生物工程生物技术专业英语翻译(六)讲课教案

生物工程生物技术专业英语翻译(六)讲课教案
生物工程生物技术专业英语翻译(六)讲课教案

生物工程生物技术专业英语翻译(六)

第六章生物工程中的下游加工(技术)6.1前言

“下游加工(技术)”对于从任何工业化生产中回收有用产品所需要的所有步骤来说是一个有用的词语。对于生物工程特别重要,我们想要的最终形式的产物常常非常远的从最先在生物反应器中获得的状态除去。例如,一个典型的发酵过程是一个分散的固体(细胞、也许有营养培养基的某些组分等)与稀释水溶液的混合物;所想要的产物也许作为一种非常复杂的混合物的组分存在于细胞中,或者存在于稀释的培养基溶液中,或甚至两者中都有。任何情况下,这个产品的回收、浓缩和纯化都需要有用并有效的操作,这也受生产经济性的限制。任何特殊的要求,如需要除去污染物或限制生产微生物(process organism)都只会增加困难。

许多实验室中的标准操作在生产中都是不实用或者不经

强度等条件下才能保持。想着这些限制(bearing in mind),如果要用到所有可用的科学方法以发挥最佳的效果就需要更多的创造性。也明显的是,没有一种独特的、理想的、普遍适用的操作或者仅是操作顺序可以推荐;对一个特定的问题应当以最适宜的方式把单个单元操作结合

起来。

6.2 粒子的分离

在发酵终点,多数情况下第一步是将固体(通常是细胞,但也可以是在一个特定支持物上的细胞或者酶,不包括反应培养基固体组分)从几乎一直是水溶液的连续均匀的液体系统中分离出来。与这个分离相关的一些细胞特性列于表 6.1;注意,细胞的比重不比fermentation broth 大很多。细胞的大小也给细菌带来了困难,但是比较大的细胞更容易分离,有时候甚至只需要简单的定位于倾析器。分离的容易性取决于fermentation broth的性质,它的pH、温度等等,在许多情况下,通过添加助滤剂、絮凝剂的等等进行改进(见后面)。表 6.2给出了分离方法的大体分类。

6.2.1 过滤

这个是分离filamentous fungi和fermentation broth中的filamentous bacteria(例如,链霉菌)所使用的最广泛和最典型的方法。它也可以用于酵母絮凝物的分离。根据机理,过滤可以采用表面过滤或者深层过滤;或者离心过滤;所有情况下的驱动力都是压力,由超压产生或者由真空产生。

过滤的速率,如在一定时间内收集的滤液的体积,是过滤面积、液体的黏度和通过过滤基质的压力降以及

(deposited filter cake)沉积的滤饼的作用。过滤基质与滤饼filter cake的抗性( resistance) 因此是关键的,决定了它的可压性(compressibility)。对于不可压的filter cake滤饼,过滤速率与压力无关,但是多数生物材料是可压的,所以滤饼的抗性随着时间而增大而与过滤和滤饼形成过程中增大的总体抗性无关。

错流过滤实现了过滤流的巨大的改进,在错流过滤中,固体不经过过滤器而通过跨膜的湍流保持悬浮状态。这可以通过安排悬浮物流经膜来实现或者通过在过滤器中固定移动的blades or impellor来实现。简单的平板过滤广泛用于液体的澄清,也可以用于过滤少量的悬浮物,但是它们的载量是有限的;有时使用filer-press assemblies 尤其对于分批操作。

旋转鼓式真空过滤器大概是从fermentation broth分离微生物最为广泛使用的装置;在这些过滤器中,过滤部分是一个旋转的鼓维持在减少的内压下。这个鼓转到液体中进行过滤,它的连续转动使滤饼层进行重要的后续操作,如图 6.1所示。为了避免在过滤器表面形成生物体增加过滤的抗性,这种过滤器常常fitted with a knife discharge,像图中所描绘的;if a mycelium which forms a coherent carpet is being seperated, it can be lifted from the filter by strings.常预先用助滤剂

覆盖(precoate)鼓,有助于防止阻塞并且保持一个恒定的压力降。最主要的优点是以最小的升温、低的动力消耗及将过滤与洗涤和部分去水(dewatering)相结合而有效过滤;但是助滤剂被过滤掉的物质所污染是一个严重的缺点。也可以使用在正压下操作的旋转过滤器。而带式过滤器(belt filter)是对原理明显的改动,非常适于需要大量洗涤的易过滤的沉淀物。带式过滤器可以与 a press结合以促进除水。

6.2.2 离心

细菌往往由于太小而不能由简单的过滤基质进行分离,但通过离心进行分离也是困难的因为粒子与悬浮液之间密度的微小差异。经常采用离心分离蛋白质沉淀也有类似的困难。离心机的效果可以特征表达为:(方程式)

在表达式中,Q=体积进料速率、d=粒子直径、Δρ=密度差、g=重力加速度、F=沉淀面积、η=黏度、R=radius、ω=角速度及n=每分钟的转速。

公式∑=FZ在比较不同的离心机的时候是有用的。因为F随着转子旋转(axial)长度的增加而增加,而Z随着转子的直径和速度增加而增加,通过采用长转子(F)或者快的、宽转子(Z)可以改进分离效果;可获得的Z值受到结构材料的限制。图 6.2 列出了一些转子的安排方式,不同安排方式的关键特点总结在表 6.3中。所有的设计都有单

