计算,计算方法如下: 1 比率差动元件的比率差动门坎按包括检修方式的各种运行方式下,母线发生各种类型短路的最小总短路电流(相电流)有足够灵敏度计算,灵敏度≥4,并尽可能躲过母线出线最大负荷电流。 比率差动门坎要整定得躲过母线出线最大负荷电流是为了防止CT断线时母线差动保护误动。 2低电压闭锁元件 以电流判据为主的差动元件,可以用电压闭锁元件来配合,提高保护整体的可靠性。复合电压闭锁包括母线线电压(相间电压),母线三倍零序电压,和母线负序电压。其动作表达式为: 以上三个判据中的任何一个被满足,则该段母线的电压闭锁元件动作。 U set按母线对称故障有足够灵敏度整定,灵敏度≥1.5。且应在母线最低运行电压下不动作,而在故障切除后能可靠返回。一般取65%至70%U e。 U0set按母线不对称故障有足够灵敏度整定,灵敏度≥4。且应躲过母线正常运行时最大不平衡电压的零序分量。一般取6至10V。 U2set按母线不对称故障有足够灵敏度整定,灵敏度≥4。且应躲过母线正常运行时最大不平衡电压的负序分量。一般取4至8V。 1. 电流变化量起动值:按躲过正常负荷电流波动最大值整定,一般整定为0.2In,定值范围为0.1In~0.5In。 2. 零序起动电流:按躲过最大零序不平衡电流整定,定值范围为0.1In~0.5In。 3. 失灵保护零序定值:按躲过最大零序不平衡电流整定, 定值范围为0.1~20A。 4. 低功率因素角定值:整定值范围为45~ 90 ,整定步长为1度。 5. 低功率因素过流定值:表示线路有流,定值范围为0.1~20A 。 6. 负序过流定值:按躲过最大不平衡负序电流整定,定值范围为0.1~20A 。 7. 失灵跳本开关时间:失灵保护动作时,将以该时间定值跳开本开关。定值范围为0.01~20S,整定步长为0.01S。 8. 失灵动作时间:失灵保护动作时,将以该时间定值跳开相邻开关。定值范围为0.01~20S,整定步长为0.01S。

差动保护带负荷测试

差动保护带负荷测试 1引言 差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护,其运行情况直接关系到变压器的安危。怎样才知道差动保护的运行情况呢?怎样才知道差动保护的整定、接线正确呢?唯有用负荷电流检验。但检验时要测哪些量?测得的数据又怎样分析、判断呢?下面就针对这些问题做些讨论。 2变压器差动保护的简要原理 差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。 3变压器差动保护带负荷测试的重要性 变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。比如许继公司的微机变压器差动保护计算Y-△接线变压器Y

型侧额定二次电流时不乘以,而南瑞公司的保护要乘以。这些细小的差别,设计、安装、整定人员很容易疏忽、混淆,从而造成保护误动、拒动。为了防范于未然,就必需在变压器差动保护投运时进行带负荷测试。 4变压器差动保护带负荷测试内容 要排除设计、安装、整定过程中的疏漏(如线接错、极性弄反、平衡系数算错等等),就要收集充足、完备的测试数据。 1.差流(或差压)。变压器差动保护是靠各侧CT二次电流和——差流——工作的,所以,差流(或差压)是差动保护带负荷测试的重要内容。电流平衡补偿的差动继电器(如LCD-4、LFP-972、CST-31A型差动继电器),用钳形相位表或通过微机保护液晶显示屏依次测出A相、B相、C相差流,并记录;磁平衡补偿的差动继电器(如BCH-1、BCH-2、DCD-5型差动继电器),用0.5级交流电压表依次测出A相、B相、C相差压,并记录。 2.各侧电流的幅值和相位。只凭借差流判断差动保护正确性是不充分的,因为一些接线或变比的小错误,往往不会产生明显的差流,且差流随负荷电流变化,负荷小,差流跟着变小,所以,除测试差流外,还要用钳形相位表在保护屏端子排依次测出变压器各侧A相、B相、C相电流的幅值和相位(相位以一相PT二次电压做参考),并记录。此处不

