粒度检测方法

粒度检测方法

GB317、

GB1445

2016年产品质量情况分析报告

2016年产品质量情况分析报告

2016年产品质量状况分析报告 质量管理部 质量是企业的生命。近年来,随着公司技改开发的大力投入,产业布局的系统优化和整合完善,形成了以202车间为代表的南方矿分离体系和以204车间焙烧工序为龙头、201车间萃取分离工序为承接、218车间沉淀煅烧为收尾的北方矿分离体系,形成了稀土加工分离、稀土金属、稀土研磨材料、稀土贮氢材料、稀土磁性材料、稀土发光材料、氯碱化工等七大产业链。公司严把质量关,从原材料的入厂、中间品的控制到产成品出厂都严格按内部标准执行,在各工序间制定了质量控制标准,细化了关键岗位控制标准,编制了质量岗位巡视路线图,强化质量巡视工作,从而使公司的产品质量有了较明显的提升,确保了公司在市场中的竞争力。下面就公司产品质量做如下具体分析: 一、原材料方面 目前公司所用稀土原料全部来自外购,南方矿多采购自江西和广东,稀土总量为92%左右,稀土配分、放射性大小由于产地不同存在一定的差异,202车间在萃取分离过程中及时调整萃取工艺指令同时做好镧产品中放射性的去除工作;北方矿主要为包头高矿,兼顾山东矿和四川矿,矿型差异较大,204车间联合研究所做好实验工作,研究焙烧工艺,做好各类矿型混合焙烧的技术策划;碳铵做为公司沉淀工序的重要原料,由于市场原因,采购自不同厂家,2016年合格率为89.69%,不合格原因除总量偏低外,不同厂家的产品对沉淀过程

液、镧铈液、镨钕液稀土组分不合格的主要原因受生产工艺影响,在萃取稀土过程中,温度、酸度、流量等条件稍微控制不当,容易使产品配分引起波动。产品中非稀土杂质超标的主要原因是201车间高纯线除杂不彻底,下游218车间需加强在沉淀环节和煅烧环节对稀土杂质的控制,及时调整生产工艺,关注外接稀土料液、生产用水、沉淀剂碳铵中Fe、CaO、Mg、Na、等非稀土杂质的含量以及生产设备、搅拌装置等腐蚀程度对产品质量的影响,车间生产技术人员在追求稀土产品相对纯度满足的前提下应足够重视对非稀土杂质的控制。三、产成品方面 202车间2016年产品一次合格率为99.82%,较2015年上升 0.65%,产品质量有明显提升;218车间2016年产品一次合格率为99.95%,较2015年上升0.05%,产品质量与2015年基本持平;205车间、磁材车间、贮氢车间、应用型产品质量一次合格率均为100%;金属车间2016年产品一次合格率为96.31%,较2015年降低1.5%,产品质量有所下降。其中202车间氧化钆松装比重不合格,主要原因是沉淀过程控制不当,在今后的生产过程中要把单纯控制产品化学指标转变为为产品晶形晶貌的控制;218车间氧化镨钕稀土杂质La2O3不合格,主要原因为为转产前未彻底清理炉膛导致煅烧过程污染使产品中组分La2O3超标,在今后的生产过程中车间技术人员应提高质量意识,做好生产前的质量策划;金属镧、金属铈、金属钕、镧铈金镨钕金属中稀土杂质AL、C、Si、Mo等超标,主要原因电解过程控制

粒度分析的基础知识

什么叫颗粒? 颗粒其实就是微小的物体,是组成粉体的能独立存在的基本单元。这个问题似乎很简单,但是要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义又是十分重要的。各种颗粒的复杂形状使得粒度分析比原本想象的要复杂得多。 粒度测试复杂的原因 比如,我们用一把直尺量一个火柴盒的尺寸,你可以回答说这个火柴盒的尺寸是 20×10×5mm。但你不能说这个火柴盒是20mm或10mm或5mm,因为这些只是它大小尺寸的一部分。可见,用单一的数值去描述一个三维的火柴盒的大小是不可能的。同样,对于一粒砂子或其它颗粒,由于其形状极其复杂,要描述他们的大小就更为困难了。比如对一个质保经理来说,想用一个数值来描述产品颗粒的大小及其变化情况,那么他就需要了解粉体经过一个处理过程后平均粒度是增大了还是减小了,了解这些有助于正确进行粒度测试工作。那么,怎样仅用一个数值描述一个三维颗粒的大小?这是粒度测试所面临的基本问题。等效球体 只有一种形状的颗粒可以用一个数值来描述它的大小,那就是球型颗粒。如果我们说有一个50μ的球体,仅此就可以确切地知道它的大小了。但对于其它形状的物体甚至立方体来说,就不能这样说了。对立方体来说,50μ可能仅指该立方体的一个边长度。对复杂形状的物体,也有很多特性可用一个数值来表示。如重量、体积、表面积等,这些都是表示一个物体大小的唯一的数值。如果我们有一种方法可测得火柴盒重量的话,我们就可以公式(1)把这一重量转化为一球体的重量。 重量= 4/3π×r3×ρ-------------------------------- (1) 由公式(1)可以计算出一个唯一的数(2r)作为与火柴盒等重的球体的直径,用这个直径来代表火柴盒的大小,这就是等效球体理论。也就是说,我们测量出粒子的某种特性并根据这种特性转换成相应的球体,就可以用一个唯一的数字(球体的直径)来描述该粒子的大小了。这使我们无须用三个或更多的数值去描述一个三维粒子的大小,尽管这种描述虽然较为准确,但对于达到一些管理的目的而言是不方便的。我们可以看到用等效法描述描述粒子的大小会产生了一些有趣的结果,就是结果依赖于物体的形状,见图2中圆柱的等效球体。如果此圆柱改变形状或大小,则体积/重量将发生变化,我们至少可以根据等效球体模型来判断出此圆柱是变大了还是变小了等。 假设有一直径D1=20μm(半径r=10μm),高为100μm的圆柱体。由此存在一个与该圆柱体积相等球体的直径D2。我们可以这样计算这一直径(D2):