独的缺点,添加上成本(包括维护)、动力消耗及温度升高(除过结合冷冻)这些总体缺点。

6.2.3 絮凝和浮选

既然细菌的微小细胞大小使从fermentation broth中对它们进行回收变得非常困难,甚至通过离心的方法,那么可以采用絮凝实现一种改进;粒子的沉淀速率随着粒子直径的增大而增大(Stokes’s 法则)。絮凝可以是可逆的,如果细胞表面的电荷能够被相反电荷的离子中和,也可以是不可逆的,如果带电的多聚分子在细胞之间形成桥。因此絮凝剂就包括无机盐、矿物水胶体、有机polyelectrolytes.除了取决于絮凝剂的选择,絮凝作用还取决于这样的其他一些因素如细胞的性质(生理年龄)、离子环境、温度及表面shear stress。

如果没有形成一个足够紧密的絮凝物,那么可以采用浮选的方法,在这个过程中小的气泡吸收并进入到微生物中。这种分离取决于气泡的大小;气体可以鼓泡产生或者(更好的)非常精致的气泡可以由溶解的气体释放过多的压力来产生或者通过电解作用。不可溶的“收集物质”如长链脂肪酸或者胺可以促使一个稳定的肥皂泡的形成,而且收集在肥皂泡层的粒子能被除去。在某些情况下,絮凝和浮选的联合使用非常有效地用于回收生物体。

6.3 细胞破碎

6.3.1 微生物

由于细胞壁的强度和高的内在渗透压,破碎微生物常常是困难的;粒子太小而不能采用简单的机械手段如碾碎而获得必要的强力。同时,细胞破碎不能破坏所需要的细胞组分,但通常所作的要求是矛盾的。分解微生物的方法总结于图 6.3中。它们的作用效果通常以破碎的细胞的悬浮液中回收的细胞酶的活性水平来证实(assessed),与以破坏程度衡量破坏效率相结合。

机械方法

机械方法采用的是shear(在球磨机、胶磨机中搅碎)、压力和释放压力(匀浆机)及超声波。一种广泛使用的方法是采用高压紧接着突然的解压,是由细胞悬浮液流经fine nozzle管口的结果。其中的一种处理方法如图6.4所示。这里,破碎是由hydrodynamic shear 和空穴现象导致的。超声波主要通过空穴现象而作用,但主要用于实验室,因为在大规模中,热量的除去是困难的。

也可以采用加热、化学或者酶方法来破坏细胞。其中一种广泛使用的方法就是干燥,它引起细胞壁结构的变化而且常常可以用缓冲液或者盐溶液对细胞物质进行后续提取;一个著名的程序就是将细胞导入过量的冷丙酮中以制备“丙酮粉”。

通过化学方法可以引起细胞裂解,如盐或者表面活性剂、

生物工程生物技术专业英语翻译(七)

第七章仪器化 7.1介绍 本章主要介绍发酵过程中检测和控制的仪表。显然这些仪表并不时专门用于生物发酵领域的,它们在生物工程或相关的领域中也有广泛的应用。在实际中,大多数应用与生物工程的分析仪表并不是由生物工程发展的产物,至今,生物学家常用的仪表是在化学工业中应用的而发掌出来的。但是,这些精确的仪表并不是为更加复杂的生物反应专门设计的,在计算机控制出现以后,这表现的更加明显。 计算机自动化的发展主要基于各种探测器的发展,它们可以将有意义的信号转化成控制动作。现在适合于提供发酵过程详细参数的适当仪器已经有了很大的改进,这可以提高产量和产率。遗憾的是,在商业化中实现这些自动控制还很困难,但是改变这种情况只是时间的问题。本章只讨论现有的仪表和设备,它们目前都有各自的局限性。 计算机控制是目前发酵工程中的惯用语,不久之后,发酵过程也许真的可以和计算机匹配。但是在这一进步过程中,我们开始考虑一句谚语,“工具抑制创造性思维”。计算机控制需要在线仪表,我们在章中会有涉及。 7.2 术语 如果我们所有对生物工程过程的理解需要仪表,我们真正熟悉我们所用的仪表就非常重要,否则我们就会对这些仪

表的适用性和特性产生错误的判断。下面对一些常用的性质加以介绍。 反应时间通常是描述90%输入信号转换成输出信号所需要的时间。作为经验法则,用于生物系统的仪表的反应时间要小于倍增时间的10%。因此,在典型的发酵工程中,如果倍增时间是3h,超过18min反应时间的仪表将无法完成在线控制。很多仪表有更小的反应时间,它们通常被用于一些其它样品的操作,它们的测定和控制动作的之后时间更长。 灵敏度是衡量仪表输出结果变化和输入信号变化之间的关系。通常,考虑到高灵敏度的仪表可以测量微小的输入变化,灵敏度越高的仪表越好。然而,仪表的其它参数,如线性,精确性,和测定范围也是选择仪表的考虑因素。 输入与输出的线性关系是二者最简单的关系,校正过程也最为容易。 分辨率是可以测定的输入信号的最小值,通常以仪表读数最大偏转角的百分数来表示。 残留误差是指输出结果与输入保持恒定时的真实结果的偏离值。 重现性永远不要被忽视,只要有可能,就要对仪表进行校正,尤其是那些测定氧气和二氧化碳测定的仪表。 7.3 过程控制 在过程控制中,有三种可能实现的目标:

生物工程专业英语翻译(第一篇)改

1.1 生物技术的属性 生物技术是一个属于应用生物科学和技术的一个领域,它包含生物或亚细胞组分在制造行业、服务也和环境管理等方面的应用。生物技术利用细菌、酵母菌、真菌、藻类、植物细胞或培养的哺乳动物细胞作为工业过程的组成成分。只有将包括微生物学、生物化学、遗传学、分子生物学、化工原理在内的多种学科和技术综合起来才能获得成功的应用。 生物技术过程通常会涉及到细胞的培养和生物量,并得到所需的产品,后者可进一步分为:生成所需产品(如酶、抗生素、有机酸和类固醇); 原料的分解(如污水处理、工业废料处理和石油泄漏处理)。 生物技术的反应过程是分解过程,即把复杂化合物分解为简单化合物(如葡萄糖分解为乙醇),也是合成或同化过程,即把简单的分子合称为复杂的化合物(如抗生素的合成)。分解过程通常释放热量,而合成过程通常吸收能量。 生物技术包括发酵过程(如啤酒、果酒、面包、奶酪、抗生素和疫苗的生产)、供水与废物处理、食品技术以及越来越多的新应用,包括从生物医学到从地品位矿石中回收金属各个领域。由于生物技术的普遍性,它将在许多工业生产过程中产生重大的影响。理论上,几乎所有的有机物都能用生物技术来生产。到2000年,生物技术在未来全球市场的潜力预计接近650亿美元(表1.1)。然而,我们必须意识到,许多重要的生物产品仍将利用现有的分子模型通过化学方法合成。因此,应该从广义上来理解生物化学和化学以及他们与生物技术的关系。 生物技术所采用的众多技术通常比传统工业更经济、更低能耗、更安全,而且生产过程中的残留物都能够通过生物降解而且无毒。从长远来看,生物技术提供了一种可以解决众多世界性难题的方法,尤其是医药、食品生产、污染控制和新能源发展领域的问题。 表1.1 全球生物技术市场在2000年之前的增长潜力 摘自Sheets公司(1983n年)生物技术通报11月版。

科技英语教学大纲

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 科技英语教学大纲 《科技英语》课程教学大纲课程编码:课程名称:学时:0110089 科技英语 36 选修机械设计制造及其自动化 7 英文名称:学分: English for science and technology 2 专业课基础英语、专业英语机电工程学院课程类型:适用专业:开课学期:课程性质:先修课程:开课院系:一、课程地位、目的和任务科技英语课程是在大学英语学习的基础上帮助学生完成从大学基础英语阅读阶段到专业英语阅读阶段的过渡。 科技英语具有丰富的词汇、独特的语法结构和专业上通用的表达方式,学习科技英语是对大学基础英语的补充和提高,也是学生开阔视野、直接了解世界范围内专业前沿知识和技术发展现状的必要途径。 通过本门课程的学习,了解科技英语的表达方式、方法在英语中的具体体现,为高年级阅读专业英语文献和英文原著打下良好基础。 同时,学生可以进一步提高阅读理解和综合分析能力(如记笔记、信息转换等);习惯于阅读真实的语言素材;扩大科技词汇量,开阔科普视野和思路;进一步了解如何书写正式的英文书信、项目规划书,学会如何利用图表、表格等视觉信息,熟悉科技文体的写作规范;操练以不同语言结构、以语言功能为中心的写作练习和翻译练习;掌握《大学英语专业阅读阶段教学基本要求》所规定的学习技能、语言功能和基本词汇。 1/ 9

科技英语的教学任务是讲授科技英语的语法特点、文体结构以及科技英语文献的翻译方法和技巧,培养学生阅读英语科技资料的能力,使其能以英语为工具获取有关专业所需要的信息。 二、本课程与其它课程的联系科技英语是在基础英语和专业英语的基础上开设的一门专业基础课,是基础英语和专业英语的延伸和拓展。 阅读单元的课文内容涉及到科技发展的最新领域,包括环境、化学、生物和新材料等方面的最新发展。 三、课程教学内容及要求

生物工程生物技术专业英语翻译一

第一章导论 1.1生物工程的特征 生物工程是属于应用生物科学和技术的一个领域,它包含生物或其亚细胞组分在制造业、服务业和环境管理等方面的应用。生物技术利用病毒、酵母、真菌、藻类、植物细胞或者哺乳动物培养细胞作为工业化处理的组成部分。只有将微生物学、生物化学、遗传学、分子生物学、化学和化学工程等多种学科和技术结合起来,生物工程的应用才能获得成功。 生物工程过程一般包括细胞或菌体的生产和实现所期望的化学改造。后者进一步分为: (a)终产物的构建(例如,酶,抗生素、有机酸、甾类); (b)初始原料的降解(例如,污水处理、工业垃圾的降解或者石油泄漏)。 生物工程过程中的反应可能是分解代谢反应,其中复合物被分解为简单物质(葡萄糖分解代谢为乙醇),又或者可能是合成代谢反应或生物合成过程,经过这样的方式,简单分子被组建为较复杂的物质(抗生素的合成)。分解代谢反应常常是放能反应过程,相反的,合成代谢反应为吸能过程。 生物工程包括发酵工程(范围从啤酒、葡萄酒到面包、

奶酪、抗生素和疫苗的生产),水与废品的处理、某些食品生产以及从生物治疗到从低级矿石种进行金属回收这些新增领域。正是由于生物工程技术的应用多样性,它对工业生产有着重要的影响,而且,从理论上而言,几乎所有的生物材料都可以通过生物技术的方法进行生产。据预测,到2000年,生物技术产品未来市场潜力近650亿美元。但也应理解,还会有很多重要的新的生物产品仍将以化学方法,按现有的生物分子模型进行合成,例如,以干扰为基础的新药。因此,生命科学与化学之间的联系以及其与生物工程之间的关系更应阐释。 生物工程所采用的大部分技术相对于传统工业生产更经济,耗能低且更加安全,而且,对于大部分处理过程,其生产废料是经过生物降解的,无毒害。从长远角度来看,生物工程为解决世界性难题提供了一种方法,尤其是那些有关于医学、食品生产、污染控制和新能源开发方面的问题。 1.2生物工程的发展历史 与一般所理解的生物工程是一门新学科不同的是,而是认为在现实中可以探寻其发展历史。事实上,在现代生物技术体系中,生物工程的发展经历了四个主要的发展阶段。 食品与饮料的生物技术生产众所周知,像烤面包、啤酒与