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

继电保护二次核相、带负荷试验方法

核相、带负荷实验报告 一、实验介绍 核相:新发电站并网,新变电站投产前,经常要做核相试验,现场所说的核相,包括核对相序和核对相位。核对相序,主要是为了发电机、电动机的正常工作。在电力生产实践中,发电机并网前必须核对相序的试验,相序不对,发电机是无法并网的,强行并网会造成设备损坏。在电网的改造中,也应该注意保持电网原有的相序,以免给用户带来麻烦。(变电站常见的二次核相主要是指在一次同源电压下,核准不同电压互感器感应出的二次电压幅值、相序符合要求,验证电压二次回路接线正确性。) 带负荷:带电负荷校验是建设电力系统时必须开展的一项工作,只有进行负荷校验才能够有效判断竣工后的输电工程、投入使用的新型电力设备是否处于正常工作状态。在进行负荷校验的过程中,控制好继电装置,使其处于可靠运行以及安全运行状态,是保障电力工程当中的一次设备能够投入使用的前提条件,同时也是校验二次设备运行质量的重要途径。此外,在建设电力基础设施的过程中,也必须开展负荷校验工作,只有校验带电负荷,才能够对电力系统当中的接线方式以及保护装置设计方案进行有效检查,便于及时找出错误的接线方式,并完善保护装置设计方案。带负荷试验也是验证电流二次回路接线正确性的重要手段,电流回路有改动的工作在投运前均需进行带负荷试验。 二、实验目的 1. 110kV莫宁变110KV I母PT核相试验; 2. 110kV莫宁变新莫1375线带负荷试验; 3. 220kV乐新变110KV I母线PT进行核相试验,并分析故障的类型。 三、实验器材 万用表、核相矢量分析仪、钳形表、一字螺丝刀 四、实验方法 1.110kV莫宁变110KV I母PT核相试验。对110kV莫宁变110kV母设/PT 并列屏进行操作,先了解并列屏电压、电流回路接线,通过母线压变,使用万用表取莫宁变两条母线三相及三相之间的二次电压,得到数据进行分析。 2. 110kV莫宁变新莫1375线带负荷试验。先记录新莫线1375的功率流动情况,以从母线流到线路为正方向,P=-3 3.44MW,Q=8.56Mvar,线路电流为I=252.57A。对110kV莫宁变#1主变保护屏进行操作。使用核相分析仪分别测量高压侧ABC三相新莫线1375电流以及莫宁变低压侧三相电压以及同相电流与电压的角度差。测试原理图如图1所示。

甩负荷试验方案

编号: 华润电力蒲圻电厂二期(2×1000MW级) 超超临界燃煤发电机组工程 四号机组汽轮机甩负荷试验方案 湖北中兴电力试验研究有限公司 二○一三年四月

合同编号 HT/JS-Z-2011-135 文件编号 HRPQ-4-2123 出版日期 2013-04-30 版 本 号 A/0 编写人:王广庭 审核人:张才稳 批准人:刘绍银

华润电力蒲圻电厂二期(2×1000MW级) 超超临界燃煤发电机组工程 四号机组汽轮机甩负荷试验方案 1 目的 本方案的目的是给出汽轮机甩负荷试验程序,确保甩负荷试验安全、顺利进行,以考核汽轮机调节系统动态特性和各主、辅机设备对甩负荷工况的适应性。 2 编制依据 2.1 《火力发电厂建设工程启动试运及验收规程》DL/T5437-2009 2.2 《火电工程启动调试工作规定》 建质[1996] 40号 2.3 《电力建设安全施工管理规定》 电建[1995]671号 2.4 《电力安全工作规程(发电厂和变电站)》DL408-91 2.5 《国家电网公司电力安全工作规程(火电厂动力部分)2010版》 2.6 《电力生产安全工作规定》国电办[2000]3号 2.7 《防止电力生产重大事故的二十五项重大要求》国电发[2000]589 号 2.8 《火电工程调整试运质量检验及评定标准》建质[1996]111 号 2.9 《火力发电厂安全、文明生产达标考核实施细则》 2.10 《汽机启动调试导则》 DL/T 852-2004。 2.11 《汽轮机甩负荷试验导则》建质(1996)40号 2.12 《汽轮机电液调节系统性能验收导则》DL- T 8242002。 2.13 《汽轮机转速控制系统验收试验标准》JB4273-1999。 2.14 《电力建设工程质量监督检查典型大纲(火电、送变电部分)2009版》 2.15 湖北中兴电力试验研究有限公司质量、职业健康安全及环境管理体系。 2.16 有关行业和厂家的技术标准。 2.17 设计院相关图纸及厂家说明书。 2.18 甲方相关管理规定。 3 设备及系统 华润电力蒲圻电厂二期(2×1000MW级)超超临界燃煤发电机组工程的汽轮机由上海汽轮机厂生产,超超临界、一次中间再热、四缸四排汽、单轴、双背压、凝汽式汽轮机组。 汽机主机采用DEH调节控制系统,机组的启动、停止、正常运行和异常工况