粒度测试原理

分析了Cilas940L激光粒度仪的测试结果,并与沉降法、筛析法进行了比较.激光粒度仪测试结果的重复性较好,测量精度较高.对于玻璃珠样品,激光粒度仪和筛析法测试结果十分接近,对于天然沉积物,激光粒度仪测定的平均粒径偏粗,分选偏差.和沉降法相比,激光粒度仪测定的粘土组份(<8φ)的含量为沉降法的46.7%~70.5%,平均为60%,测定的平均粒径较沉降法偏粗,分选偏差.造成激光粒度仪与沉降法、筛析法之间差异的原因主要在于这些测试方法原理的不同和天然沉积物不规则的形状. 激光衍射法与比重计沉降法所测粒度参数的对比研究——以海滩泥沙为例 陈仕涛1,王建1,朱正坤2,娄英杰2 (1.南京师范大学地理科学学院,江苏南京210097; 2.江苏省交通规划设计院,江苏南京 210005) 摘要:用比重计沉降法和激光衍射法这两种方法,在相同条件下,对65个海滩泥沙样品分别进行了粒度分析。结果表明,激光衍射法的测试结果相对偏粗,二者的差异主要反映在>9Φ中和<4Φ这两个粒级范围内,上述差异对平均粒径、中值粒径、标准偏差、尖度、偏度等5个常用粒度参数的影响程度是不同的,经过线性相关性分析发现,二者的平均粒径和中值粒径的相关系数R较高,分别为0.9864,0.9763,F显著性检验和分析表明,其回归方程是有意义的,可作为换算公式使用,从而求得二者数据对比与换算途径。 关键词:激光粒度仪;比重计;粒度分析;相关性 1 引言 粒度分析,也叫颗粒分析,在许多领域有着广泛的应用。粒度测量的方法很多,比如传统的沉降法和随着激光技术的发展而产生的激光衍射法。沉降法之一的比重计法由于使用的仪器简单,在细颗粒样品的测量中曾广泛应用。激光衍射粒度分析法由于测量范围宽、所需样品量少、快速方便、重复性好等优点,使得用户越来越多,进而有取代其它粒度方法的趋势[1],不同的测试方法由于受原理中某些假设和仪器本身的限制,测量的数据往往各不相同[2],这就必然会导致相关数据及成果在对比与共享方面存在着客观上的困难。因此,定量分析这两

“颗粒粒径分析方法”汇总大全

“颗粒粒径分析方法”汇总大全 来源:材料人2016-08-05 一、相关概念: 1、粒度与粒径:颗粒的大小称为粒度,一般颗粒的大小又以直径表示,故也称为粒径。 2、粒度分布:用一定方法反映出一系列不同粒径区间颗粒分别占试样总量的百分比称为粒度分布。 3、等效粒径:由于实际颗粒的形状通常为非球形的,难以直接用直径表示其大小,因此在颗粒粒度测试领域,对非球形颗粒,通常以等效粒径(一般简称粒径)来表征颗粒的粒径。等效粒径是指当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,就用该球形颗粒的直径代表这个实际颗粒的直径。其中,根据不同的原理,等效粒径又分为以下几类:等效体积径、等效筛分径、等效沉速径、等效投影面积径。需注意的是基于不同物理原理的各种测试方法,对等效粒径的定义不同,因此各种测试方法得到的测量结果之间无直接的对比性。 4、颗粒大小分级习惯术语:纳米颗粒(1-100 nm),亚微米颗粒(0.1-1 μm),微粒、微粉(1-100 μm),细粒、细粉(100-1000 μm),粗粒(大于1 mm)。 5、平均径:表示颗粒平均大小的数据。根据不同的仪器所测量的粒度分布,平均粒径分、体积平均径、面积平均径、长度平均径、数量平均径等。 6、D50:也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。如果一个样品的D50=5 μm,说明在组成该样品的所有粒径的颗粒中,大于5 μm的颗粒占50%,小于5 μm的颗粒也占50%。 7、最频粒径:是频率分布曲线的最高点对应的粒径值。 8、D97:D97指一个样品的累计粒度分布数达到97%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占97%。这是一个被广泛应用的表示粉体粗端粒度指标的数据。 二、粒度测试的基本方法及其分析 激光法 激光法是通过一台激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。纳米型和微米型激光料度仪还可以通过安装的软件来分析颗粒的形状。现在已经成为颗粒测试的主流。 1、优点:(1)适用性广,既可测粉末状的颗粒,也可测悬浮液和乳浊液中的颗粒;(2)测试范围宽,国际标准ISO 13320 - 1 Particle Size Analysis 2 Laser Diffraction Meth 2 ods 2 Part 1: General Principles中规定激光衍射散射法的应用范围为0.1~3000 μm;(3)准确性高,重复性好;(4)测试速度快;(5)可进行在线测量。 2、缺点:不宜测量粒度分布很窄的样品,分辨率相对较低。 激光散射技术分类: 1、静态光散射法(即时间平均散射):测量散射光的空间分布规律采用米氏理论。测试的有效下限只能达到50纳米,对于更小的颗粒则无能为力。纳米颗粒测试必须采用“动态光散射”技术。 2、动态光散射法:研究散射光在某固定空间位置的强度随度时间变化的规律。原理基于ISO 13321分析颗粒粒度标准方法,即利用运动着的颗粒所产生的动态的散射光,通过光子相关光谱分析法分析PCS颗粒粒径。 按仪器接受的散射信号可以分为衍射法、角散射法、全散射法、光子相关光谱法,光子交叉相关光谱法(PCCS)等。其中以激光为光源的激光衍射散射式粒度仪(习惯上简称此类仪器为激光粒度仪)发展最为成熟,在颗粒测量技术中已经得到了普遍的采用。 激光粒度分析仪:

粒度测试的基本概念和基本知识问答

粒度测试的基本概念和基本知识问答 1. 什么是颗粒 颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子、原子。 2. 什么叫粒度 颗粒的大小称为颗粒的粒度。 3. 什么叫粒度分布 用一定方法反映出一系列不同粒径颗粒分别占粉体总量的百分比叫做粒度分布。 4. 粒度分布的表示方法 1) 表格法:用列表的方式给出某些粒径所对应的百分比的表示方法。通常有区间分布和累计分布。 2) 图形法:用直方图和曲线等图形方式表示粒度分布的方法。 3) 函数法:用函数表示粒度分布的方法。常见有R-R分布,正态分布等。 5. 什么是粒径 粒径就是颗粒的直径,一般以微米(μm)为单位。 6. 什么是等效粒径 等效粒径是指当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。根据不同的测量方法,等效粒径可具体分为下列几种:

1) 等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。激光法所测粒径一般认为是等效体积径。 2) 等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直径。重力沉降法、离心沉降法所测的粒径为等效沉速粒径,也叫Stokes径。 3) 等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗粒的直径。库尔特法所测的粒径就是等效电阻粒径。 4) 等效投影面积径:即与所测颗粒具有相同的投影面积的球形颗粒的直径。图像法所测的粒径即为等效投影面积直径。 7. 为什么要用等效粒径概念 由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采用等效粒径的概念。 8. 什么叫D50 D50是指累计分布百分数达到50%时所对应的粒径值。它是反映粉体粒度特性的一个重要指标之一。D50又称中位径或中值粒径。如果一个样品的D50=5μm,说明在组成该样品的所有粒径的颗粒中,大于5μm的颗粒占 50%,小于5μm的颗粒也占50%。 9. 什么叫平均径 平均径是通过对粒度分布加权平均得到的一个反映粉体平均粒度的一个量。具体有重量平均径、体积平均径、面积平均径、个数平均径等。 10. 什么叫D97它的作用是什么 D97是指累计分布百分数达到97%时对应的粒径值。它通常被用来反映粉体粗端粒度指标,是粉体生产和应用中一个重要的粒度指标。 11. 常用的粒度测试方法有那些