《商务英语口语》说课要点

《商务英语口语》说课要点 1、该课在专业学生培养方案中所起的主要作用: 《商务英语口语》是一门实践性较强的课程。通过该门课程的学习,要求学生了解和掌握商务活动背景知识,能流利与外商谈论日常及一般商务话题。该课程属商务英语专业必修课,其主要前期课程包括进出口业务和商务英语函电。学生在修该门课之前需具备一定的进出口业务知识和商务英语基本技能。该课程的平行及后续课程包括商务英语写作和商务英语翻译等。实践证明,本课程在培养学生的英语口头表达能力和商务英语谈判应用能力方面具有相当重要的地位。 2、该课程在教学内容方面所进行的取舍、整合等课程改革情况: ①教学内容改革 在原有的发盘、报盘、还盘、商谈包装、运输、支付手段、保险条款、签署合同、商务代理为主要内容的基础上,增加处理投诉、索赔,国际投资、国际招标与投标、国际经济技术合作等内容。即由原来外贸口语基本内容扩充到商务英语会话及谈判。 ②课程主要教学方法和手段改革 商务英语口语是一门实践性很强的课程。以前的教学方法通常是教师讲解带读,学生朗读背诵,反复句型操练。这样的教学模式存在不少的问题,如课堂气氛不够活跃,容易形成教师“一言堂”的状况;学生实践能力和灵活运用能力较差等。同时,由于课堂教学形式的限制,教师无法正确安排实践环节,这也是影响教学效果的主要因素之一。针对种种现状,我们可加入丰富的案例教学,情境教学,培养学生的发散性思维,多维创造性,变“教师为主体”的教学模式为“学生为主体”的教学模式。教师通过让学生做值日报告、编写情景对话等演示,多让学生走上讲台,学生在自编自演的过程中充分发挥其学习自主性,能力也相应得到提高。

教学方法的多样性必须依托丰富的教学手段。教学手段的多样化可以提高学生对学习商务英语口语的热情,加强对商务活动场景的感性认识。在实际教学过程中可以充分利用多媒体、网络等现代教学手段,激发学生的学习兴趣。在这样的环境里,教师可以利用各种音像资料教学软件丰富教学内容,活跃课堂气氛。对部分口语素材,如报价单,包装规格、支付方式等通过多媒体手段演示,并模拟双边谈判、成交等程序,加深印象。此外,教师可以指导学生学会利用网络上的丰富资源,培养他们的自主学习能力,促进课堂知识的消化。如有条件可以组织专业教师自行开发外贸英语口语教学软件或课件,放到校园网上,要求学生课后上网浏览。如图1-1所示。 图1-1 商务英语口语教学的多种教学手段 ③实践教学内容和环节的确定 实训1 机场迎客 实训内容:机场迎接国际贸易伙伴或准伙伴 实训目的:让学生了解并体验各国迎候、见面、打招呼的不同方式、喜好及忌讳,了解机场接客的基本程序及礼仪。 实训场地:黄花机场 实训步骤:1、确认对方,自我介绍 2、问候客人,稍作闲聊 3、安置行李,驱车送客

生物工程生物技术专业英语翻译二

生物工程生物技术专业英 语翻译二 The Standardization Office was revised on the afternoon of December 13, 2020

第二章生长与代谢的生物化学 前言 一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。 代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。 实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合

物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而维持一定水平的合成代谢。 在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO2。 代谢与能量 分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP,其含有生物学家所说的“高能键”。在ATP分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP这类分子,为细胞提供了流通能量,当将ATP用于生物合成反应时,其水解产物为ADP(腺苷二磷酸)或者某些时候为AMP(腺苷一磷酸):(反应式)

生物工程生物技术专业英语翻译(二)

第二章生长与代谢的生物化学 2.1 前言 一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。 代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。 实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而

维持一定水平的合成代谢。 在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO 2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO 2。 2.2 代谢与能量 分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP ,其含有生物学家所说的“高能键”。在ATP 分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP 这类分子,为细胞提供了流通能量,当将ATP 用于生物合成反应时,其水解产物为ADP (腺苷二磷酸)或者某些时候为AMP (腺苷一磷酸):(反应式) 仍含有一个高能键的ADP 通过腺苷酸激酶反应也可生成ATP :(反应式)。 磷酸化作用是生物体中普遍的反应,通常由ATP 作用而发生。 经过磷酸化生成的物质通常比最初的化合物更具有反应活性,用无机磷酸进行磷酸化反应是无法进行的,因为,平衡反应式的相反方向生成大量的水(55M )。 细胞的“能量状态”认为是由占有优势的组分:ATP 、ADP 、AMP 作用形成的。为了给出一个量值,Daniel Atksirson 提出了“能荷”这个概念,定义一个细胞的能荷为: 在“满荷”细胞中,仅含有ATP 一种腺嘌呤核苷酸,它的能荷值定义为 1.0。如果三种核苷酸的量相等,即ATP=ADP=AMP ,则细胞的能荷为ATP+0.5 ADP ATP+ ADP+AMP

生物工程专业英语翻译(第二章)