变压器差动保护带负荷测试分析

变压器差动保护带负荷测试分析 发表时间:2017-04-25T15:30:32.227Z 来源:《电力设备》2017年第3期作者:欧东辉 [导读] 摘要:变压器是变电站内重要设备,而变压器差动保护是保证变压器安全运行重要保证。 (广东电网有限责任公司河源供电局 517000) 摘要:变压器是变电站内重要设备,而变压器差动保护是保证变压器安全运行重要保证。为防止差动保护在投运后留下隐患引起的拒动或误动给变压器带灾难性影响,必须对差动保护在变压器在投运前进行带负荷测试,以彻底消除差动保护安全隐患。全文结合本人实际工作经验,介绍主变带负荷测试方法,以及用该方法测试具体数据的分析,其分析内容包括了差动保护二次回路相序、CT变比、CT极性及系统参数的整定,并在其中提出了自己工作上遇到实际问题的解决办法。 关键词:带负荷测试;差流;CT极性;系统参数 0引言 差动保护是变压器主保护之一,能快速无时限切除其保护范围内各种故障,其范围包括变压器本身、各侧CT及变压器套管引出线之间。所以构成差动保护的二次回路由主变各侧CT汇集到保护装置,接线较为复杂,容易造成安全隐患。长期运行经验表明:新主变投产前或差动二次回路更改后重新投运时进行带负荷测试是确保主变差动回路良好性的最后一道防线。必须用带负荷测试确认主变差流,主变各侧CT变比、极性,二次回路相序及其系统参数的定值的正确性。 1 带负荷测试的方法 带负荷测试就是我们利用相位表在主变带负荷时,一般习惯以高压侧或低压侧A相电压为基准,用钳形相位表保持同一方向在保护屏端子排依次测出变压器各侧A相、B相、C相电流的幅值和相位,同时记录下监控后台机主变各侧间隔潮流的有功功率、无功功率送受情况及一次电流大小,然后根据测量数值作出向量图进行具体细致分析,判断出变压器差动保护的运行性能。 2 带负荷测实例分析 2.1实测数据 根据以上带负荷测试方法,实测出我局新建220kV热水变电站主变投运时高低压两侧具体数据如下表1、表2、表3所示。 其中+P、+Q为输出有功无功;-P、-Q为受进有功无功;ia、ib、ic为低压侧保护电流;IA、IB、IC 为高压侧保护电流。 2.2 差动保护二次回路相序分析 根据2.1数据分析可知,主变各侧A相电流超前B相120°,B相电流超前C相120°,C相电流超前A相120°,且电流幅值基本相等,相位互差120°,可判断为主变各侧为正序电流且相序正确。若有某两相相位偏差大于10%时,则原因一是变压器负荷功率因数波动较大,造成测量一相电流相位时功率因数大,而测另一相时功率因数小,应反复多测几次进行对比分析。我们这次新站投产,还没出线负荷,测试的是电容器负荷,较为稳定,所以不存在此问题;原因二是电流回路存在寄生回路或有两点接地,造成该相电流相位偏移或是分流,应查明

7UT61差动保护的整定计算原则

7UT61变压器差动保护的整定计算原则    西门子差动保护继电器7UT61是继承了7UT51的保护原理、并在其第四代保护的软硬件平 台基础上发展起来的,因此原有的7UT51的整定计算与保护运行经验对7UT61的整定计算极 具参考价值。7UT61的整定计算原则结合了自身的保护原理、并符合国家电力行业标准《大 型发电机变压器继电保护整定计算导则》DL/T 684-1999。  下图是7UT61的差动保护原理图,保护原理如上所述。      作为典型的两卷变压器保护,7UT61主要的整定计算项目有:  1、 差动门槛值IDIFF> 2、 比率制动特性曲线1的制动系数k1和曲线1的基准点(曲线1的反向延长线与横坐标的交叉点)  3、 比率制动特性曲线2的制动系数k2和曲线2的基准点(曲线2的反向延长线与横坐标的交叉点)  4、 差动速断定值IDIFF>>  5、 二次谐波制动  6、 高次谐波制动  7、 CT饱和附加制动  8、 差动动作时间    一、 差动门槛值IDIFF> 差动保护动作门槛值即最小保护动作电流,其整定原则为躲过变压器额定负载下的最大 不平衡电流(见导则)。   即 IDIFF> =Krel*(Ker+△U)*Ie 式(3-1)  式中:Ie为主变二次额定电流,整定时继电器定值选项中本身以Ie为单位  Krel为可靠系数,一般取1.3-1.5  Ker为主变各侧电流互感器的比误差,按照规程,一般可取0.06  △U为变压器调压引起的误差,一般可取调压范围中偏离额定值的最大值(百分 值)。