粒度分析的基本原理

粒度分析的基本原理 (作者:Malvern 仪器有限公司Alan Rawle 博士,翻译:焉志东,整理:董青云) 什么叫颗粒? 颗粒其实就是微小的物体,是组成粉体的能独立存在的基本单元。这个问题似乎很简单,但是要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义又是十分重要的。各种颗粒的复杂形状使得粒度分析比原本想象的要复杂得多。 (见图1略) 粒度测试复杂的原因 比如,我们用一把直尺量一个火柴盒的尺寸,你可以回答说这个火柴盒的尺寸是20×10×5mm 。但你不能说这个火柴盒是20mm 或10mm 或5mm ,因为这些只是它大小尺寸的一部分。可见,用单一的数值去描述一个三维的火柴盒的大小是不可能的。同样,对于一粒砂子或其它颗粒,由于其形状极其复杂,要描述他们的大小就更为困难了。比如对一个质保经理来说,想用一个数值来描述产品颗粒的大小及其变化情况,那么他就需要了解粉体经过一个处理过程后平均粒度是增大了还是减小了,了解这些有助于正确进行粒度测试工作。那么,怎样仅用一个数值描述一个三维颗粒的大小?这是粒度测试所面临的基本问题。 等效球体 只有一种形状的颗粒可以用一个数值来描述它的大小,那就是球型颗粒。如果我们说有一个50 u 的球体,仅此就可以确切地知道它的大小了。但对于其它形状的物体甚至立方体来说,就不能这样说了。对立方体来说,50u 可能仅指该立方体的一个边长度。对复杂形状的物体,也有很多特性可用一个数值来表示。如重量、体积、表面积等,这些都是表示一个物体大小的唯一的数值。如果我们有一种方法可测得火柴盒重量的话,我们就可以公式(1)把这一重量转化为一球体的重量。 重量= )1(r 3 4 3-----------------------ρ??π 由公式(1)可以计算出一个唯一的数(2r )作为与火柴盒等重的球体的直径,用这个直径来代表火柴盒的大小,这就是等效球体理论。也就是说,我们测量出粒子的某种特性并根据这种特性转换成相应的球体,就可以用一个唯一的数字(球体的直径)来描述该粒子的大小了。这使我们无须用三个或更多的数值去描述一个三维粒子的大小,尽管这种描述虽然较为准确,但对于达到一些管理的目的而言是不方便的。我们可以看到用等效法描述描述粒子的大小会产生了一些有趣的结果,就是结果依赖于物体的形状,见图2中圆柱的等效球体。如果此圆柱改变形状或大小,则体积/重量将发生变化,我们至少可以根据等效球体模型来判断出此圆柱是变大了还是变小了等等。如图2(略)。 假设有一直径D1=20um (半径r=10um ),高为100 um 的圆柱体。由此存在一个与该圆柱体积相等球体的直径D2。我们可以这样计算这一直径(D2): 圆柱体积V 1=)2()m (10000h r 3 2 ----------------μπ=??π

如何划分测试用例的粒度

我们是不太可能在一个测试用例包含所有测试需求的,因为众多的功能以及不同的路径 组合将使这样一个测试用例像巨无霸一般,完全不具有可操作性。——除非您的软件所包含的功能真的又少又简单,不过如果真的有这么一个软件,恐怕也没有测试和发布的必要了。 当然,这也并不是要您走向另一个极端,为需求中定义的每个特性或功能都提供一个甚至多个测试用例。这里的关键,是要寻找一个合适的度。 有效功能:就是指在被测应用所涉及的实际业务中,当用户在手工状态下进行工作时,整个业务流程中对用户来说,具有实际意义那些功能。这个功能的特征是当我们把这个功能单独从计算机软件还原到用户的原始手工状态时,它的完成可以作为用户实际业务的一个阶段性结束的标志,而不是一旦从这个业务流程中独立出来就失去了意义。而该业务完成后,可以为其他用户或业务提供所需要的信息。 这里区分“有效功能”的关键有如下两个: 1. 这个功能是可以还原到用户原始的手工业务流程中去的。我们的计算机和软件,都是为了帮助用户解决手工业务中一些烦琐和低效的问题,而提出的一些忠实于原始工作方法或略有变通的解决方案,并不是要改变用户全部的业务流程。所以,应该从用户实际业务的角度来判断功能是否有效。 2. 这个功能是否可以标志着用户实际业务的一个阶段性结束?并且这项业务完成之后,被完成的业务实体是否可以交付给其他用户或业务以供完成下面的工作? 为了方便理解,我们可以先看一下下面的例子。 拿我们常见的财务软件来说,当添加一张会计凭证时,通常是需要填写会计科目,在使用计算机完成工作时,我们可以利用软件的功能,从很多备选科目中选择一个自己需要的科目,或者通过科目代码来输入科目。这项功能很有可能会作为一个特性要求出现在软件需求规格说明书中,那么这个科目的选择或输入是不是一个有效功能呢?让我们试着用上面规则来衡量一下。 首先,这个功能在用户手工业务处理过程中是存在的,不同的是这项功能是在用户填写凭证时,在自己的大脑中完成的——用户会根据需要,在自己记忆的科目中选择合适的填写上去,这项功能节省了用户在记忆大量会计科目时付出的额外劳动。我们可以认为这个功能是为用户原来的工作提供了一种简便的、变通的方法。 那么这项功能的完成对于用户来说意味着什么呢?我们从上面的描述中可以看到,用户希望软件提供的是可以添加一张完整的凭证这样的功能,而不仅仅是方便填写会计科目。填写会计科目只是用户在添加凭证时的一个步骤,单独把这个功能提取出来对用户来说没有任何实际意义。对于业务流程下游的用户,需要的也不仅仅只是一个会计科目的信息,而是一张包含了会计科目以及

筛分析法测试粉体粒度及粒度分布

筛分析法测试粉体粒度及粒度分布 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用简单的表格、绘图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如,水泥的凝结时间、强度与其细度有关,陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能,磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法和沉降法,以及激光法测粉体粒度分布。 一、实验目的 筛析法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。本实验用筛析法测粉体粒度,其实验的目的是: 1、了解筛析法测粉体粒度分布的原理和方法。 2、根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、基本原理 1、测试方法概述 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若干个粒级,分别称重,求得以质量分数表示的粒度分布。筛析法适用于约10mm至20μm之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 过去,筛孔的大小用“目”表示,其含义是每英寸(25.4mm)长度上筛孔的数目,也有用1cm长度上的孔数或1cm2筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛析法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO)推荐的筛孔为1mm的筛子作为基筛,以优先系数及20/3为主序列,其筛孔为