Lesson Two Photosynthesis 内容: Photosynthesis occurs only in the chlorophyllchlorophyll叶绿素-containing cells of green plants, algae藻, and certain protists 原生生物and bacteria. Overall, it is a process that converts light energy into chemical energy that is stored in the molecular bonds. From the point of view of chemistry and energetics, it is the opposite of cellular respiration. Whereas 然而 cellular细胞的 respiration 呼吸is highly exergonic吸收能量的and releases energy, photosynthesis光合作用requires energy and is highly endergonic. 光合作用只发生在含有叶绿素的绿色植物细胞,海藻,某些原生动物和细菌之中。总体来说,这是一个将光能转化成化学能,并将能量贮存在分子键中,从化学和动能学角度来看,它是细胞呼吸作用的对立面。细胞呼吸作用是高度放能的,光合作用是需要能量并高吸能的过程。Photosynthesis starts with CO2 and H2O as raw materials and proceeds through two sets of partial reactions. In the first set, called the light-dependent reactions, water molecules are split裂开 (oxidized), 02 is released, and ATP and NADPH are formed. These reactions must take place in the presence of 在面前 light energy. In the second set, called light-independent reactions, CO2 is reduced (via the addition of H atoms) to carbohydrate. These chemical events rely on the electron carrier NADPH and ATP generated by the first set of reactions. 光合作用以二氧化碳和水为原材料并经历两步化学反应。第一步,称光反应,水分子分解,氧分子释放,ATP和NADPH形成。此反应需要光能的存在。第二步,称暗反应,二氧化碳被还原成碳水化合物,这步反应依赖电子载体NADPH以及第一步反应产生的ATP。 Both sets of reactions take place in chloroplasts. Most of the enzymes and pigments 色素for the lightdependent reactions are embedded 深入的内含的in the thylakoid 类囊体 membrane膜隔膜 of chloroplasts 叶绿体. The dark reactions take place in the stroma.基质 两步反应都发生在叶绿体中。光反应需要的大部分酶和色素包埋在叶绿体的类囊体膜上。暗反应发生在基质中。 How Light Energy Reaches Photosynthetic Cells(光合细胞如何吸收光能的) The energy in light photons in the visible part of the spectrum can be captured by biological molecules to do constructive work. The pigment chlorophyll in plant cells absorbs photons within a particular absorption spectrums statement of the amount of light absorbed by chlorophyll at different wavelengths. When light is absorbed it alters the arrangement of electrons in the absorbing molecule. The added energy of the photon boosts the energy condition of the molecule from a stable state to a less-stable excited state. During the light-dependent reactions of photosynthesis, as the absorbing molecule returns to the ground state, the "excess" excitation energy is transmitted to other molecules and stored as chemical energy. 生物分子能捕获可见光谱中的光能。植物细胞中叶绿素在不同光波下吸收部分吸收光谱。在吸收分子中,光的作用使分子中的电子发生重排。光子的能量激活了分子的能量状态,使其

科技英语口译教案

西南交通大学希望学院 课程教案 课程名称:科技英语口译 课程类型:专业课课程性质:限选课 学时:32学时 教材及参考书: 《科技英语口译》上海外语教育出版社《科技英语翻译》外语教学与研究出版社《英语口译综合教程》外文出版社 《英语口译实务》外文出版社 《朗文当代英语词典》外语教学与研究出版社上课时间:2015 -2016 学年第 2 学期 上课班级:2013级英语专业1班

教师:王小芳所属系:外语系西南交通大学希望学院教务处制 2016 年2 月17日

科技英语口译课程教案(首页) 单元标题UNIT 1: Food Safety 单元学时 6 教学目标 By the end of the unit, students are expected to 1.Be familiar with the background information about food safety; 2.Master new words and expressions about food safety; 3.Try to use the interpretation skill: Speech Flow; 4.Being capable of doing interpretation practice about food safety 教学重点 Background information about food safety New words and phrases about food safety 教学难点 the interpretation skill: Speech Flow 教学方式方法 Audio-lingual approach Task-based approach 教学手段 PPT, Video clips, Q&A, Practice