按照此计算公式,得到的差动保护动作门槛值往往很小,导则中建议取  0.3---0.5Ie  而最近江苏电网连续几次出现主变差动保护误动,且都是差动电流稍大于门槛值的情况。主要是在区外故障切除后电流有效值下降后在主变各侧的电流中仍存在较大的非周期分量及励磁涌流,而此时CT饱和制动及涌流制动都不一定有效。因此,最直接有效的方法就是再提高差动保护的门槛值。而实际上变压器本身的非电量保护是变压器本体故障的主要保护,原来老式的电磁型差动继电器的动作电流为1.3---1.5Ie,只要其接线正确,误动的情况很少;而换了很灵敏的微机保护之后,其误动的情况反而增加。因此,可以考虑进一步提高差动保护的门槛动作值至0.5----0.8。    二、差动速断值IDIFF>>  差动速断保护本质上是纵差保护中的一个辅助保护,当内部故障电流很大时,防止由于电流互感器饱和引起纵差保护延迟动作。 差电流速断整定值应按躲过变压器初始最大励磁涌流或外部短路最大不平衡电流整定(见导则)。对于7UT61来说,差动速断保护是不带任何闭锁和制动的,只要差动电流一达到速断定值,立即无条件跳闸,而其对于外部故障具有自动识别功能,且一般主变空载投入时的最大励磁涌流都要大于最大不平衡电流。因此,我们可以按照躲过主变空载投入时的最大励磁涌流来整定差电流速断定值:   即 IDIFF》=K*Ie 式(3-2)  其中 K的大小视变压器容量和系统电抗大小,一般有  6300KVA以下 7----12  6300---31500KVA 4.5----7  40000----120000KVA 3---6  120000KVA以上 2---5  容量越大,系统电抗越大,K取值越小    三、比率制动特性曲线1的制动系数k1及曲线1的基准点  比率制动特性曲线1是过原点的直线,主要考虑在负荷状态下及区外故障时CT未达到饱和状态时的CT误差,此时CT误差基本与穿越电流大小成比例。  按照导则可按下式整定K1,即:  K1=Krel(Kap*Kcc*Ker+△U) 式(3-3)  但是考虑到7UT61的制动电流为两侧电流的绝对和,而非绝对和的一半,因此可按下式整定: K1=Krel(Kap*Kcc*Ker+△U)/2 式(3-4)  其中: Krel、△U、Ker 同式(3-1),但Ker应比式(3-1)中大,可取0.1  Kap为非周期分量系数,可取1.5—2.0  Kcc为CT的同型系数,可取1.0    一般K1取0.25—0.5左右。如果采用两段式比率制动特性,K1可取小一点,而采用一段式比率制动特性时,可相对取大一点。  由于差动保护本身极其灵敏,一般都能满足灵敏系数高于2的要求  曲线1的基准点一般设置为零点。    四、比率制动特性曲线2的斜率K2及曲线2的基准点  含两段比率制动特性的差动保护由于其原理的先进性及灵活性,正越来越多的被其他国

注氮系统带负荷实验安全技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 注氮系统带负荷实验安全技术措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9323-98 注氮系统带负荷实验安全技术措施 (正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、概括 为保证113101首采面顺利回采,经公司领导研究决定,实施一次注氮系统带负荷试验,为确保试验安全顺利,达到预期效果,特编制本安全技术措施。 二、注氮路线 注氮车间→风井→一号总回风巷→113101工作面回风联巷→113101工作面运输联巷→113101辅运顺槽外段→113101辅运顺槽→113101工作面切眼上口。 三、注氮时间 四、注氮效果要求 1、注入的氮气纯度不得低于97%。

2、制氮机组运行1 小时作1 次运行记录。 3、注氮量为1200m3/h,输出压力0.1~0.8MPa。 五、安全技术措施 1、注氮管路使用前,由保供队负责进行压力试验,确保密封不漏气。重点排查113101工作面辅运顺槽末端注氮管路的气密性。 2、加强113101工作面通风系统管理,要求风流必须稳定、可靠,无风流紊乱现象,风量满足规程要求。 3、注氮试验前,由测气员和安检员将113101辅运顺槽外段、6#风门、泄水巷第二联巷设置临时栅栏,揭示警标,禁止人员入内并安排安监员专人看管。 4、注氮试验前,由测气员和安检员巡查113101工作面切眼、113101胶运顺槽、泄水巷里段所有人员撤离情况,并向矿调度汇报。 5、注氮试验前,测气员必须将所有注氮管路闸阀关闭,并悬挂“注氮危险、禁止打开”的标识牌,防止人员误开,以免发生氮气外泄,造成人员伤害。