砂岩粒度分析报告模板 筛分法

检测报告Analysis Report 检测项目 Item 砂岩粒度分析——————————————————————— 送样单位Company *** ——————————————————————— 送样人Liaison with *** ——————————————————————— 地区/井号Location / Well *** ——————————————————————— 样品块数Sample Count 1 ——————— 报告页数 Page Count——————— 检测人Analyzed by *** ——————— 审核人 Checked by *** ——————— 报告日期 Date 2017 ————— 年 Y 1 ———— 月 M 1 ———— 日 D ***

一、实验原理 本测试采用沉降法-筛析法对岩石粒度进行测试。对小于74微米的颗粒,采用沉降法;对粒径大于74微米的岩石颗粒,采用筛析法进行分析。 沉降法原理:微细粒固体颗粒在流体介质中的自由沉降速度与其粒度直径平方成正比,因此可以通过测定颗粒的沉降速度来确定其粒度。 筛析法原理:选取合适的筛网,应用干法筛分避免很细的颗粒附着在筛孔上面堵塞筛孔,其筛析结果采用频率分布和累积分布来表示颗粒的粒度分布。频率分布表示各个粒径相对应的颗粒百分含量(微分型);累积分布表示小于(或大于)某粒径的颗粒占全部颗粒的百分含量与该粒径的关系(积分型)。 二、实验器材 1.沉降粒度分析成像系统; 2. 标准筛1套; 3. 振筛机1台; 4. 托盘天平1架; 5.烘箱1个。 三、实验步骤 1)试样制备:将试样放入烘箱中烘干至恒重,准确称取100-500克。 2)套筛按孔径由大至小顺序放好,并装上筛底,安装在振筛机

激光粒度仪实验报告

实验一LS230/VSM+激光粒度仪测定果汁饮料粒度 1实验目的 1.1了解激光粒度仪的基本操作; 1.2了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利用光电探测器进行信号的光电转换,并通过信号放大、A/D 变换、数据采集送到计算机中,通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 3.1实验样品:果汁饮料。 3.2实验仪器:LS230/VSM+激光粒度仪。 4实验步骤 4.1按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵,仪器预热10分钟。

4.2进入LS230的操作程序,建立连接,再进行相应的参数设置: 启动Run-run cycle(运行信息) (1)选择measure offset(测量补偿),Alignment(光路校正),measure background(测量空白),loading(加样浓度),Start 1 run(开始测量(2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于0.4μm以下的颗粒,选择Include PIDS,并将分析时 间改为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高,反之亦然。 4.3在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制好浓度,Obscuratio n应稳定在8-12%:假如选择了PIDS,则要把PIDS 稳定在40-50%,待软件出现ok提示后,点击Done(完成)。 4.4分析结束后,排液,并加水清洗样品台,准备下一次分析。 4.5作平行试验,保存好结果,根据要求打印报告。 4.6退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 5.1实验结果 由实验结果显示: 平均粒径:141.7μm

粒度分析报告的基本概念与知识

粒度测试的基本概念和基本知识 前言 1. 什么是颗粒? 颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子、原子。 2. 什么叫粒度? 颗粒的大小称为颗粒的粒度。 3. 什么叫粒度分布? 不同粒径的颗粒分别占粉体总量的百分比叫做粒度分布。 4. 常见的粒度分布的表示方法? ?表格法:用列表的方式表示粒径所对应的百分比含量。通常有区间分布和累计分布。 ?图形法:用直方图和曲线等图形方式表示粒度分布的方法。 5. 什么是粒径? 颗粒的直径叫做粒径,一般以微米或纳米为单位来表示粒径大小。 6. 什么是等效粒径? 当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。根据不同的测量方法,等效粒径可具体分为下列几种: ?等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。激光法所测粒径一般认为是等效体积径。 ?等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直径。重力沉降法、离心沉降法所测的粒径为等效沉速粒径,也叫Stokes径。 ?等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗粒的直径。库尔特法所测的粒径就是等效电阻粒径。 ?等效投影面积径:即与所测颗粒具有相同的投影面积的球形颗粒的直径。图像法所测的粒径即为等效投影面积直径。 7. 为什么要用等效粒径概念? 由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采用等效粒径的概念。简单地说,粒径就是颗粒的直径。从几何学常识我们知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的一个量,所以在实际的粒度分布测量过程中,人们还都是用粒径来描述颗粒大小的。一方面不规则形状并不存在真实的直径,另一方面又用粒径这个概念来表示它的大小,这似乎是矛盾的。其实,在粒度分布测量过程中所说的粒径并非颗粒的真实直径,而是虚拟的“等效直径”。等效直径是当被测颗粒的某一物理特性与某一直径的同质球体最相近时,就把该球体的直径作为被测颗粒的等效直径。就是说大多数情况下粒度仪所测的粒径是一种等效意义上的粒径。 不同原理的粒度仪器依据不同的颗粒特性做等效对比。如沉降式粒度仪是依据颗粒的沉降速度作等效对比,所测的粒径为等效沉速径,即用与被测颗粒具有相同沉降速度的同质球形颗粒的直径来代表实际颗粒的大小。激光粒度仪是利用颗粒对激光的散射特性作等效对比,所测出的等效粒径为等效散射粒径,即用与实际被测颗粒具有相同散射效果的球形颗粒的直径来代表这个实际颗粒的大小。当被测颗粒为球形时,其等效粒径就是它的实际直径。 8. 平均径、D50、最频粒径 定义这三个术语是很重要的,它们在统计及粒度分析中常常被用到。 ?平均径: 表示颗粒平均大小的数据。有很多不同的平均值的算法,如D[4,3]等。根据不同的仪器所测量的粒度分布,平均粒径分、体积平均径、面积平均径、长度平均径、数量平均径等。 ?D50: 也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。如果一个样品的D50=5μm,说明在组 成该样品的所有粒径的颗粒中,大于5μm的颗粒占50%,小于5μm的颗粒也占50%。 ?最频粒径: 是频率分布曲线的最高点对应的粒径值。设想这是一般的分布或高斯分布。则平均值,中值和最频值将恰好处在同一位置,如下图。但是, 如果这种分布是双峰分布,则平均直径几乎恰 恰在这两个峰的中间。实际上并不存在具有该 粒度的颗粒。中值直径将位于偏向两个分布中