生物工程_生物技术专业英语课文翻译_完整版

第一章导论 1.1 生物工程的特征 生物工程是属于应用生物科学和技术的一个领域,它包含生物或其亚细胞组分在制造业、服务业和环境管理等方面的应用。生物技术利用病毒、酵母、真菌、藻类、植物细胞或者哺乳动物培养细胞作为工业化处理的组成部分。只有将微生物学、生物化学、遗传学、分子生物学、化学和化学工程等多种学科和技术结合起来,生物工程的应用才能获得成功。 生物工程过程一般包括细胞或菌体的生产和实现所期望的化学改造。后者进一步分为:(a)终产物的构建(例如,酶,抗生素、有机酸、甾类); (b)初始原料的降解(例如,污水处理、工业垃圾的降解或者石油泄漏)。 生物工程过程中的反应可能是分解代谢反应,其中复合物被分解为简单物质(葡萄糖分解代谢为乙醇),又或者可能是合成代谢反应或生物合成过程,经过这样的方式,简单分子被组建为较复杂的物质(抗生素的合成)。分解代谢反应常常是放能反应过程,相反的,合成代谢反应为吸能过程。 生物工程包括发酵工程(范围从啤酒、葡萄酒到面包、奶酪、抗生素和疫苗的生产),水与废品的处理、某些食品生产以及从生物治疗到从低级矿石种进行金属回收这些新增领域。正是由于生物工程技术的应用多样性,它对工业生产有着重要的影响,而且,从理论上而言,几乎所有的生物材料都可以通过生物技术的方法进行生产。据预测,到2000年,生物技术产品未来市场潜力近650亿美元。但也应理解,还会有很多重要的新的生物产品仍将以化学方法,按现有的生物分子模型进行合成,例如,以干扰为基础的新药。因此,生命科学与化学之间的联系以及其与生物工程之间的关系更应阐释。 生物工程所采用的大部分技术相对于传统工业生产更经济,耗能低且更加安全,而且,对于大部分处理过程,其生产废料是经过生物降解的,无毒害。从长远角度来看,生物工程为解决世界性难题提供了一种方法,尤其是那些有关于医学、食品生产、污染控制和新能源开发方面的问题。 1.2 生物工程的发展历史 与一般所理解的生物工程是一门新学科不同的是,而是认为在现实中可以探寻其发展历史。事实上,在现代生物技术体系中,生物工程的发展经历了四个主要的发展阶段。 食品与饮料的生物技术生产众所周知,像烤面包、啤酒与葡萄酒酿造已经有几千年的历史;当人们从创世纪中认识葡萄酒的时候,公元前6000,苏美尔人与巴比伦人就喝上了啤酒;公元前4000,古埃及人就开始烤发酵面包。直到17世纪,经过列文虎克的系统阐述,人们才认识到,这些生物过程都是由有生命的生物体,酵母所影响的。对这些小生物发酵能力的最确凿的证明来自1857-1876年巴斯得所进行的开创性研究,他被认为是生物工程的始祖。 其他基于微生物的过程,像奶制品的发酵生产如干酪和酸乳酪及各种新食品的生产如酱油和豆豉等都同样有着悠久的发展历史。就连蘑菇培养在日本也有几百年的历史了,有300年历史的Agarius蘑菇现在在温带已经有广泛养殖。 所不能确定的是,这些微生物活动是偶然的发现还是通过直观实验所观察到的,但是,它们的后继发展成为了人类利用生物体重要的生命活动来满足自身需求的早期例证。最近,这样的生物过程更加依赖于先进的技术,它们对于世界经济的贡献已远远超出了它们不足为道的起源。 有菌条件下的生物技术19世纪末,经过生物发酵而生产的很多的重要工业化合物如乙醇、乙酸、有机酸、丁醇和丙酮被释放到环境中;对污染微生物的控制通过谨慎的生态环境操作来进行,而不是通过复杂的工程技术操作。尽管如此,随着石油时代的来临,这些化合

生物工程生物技术专业英语翻译(六)

第六章生物工程中的下游加工(技术) 6.1前言 “下游加工(技术)”对于从任何工业化生产中回收有用产品所需要的所有步骤来说是一个有用的词语。对于生物工程特别重要,我们想要的最终形式的产物常常非常远的从最先在生物反应器中获得的状态除去。例如,—个典型的发酵过程是一个分散的固体(细胞、也许有营养培养基的某些组分等)与稀释水溶液的混合物;所想要的产物也许作为一种非常复杂的混合物的组分存在于细胞中,或者存在于稀释的培养基溶液中,或甚至两者中都有。任何情况下,这个产品的回收、浓缩和纯化都需要有用并有效的操作,这也受生— 产经济性的限制。任何特殊的要求,如需要除去污染物或限制生产微生物(process organism )都只会增加困难。 许多实验室中的标准操作在生产中都是不实用或者不经济的。而且,生物产品常常是非常脆弱(labile )敏感的化 合物,其活性结构只能在限定并有限的pH、温度、离子强度 「 等条件下才能保持。想着这些限制( bearing in mind ), 如果 要用到所有可用的科学方法以发挥最佳的效果就需要更多的创造性。也明显的是,没有一种独特的、理想的、普遍适用的操作或 者仅是操作顺序可以推荐;对一个特定的问题应当以最适宜的方

式把单个单元操作结合起来。 6.2粒子的分离 在发酵终点,多数情况下第一步是将固体(通常是细胞,但也可以是在一个特定支持物上的细胞或者酶,不包括反应培养基固体组分)从几乎一直是水溶液的连续均匀的液体系统中分离出来。与这个分离相关的一些细胞特性列于表6.1 ; 注意,细胞的比重不比fermentation broth 大很多。细胞 的大小也给细菌带来了困难,但是比较大的细胞更容易分离,有 时候甚至只需要简单的定位于倾析器。分离的容易性取决于fermentation broth 的性质,它的pH、温度等等, 在许多情况下,通过添加助滤剂、絮凝剂的等等进行改进(见后面)。表6.2给出了分离方法的大体分类。 6.2.1 过滤 这个是分离filamentous fungi 和fermentation broth 中的filamentous bacteria (例如,链霉菌)所使用的最广泛和最典型的 方法。它也可以用于酵母絮凝物的分离。根据机理,过滤可以采 用表面过滤或者深层过滤;或者离心过滤; 所有情况下的驱动力都是压力,由超压产生或者由真空产生。 过滤的速率,如在一定时间内收集的滤液的体积,是过滤面积、液体的黏度和通过过滤基质的压力降以及(deposited filter cake )沉积的滤饼的作用。过滤基质与滤饼filter cake 的抗,性

生物工程生物技术专业英语翻译(六)