变压器差动保护带负荷测试的内容及数据分析

变压器差动保护带负荷测试的内容及数据 分析 (北方联合电力金桥热电厂,内蒙古呼和浩特 010070) 摘要:文章介绍了变压器差动保护工作原理,结合现场实践工作经验,分析了变压器差动保护带负荷测试的内容及方法。 关键词:变压器差动保护;带负荷测试;测试数据分 中图分类号:TM41 文献标识码:A 文章编号:1007—6921(XX)15—0078—02 差动保护具有保护范围明确,保护原理简单,保护动作快速可靠,属于纯电气量保护,整定定值原理合理,不受自启动电流、负荷电流、非金属故障电流的影响定值精确等特点。差动保护作为变压器的主保护,其能否正确动作关系着变压器的安危,而变压器差动保护定值的整定与接线 1 740)this.width=740" border=undefined> 差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压

器的电流和流出电流相等,差动继电器不动作。当变压器内部故障时,两侧向故障点提供短路电流,差动保护感受到的二次电流和的 变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。为了防范于未然,就必须在变压器差动保护投运时进行带 2 要排除设计、安装、整定过程中的疏漏,就要收集充 2.1 变压器差动保护是各侧CT二次电流的差流,所以,差流是差动保护带负荷测试的重要内容。电流平衡补偿的差动继电器,用钳形相位表或通过微机保护液晶显示屏依次测出A相、B相、C相差流,并记录;磁平衡补偿的差动继电器,用0.5级交流电压表依次测出A相、B相、C相差压, 2.2 只凭借差流判断差动保护正确性是不充分的,因为一些接线或变比的小错误,往往不会产生明显的差流,且差流随负荷电流变化,负荷小,差流跟着变小,所以,除测试

发电机的差动保护整定计算.doc

百度文库- 让每个人平等地提升自我 1、发电机差动保护整定计算 (1)最小动作电流的选取 =~I gn/n a式中:I gn——发电机额定电流 n a——电流互感器变比 0.2 * 10190 取=(~) I gn/n a= = 12000/ 5 本保护选择 =1A (2)制动特性拐点的选择 当定子电流等于或小于额定电流时,差动保护不必具有制动特 性,因此,拐点 1 电流选择大于发电机额定电流,本保护选拐 点 1 为 5A。拐点 2 电流选择 CT开始饱和时的电流,本保护选 拐点 2 值为 40A。 (3)制动系数的选取 按照外部短路电流下,差动保护不误动来整定。 =K rel *K ap*K cc*K er 式中: K rel——可靠系数,取~ K ap——非周期分量系数,取~ 2 K cc——互感器同型系数,取 K er ——互感器变比误差系数,取 取各系数最大值,则 =*2**= 考虑到电流互感器的饱和或其暂态特性畸变的影响,为安全起 见,宜适当提高制动系数值,取K1=30%,根据厂家说明书K2推荐值为 80%-100%,本保护取 K2=80%。

原保护为单斜率,定值为K1=30%。 保护动作于全停,启动快切,启动断路器失灵。 2、主变差动及速断保护整定计算 (1)最小动作电流的选取 按躲过变压器额定负载时的不平衡电流来整定。 =K rel (K er +△U+△m)I n/n a式中: I n——变压器额定电流 n a——电流互感器变比 K rel——可靠系数,取~ K er——电流互感器的变比误差, 10P型取 *2 ,5P 型和 TP型取 *2 △U——变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值) △m——由于电流互感器变比未完全匹配产生的误差,初设时取 在工程实用整定计算中可选取 =(~)I n/n a,一般工程宜采用不 0.4 * 882.7 小于 I n/n a。取 =n a== 本保护选取 = (2)制动特性拐点的选择 拐点 1 定值要求大于强迫冷循环情况下的额定电流,小于紧急 情况下的过负荷电流,本保护取5A。拐点 2 电流选择 CT开始饱和时的电流,本保护选拐点 2 值为 40A。 (3)制动系数的选取 按区外短路故障,差动保护不误动来整定。

相关文档
最新文档