磨料粒度的分类及适用范围

第6章宝石加工常用的工艺耗材 第1节磨料 磨料指可用于是研磨或抛光的材料,它们是一些具有棱角和一定硬度及韧性的粉状物质,可直接研磨工件和制成磨具用。 6.1.1 磨料的基本特性 (1)硬度较高,一般不应低于被加工材料的硬度。 (2)韧性较好,不能因有研磨压力而易变形和被磨损。 (3)自锐性较好,即当受研磨压力而碎裂时,破碎后的各部分仍保持尖锐的多棱角状。 自锐性示意图 (4)熔点或软化点较高,在研磨发热作用下,磨料尖角不易熔化或变软。(5)化学稳定性较好,不与被加工的材料起反应。 (6)形状和粒度较均匀,每号磨料粒度在一定范围内。 6.1.2 磨料粒度的分类及适用范围

1、磨料的粒度等级 磨料粒度表示法:粒度号“#”、“w” 粒径尺寸“μm” 磨料粒度分类:磨粒 2000~40 μm (17种) 微粉 40~0.5 μm (12种) (1)磨粒分级:12#、14#、16#、20#、24#、30#、36#、 46#、60#、70#、80#、100#、120#、 150#、180#、240 # 、280# 磨粒的粒度号用筛号表示,例如: 12#表示12#筛以下~14#筛以上的颗粒级 (2)微粉分级:W40 W28 W20 W14W10 W7 W5 W3.5 W2.5 W1.5 W1.0 W0.5微粉的粒度号以微米值表示,例如: W40表示粒径40~28 μm级(上限) 磨料的粒度号与粒径尺寸的对应关系见下表:

2、不同磨料粒度的适用范围 在宝石加工中,不同粒度磨料的适用范围如下表: 6.1.3 磨料的种类和性能 磨料主要是一些具有一定硬度和韧性的粒状或粉状的矿物质材料。按成因可分为天然磨料和人造磨料两大类。 天然磨料:金刚石、刚玉、石榴石、石英,等等。 人造磨料:金刚石系、碳化物系、刚玉系,等三大系列。 1、金刚石 ?包括天然和人造金刚石。 ?Hm=10,Hv=10000kg/mm2。 ?有一定韧性,但脆性相对较大,因易沿八面体完全解理方向破裂,自锐性较高。因而,耐磨性强,磨削性能好。 ?耐热性良好,在无氧化条件下加热1000℃无变化。 ?化学性质稳定,与酸碱物质不起反应。 2、碳化硅(SiC) ?以石英、石油焦碳为主要原料在1800℃以上高温下炼成的结晶化合物,是一种常用人造成磨料。

实验1 粉体的粒度及其分布的测定

实验1 粉体的粒度及其分布的测定 粒度分布的测量在实际应用中非常重要,在工农业生产和科学研究中的固体原料和制品,很多都是以粉体的形态存在的,粒度分布对这些产品的质量和性能起着重要的作用。例如催化剂的粒度对催化效果有着重要影响;水泥的粒度影响凝结时间及最终的强度;各种矿物填料的粒度影响制品的质量与性能;涂料的粒度影响涂饰效果和表面光泽;药物的粒度影响口感、吸收率和疗效等等。因此在粉体加工与应用的领域中,有效控制与测量粉体的粒度分布,对提高产品质量,降低能源消耗,控制环境污染,保护人类的健康具有重要意义。 一、实验目的 1、掌握粉体粒度测试的原理及方法。 2、了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注 意事项。 3、学会对粉体粒度测试结果数据处理及分析。 二、实验原理 粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。粉体粒度的测试方法有许多种:筛分析、显微镜法、沉降法和激光法等。激光法是用途最广泛的一种方法。它具有测试速度快、操作方便、重复性好、测试范围宽等优点,是现代粒度测量的主要方法之一。 激光粒度测试时利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅里叶)透镜的聚焦作用,在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光-电转换信号再经模数转换,送至计算机处理,根据夫琅禾费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。 三、仪器设备 1、制样:超声清洗器、烧杯、玻璃棒、蒸馏水、六偏磷酸钠。 2、测量:Easysizer20激光粒度仪、微型计算机、打印机。 四、实验步骤 (一)测试准备 1、仪器及用品准备 (1)仔细检查粒度仪、电脑、打印机等,看它们是否连接好,放置仪器的工