第六章生物工程中的下游加工(技术)6.1前言 “下游加工(技术)”对于从任何工业化生产中回收有用产品所需要的所有步骤来说是一个有用的词语。对于生物工程特别重要,我们想要的最终形式的产物常常非常远的从最先在生物反应器中获得的状态除去。例如,一个典型的发酵过程是一个分散的固体(细胞、也许有营养培养基的某些组分等)与稀释水溶液的混合物;所想要的产物也许作为一种非常复杂的混合物的组分存在于细胞中,或者存在于稀释的培养基溶液中,或甚至两者中都有。任何情况下,这个产品的回收、浓缩和纯化都需要有用并有效的操作,这也受生产经济性的限制。任何特殊的要求,如需要除去污染物或限制生产微生物(process organism)都只会增加困难。 许多实验室中的标准操作在生产中都是不实用或者不经 等条件下才能保持。想着这些限制(bearing in mind),如果要用到所有可用的科学方法以发挥最佳的效果就需要更多的创造性。也明显的是,没有一种独特的、理想的、普遍适用的操作或者仅是操作顺序可以推荐;对一个特定的问题应当以最适宜的方式把单个单元操作结合起来。

6.2 粒子的分离 在发酵终点,多数情况下第一步是将固体(通常是细胞,但也可以是在一个特定支持物上的细胞或者酶,不包括反应培养基固体组分)从几乎一直是水溶液的连续均匀的液体系统中分离出来。与这个分离相关的一些细胞特性列于表6.1;注意,细胞的比重不比fermentation broth 大很多。细胞的大小也给细菌带来了困难,但是比较大的细胞更容易分离,有时候甚至只需要简单的定位于倾析器。分离的容易性取决于fermentation broth的性质,它的pH、温度等等,在许多情况下,通过添加助滤剂、絮凝剂的等等进行改进(见后面)。表6.2给出了分离方法的大体分类。 6.2.1 过滤 这个是分离filamentous fungi和fermentation broth 中的filamentous bacteria(例如,链霉菌)所使用的最广泛和最典型的方法。它也可以用于酵母絮凝物的分离。根据机理,过滤可以采用表面过滤或者深层过滤;或者离心过滤;所有情况下的驱动力都是压力,由超压产生或者由真空产生。 过滤的速率,如在一定时间内收集的滤液的体积,是过滤面积、液体的黏度和通过过滤基质的压力降以及(

商务英语翻译教程第7单元教案

第七单元 I.学习目的与要求 通过本单元的学习,掌握定语从句的翻译方法;了解股市类的专业术语的意义及其翻译。 II.教学时间:4学时 III.教学重难点: 1.定语从句的翻译 2.股市专业术语 IV.教学内容: Section I Text Section II Method and Technique Section III Exercises V.教学方法与手段:讲授为主,配以师生互动实训,PPT等。 VI. 教学步骤 一、定语从句的翻译(1) (重点) 理解:定语从句的意义及划分 应用:限定性从句和非限定性从句的翻译 限制性定语从句 限制性定语从句对所修饰的先行词起限制作用,与先行词关系较为密切; 非限制性定语从句 非限制性定语从句对先行词不起限制作用,只是对它加以叙述,描写或解释,并用逗号与之隔开。 定语从句 前置译法 后置译法 合成译法 译成状语从句 一主多从式定语从句 定语从句的翻译 限制性定语从句往往要译成“……的”这种句型的前置定语结构,因为限制性定语从句与所修饰的词关系密切,若分开译则会影响主句意思的完整。 也有一些非限制性定语从句,或因结构较短,或因与被修饰词关系较为密切,或因拆译后将会造成译文结构松散,在这种情况下也可以译成前置定语结构。 前置译法 The pressure is also heavy on students who just want to graduate and get a job. 对于那些只想毕业后找份工作的学生来说, 压力也一样不小。 I think we should be worried about the values that are nurturing the new generation. 我想我们应该为培育这下一代的价值理念感到担忧。 A writer’s work is a constant struggle to get the right word in the right place, to find that particular word that will convey his meaning exactly, that will persuade the reader or soothe him or amuse him. 作家的使命就是不断地锤炼文字力求做到用词恰到好处,寻求

生物工程生物技术专业英语翻译(六)讲课教案

生物工程生物技术专业英语翻译(六)

第六章生物工程中的下游加工(技术)6.1前言 “下游加工(技术)”对于从任何工业化生产中回收有用产品所需要的所有步骤来说是一个有用的词语。对于生物工程特别重要,我们想要的最终形式的产物常常非常远的从最先在生物反应器中获得的状态除去。例如,一个典型的发酵过程是一个分散的固体(细胞、也许有营养培养基的某些组分等)与稀释水溶液的混合物;所想要的产物也许作为一种非常复杂的混合物的组分存在于细胞中,或者存在于稀释的培养基溶液中,或甚至两者中都有。任何情况下,这个产品的回收、浓缩和纯化都需要有用并有效的操作,这也受生产经济性的限制。任何特殊的要求,如需要除去污染物或限制生产微生物(process organism)都只会增加困难。 许多实验室中的标准操作在生产中都是不实用或者不经 强度等条件下才能保持。想着这些限制(bearing in mind),如果要用到所有可用的科学方法以发挥最佳的效果就需要更多的创造性。也明显的是,没有一种独特的、理想的、普遍适用的操作或者仅是操作顺序可以推荐;对一个特定的问题应当以最适宜的方式把单个单元操作结合

起来。 6.2 粒子的分离 在发酵终点,多数情况下第一步是将固体(通常是细胞,但也可以是在一个特定支持物上的细胞或者酶,不包括反应培养基固体组分)从几乎一直是水溶液的连续均匀的液体系统中分离出来。与这个分离相关的一些细胞特性列于表 6.1;注意,细胞的比重不比fermentation broth 大很多。细胞的大小也给细菌带来了困难,但是比较大的细胞更容易分离,有时候甚至只需要简单的定位于倾析器。分离的容易性取决于fermentation broth的性质,它的pH、温度等等,在许多情况下,通过添加助滤剂、絮凝剂的等等进行改进(见后面)。表 6.2给出了分离方法的大体分类。 6.2.1 过滤 这个是分离filamentous fungi和fermentation broth中的filamentous bacteria(例如,链霉菌)所使用的最广泛和最典型的方法。它也可以用于酵母絮凝物的分离。根据机理,过滤可以采用表面过滤或者深层过滤;或者离心过滤;所有情况下的驱动力都是压力,由超压产生或者由真空产生。 过滤的速率,如在一定时间内收集的滤液的体积,是过滤面积、液体的黏度和通过过滤基质的压力降以及