碎屑颗粒粒度分级表

沉积岩岩石颗粒粒级分级表 (资料来源中国地大岩石学)

沉积岩岩石命名的一般原则 (资料来源GB/T 17412.2─1998) 1、沉积岩岩石的命名原则 按:附加修饰词+基本名称 2、沉积岩岩石基本名称的规定 岩石中内源矿物量或陆源碎屑物量大于50%或能反映岩石基本特征和基本属性者,为确定岩石基本名称的依据。 3、次要矿物作为附加修饰词的规定 a)次要矿物量小于5%,不参与命名。当具特殊地质意义时,以微 含××质作为附加修饰词。 b)次要矿物量为5%及小于25%时,以含××质作为附加修饰词。 c)次要矿物量为25%至50%时,以××质作为附加修饰词。 4、结构作为附加修饰词的规定 a)一种结构存在,即以该结构作为附加修饰词。 b)两种结构同时存在,按次者在前主者在后的顺序排列作为附加修 饰词。 c)三种结构同时存在,则不一一列出,而予以总称作为附加修饰词, 如内碎屑、不等晶、不等粒等。 5、成岩后生变化产物作为附加修饰词的规定 a)成岩后生变化产物含量小于25%至5%时,称弱××化或弱脱× ×化作为附加修饰词。 b)成岩后生变化产物含量小于50%至25%时,称××化或脱××化

作用附加修饰词 c)成岩后生变化产物含量为90%至50%时,称强××化或强脱×× 化作为附加修饰词。 d)成岩后生变化产物含量大于90%时,称极强××化极强脱××化 作为附加修饰词。 沉积岩基本描述 命名的顺序:名称(颜色-粒度-岩性) 描述顺序:结构—构造—成分及分布规律—胶结物与胶结程度(包括致密成果)—特殊物质及分布规律(炭屑、黄铁矿、化石、印痕、结核、包体等)—岩层中其他岩性的夹层或透镜体(重点描述厚度、接触关系)— 宏观描述:韵律层理、递变层理(正、反粒序层理)、波状层理、爬升波状层理、逆行沙波状层理、层理不明显、均一状层理、渐变层理、过渡层理、互层状层理、纹层理、平行状层理、水平状层理、交错层理(即斜层理,包括板状交错层理、楔状交错层理、槽状交错层理)、透镜状层理、脉状层理、波状层理—与下层的接触关系(突变、渐变)—突变接触面形态(平直、水平或倾斜(倾角)、参差状、穿插、互层等)。

粒度仪实验报告

实验一 ls230/vsm+激光粒度仪测定果汁饮料粒度 1实验目的 1.1了解激光粒度仪的基本操作; 1.2了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小 表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强 的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行 地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利 用光电探测器进行信号的光电转换,并通过信号放大、a/d变换、数据采集送到计算机中, 通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 3.1实验样品:果汁饮料。 3.2实验仪器:ls230/vsm+激光粒度仪。 4实验步骤 4.1按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵, 仪器预热10分钟。 4.2进入ls230的操作程序,建立连接,再进行相应的参数设置: 启动run-run cycle(运行信息) (1)选择measure offset(测量补偿),alignment(光路校正),measure background(测量空白),loading(加样浓度),start 1 run(开始测量 (2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于0.4μm以下的颗粒,选择include pids,并将分析时 间改为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高, 反之亦然。 4.3在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制 好浓度,obscuration应稳定在8-12%:假如选择了pids,则要把pids稳定在40-50%,待软 件出现ok提示后,点击done(完成)。 4.4分析结束后,排液,并加水清洗样品台,准备下一次分析。 4.5作平行试验,保存好结果,根据要求打印报告。 4.6退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 5.1实验结果 由实验结果显示: 平均粒径:141.7μm 6思考题 6.1 ls230/vsm+激光粒度仪的技术特点 ls230/vsm+激光粒度仪的特点是测量的动态范围宽、测量速度快、操作方便,尤其适合 测量粒度分布范围宽的粉体和液体雾滴。 (1)双镜头专利技术:避免了更换镜头的麻烦,测量宽分布颗粒时,大、小颗粒的信息 在一次分析中都可得到,大大提高了分析精度。 (2)pids(偏振光强度差)专利技术:用三种方法改进了对小颗粒的测定:多波长(450nm,

粉体粒度及其分布测定

粉体粒度及其分布测定 一.实验目的 1.掌握粉体粒度测试的原理及方法; 2.了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注意要点; 3.学会对粉体粒度测试结果数据处理及分析。 二.实验原理 图1:微纳激光粒度分析仪工作原理框图 粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。粉体粒度的测试方法有许多种:筛分法、显微镜法、沉降法和激光法等。 激光粒度测试是利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅立叶)透镜的聚焦作用,在透镜的焦平面上形成一中心圆斑和围绕圆斑的一系列同心圆环,圆环的直径随衍射角的大小即随颗粒的直径而变化,粒径越小,衍射角越大,圆环直径亦大;在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光--电转换信号再经模数转换,送至计算机处理,根据夫朗和费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。 激光粒度测试法具有适应广、速度快、操作方便、重复性好的优点,测量范围为:0.1—几百微米。但当粒径与所用光的波长相当时,夫朗和费衍射理论的运用有较大误差,需应用米氏理论来修正。 三.仪器设备 济南微纳颗粒技术有限公司Winner2000Z智能型激光粒度分析仪、微型计算机、打印机。 四.实验步骤 4.1测试前的准备工作 1.开启激光粒度分析仪,预热10~15分钟。启动计算机,并运行相对应的软件。 2.清洗循环系统。首先,进入控制系统的人工模式,不选择自动进水点击排水, 把与被测样品相匹配的分散介质加入样品桶,待管路及样品窗中都充满介质后, 再点击排水,关闭排水。其次,按下冲洗,洗完后,自动排出。按以上步骤反

粒度分析仪简介及使用

实验7、粒度分析仪简介及使用 纯牛奶粒度分布的测定(激光粒度法) 一、实验目的: 1.掌握粒度分析仪的测定原理及操作方法。 2.测定纳米粒子的粒度尺径及分布和Zeta电位性质。 二、实验原理: 2.1 激光粒度仪介绍 激光粒度分析仪仪是利用粒子的布朗运动,根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。对粒度均匀的粉体,比如磨料微粉,要慎重选用。 激光粒度仪集成了激光技术、现代光电技术、电子技术、精密机械和计算机技术,具有测量速度快、动态范围大、操作简便、重复性好等优点,现已成为全世界最流行的粒度测试仪器。 激光粒度仪作为一种新型的粒度测试仪器,已经在其它粉体加工与应用领域得到广泛的应用。它的特点是测试速度快、重复性好、准确性好、操作简便。对提高产品质量、降低能源消耗有着重要的意义。 2.2激光粒度仪的原理 激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。如图1所示。 图1,激光束在无阻碍状态下的传播示意图 米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的,如图2所示。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。

粒度与粒度分布测定标准操作规程

粒度与粒度分布测定标准操作规程 粒度系指颗粒的粗细程度及粗细的分布,用于测定原料药和药物制剂的粒子大小或粒度分布。中国药典2005年版二部附录Ⅸ E“粒度和粒度分布测定法”项下列有三种不同的测定方法,第一法(显微镜法)、第二法(筛分法)和第三法(光散射法),其中第一、第二法用于测定药物制剂的粒子大小或限度,第三法用于测定原料药或药物制剂的粒度分布。 第一法显微镜法 1 简述 1.1 本法中的粒度,系以显微镜下观察到的长度表示。 1.2 本法适用于混悬型眼用制剂、混悬型软膏剂、混悬型凝胶剂等制剂以及品种项下规定的粒度检查。 2 仪器与用具 2.1 显微镜。 2.2 镜台测微尺和目镜测微尺(直尺式)。 2.3 盖、载波片。 2.4 计数器 3 操作方法 3.1 目镜测微尺的标定用以确定使用同一显微镜及特定倍数的物镜、目镜和镜筒长度时,目镜测微尺上每一格所代表的长度。

标定时,将镜台测微尺置于载物台上,对光调焦,并移动测微尺使物象于视野中央,取下目镜,旋下接目镜的目镜盖,将目镜测微尺放入目镜筒中部的光栏上(正面向上),旋上目镜盖后返置镜筒上,此时在视野中可同时观察到镜台测微尺的像及目镜测微尺的分度小格,移动镜台测微尺和旋转目镜,使两种量尺的刻度平行,并使左边的“0”刻度重合;然后再寻找第二条刻度,记录两条刻度的读数,并根据比值计算出目镜测微尺每小格在该物镜条件下所相当的长度(μm)。由于镜台测微尺每格相当于10μm,故目镜测微尺每一小格的长度为: 10×相重合区间镜台测微尺的格数÷相重合区间目镜测微尺的格数 例如:镜台测微尺15格和目镜测微尺34格完全重合,则目镜测微尺在该目镜与物镜的组合下,每小格的长度即为4.4μm(10×15÷34=4.4)。 当测定时要用两种放大倍数(即该目镜与不同物镜组合)时,应分别标定。 3.2 测定法除另有规定外,取供试品,用力摇匀,黏度较大这可按该品种项下的规定加适量甘油溶液(1→2)稀释,使颗粒分散均匀,照高剂型或品种项下的规定,量取供试品,置载玻片上,盖以盖玻片(注意防止气泡混入),轻压使颗粒分布均匀;半固体可直接涂在载玻片上,立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出超过该剂型或品种项下规定的最大颗粒,再在200~

相关文档
最新文档