各专业课程英文翻译说课讲解

各专业课程英文翻译(精心整理) 生物及医学专业课程汉英对照表 应用生物学 Applied Biology 医学技术 Medical Technology 细胞生物学 Cell Biology 医学 Medicine 生物学 Biology 护理麻醉学 Nurse Anesthesia 进化生物学 Evolutionary Biology 口腔外科学 Oral Surgery 海洋生物学 Marine Biology 口腔/牙科科学 Oral/Dental Sciences 微生物学 Microbiology 骨科医学 Osteopathic Medicine 分子生物学 Molecular Biology 耳科学 Otology 医学微生物学 Medical Microbiology 理疗学 Physical Therapy 口腔生物学 Oral Biology 足病医学 Podiatric Medicine 寄生物学 Parasutology 眼科学 Ophthalmology 植物生物学 Plant Physiology 预防医学 Preventive Medicine 心理生物学 Psychobiology 放射学 Radiology 放射生物学 Radiation Biology 康复咨询学 Rehabilitation Counseling 理论生物学 Theoretical Biology 康复护理学 Rehabilitation Nursing 野生生物学 Wildlife Biology 外科护理学 Surgical Nursing 环境生物学 Environmental Biology 治疗学 Therapeutics 运动生物学 Exercise Physiology 畸形学 Teratology 有机体生物学 Organismal Biology 兽医学 Veterinary Sciences 生物统计学 Biometrics 牙科卫生学 Dental Sciences 生物物理学 Biophysics 牙科科学 Dentistry 生物心理学 Biopsychology 皮肤学 Dermatology 生物统计学 Biostatistics 内分泌学 Endocrinology 生物工艺学 Biotechnology 遗传学 Genetics 生物化学 Biological Chemistry 解剖学 Anatomy 生物工程学 Biological Engineering 麻醉学 Anesthesia 生物数学 Biomathematics 临床科学 Clinical Science 生物医学科学 Biomedical Science 临床心理学 Clinical Psychology 细胞生物学和分子生物学 Celluar and Molecular Biology 精神病护理学 Psychiatric Nursing 力学专业 数学分析 Mathematical Analysis 高等代数与几何 Advanced Algebra and Geometry 常微分方程 Ordinary Differential Equation 数学物理方法 Methods in Mathematical Physics 计算方法 Numerical Methods 理论力学 Theoretical Mechanics 材料力学 Mechanics of Materials 弹性力学 Elasticity

生物工程生物技术专业英语翻译

第一章导论1.1 生物工程的特征 生物工程是属于应用生物科学和技术的一个领域,它包含生物或其亚细胞组分在制造业、服务业和环境管理等方面的应用。生物技术利用病毒、酵母、真菌、藻类、植物细胞或者哺乳动物培养细胞作为工业化处理的组成部分。只有将微生物学、生物化学、遗传学、分子生物学、化学和化学工程等多种学科和技术结合起来,生物工程的应用才能获得成功。 生物工程过程一般包括细胞或菌体的生产和实现所期望的化学改造。后者进一步分为: (a)终产物的构建(例如,酶,抗生素、有机酸、甾类);(b)初始原料的降解(例如,污水处理、工业垃圾的降解或者石油泄漏)。 生物工程过程中的反应可能是分解代谢反应,其中复合物被分解为简单物质(葡萄糖分解代谢为乙醇),又或者可能是合成代谢反应或生物合成过程,经过这样的方式,简单分子被组建为较复杂的物质(抗生素的合成)。分解代谢反应常常是放能反应过程,相反的,合成代谢反应为吸能过程。 生物工程包括发酵工程(范围从啤酒、葡萄酒到面包、

奶酪、抗生素和疫苗的生产),水与废品的处理、某些食品生产以及从生物治疗到从低级矿石种进行金属回收这些新增领域。正是由于生物工程技术的应用多样性,它对工业生产有着重要的影响,而且,从理论上而言,几乎所有的生物材料都可以通过生物技术的方法进行生产。据预测,到2000年,生物技术产品未来市场潜力近650亿美元。但也应理解,还会有很多重要的新的生物产品仍将以化学方法,按现有的生物分子模型进行合成,例如,以干扰为基础的新药。因此,生命科学与化学之间的联系以及其与生物工程之间的关系更应阐释。 生物工程所采用的大部分技术相对于传统工业生产更经济,耗能低且更加安全,而且,对于大部分处理过程,其生产废料是经过生物降解的,无毒害。从长远角度来看,生物工程为解决世界性难题提供了一种方法,尤其是那些有关于医学、食品生产、污染控制和新能源开发方面的问题。 1.2 生物工程的发展历史 与一般所理解的生物工程是一门新学科不同的是,而是认为在现实中可以探寻其发展历史。事实上,在现代生物技术体系中,生物工程的发展经历了四个主要的发展阶段。 食品与饮料的生物技术生产众所周知,像烤面包、啤酒与葡萄酒酿造已经有几千年的历史;当人们从创世纪中认识葡萄酒的时候,公元前6000,苏美尔人与巴比伦人就喝上了

相关文档
最新文档