路灯杆强度计算

路灯杆强度计算
路灯杆强度计算

9米路灯杆强度计算

本计算数据根据GB50135-2006《高耸结构设计规范》确定。

已知条件:

1.计算按最大风速V=28m/s(10级台风风速为24.5~28.4 m/s)。

2.灯杆材料Q235,许用应力[σ]=225000KN/㎡。实际强度要求大于理论强度不少于3倍。

3.灯杆外形尺寸:9m

灯杆高度H=9m,壁厚δ6.0㎜;

上口直径D上=180㎜,下口直径D下=310㎜;

灯杆上部挑臂长度尺寸为左L1=3.4m;右L2=2.2m;

灯底板法兰直径500㎜×25㎜。

4.基础尺寸:

基础外形:高度1.5m,埋深2m

地脚螺栓孔距:直径420mm

地脚螺栓直径:M30六根。

灯杆强度计算:

1.标准风压计算

由风速28m/s知基本风压为W0=0.622KN/㎡

则标准风压W= W0·K t=0.8×1.1=0.68KN/㎡。

(式中风压调整系数Kt:取1.1)

2.灯杆灯头的风力计算

风荷载体行系数μs:圆锥形杆体取0.7

风压高速变化系数μz:取0.9

灯杆迎风面积:S杆=2.205㎡

灯头及灯箱迎风面积:S灯=8㎡

灯杆受风力F杆=W·μs·μz· S杆=0.946KN

灯头受风力F灯= W·μs·μz· S灯=3.420KN

3.灯杆受的总弯矩计算

灯杆弯矩M杆=F杆·H/2=4.267KN·m

灯头对灯杆的弯矩:M灯=F灯·H·0.75=23.09KN·m

总弯矩:ΣM=M杆+ M灯=27.36 KN·m

4.灯杆抗弯模量计算

Wz=π(D下4—D4)/32/ D下=3.14×(0.3104-0.2984)/32/0.31=0.0004271m3 5.灯杆弯曲应力计算

灯杆的弯曲应力Σσ=ΣM/ W0=64075KN/㎡

Σσ<[σ]=225000KN/㎡满足3倍安全系数要求

从以上的计算中看出,灯杆的强度足够。

地脚螺栓强度校核:

风向为对角线时,地脚螺栓的拉力最大

N=ΣM×Y/ΣY2=27.36×0.4/0.42+2.2×0.12=60.14KN

安全系数K取2.5

地脚螺栓M30有效截面积:S=350㎜2

Q235钢的屈服极限:σs=235N/㎜2

许用拉力N=σs×S/K=235×350/2.5=329KN>N=60.14KN

地脚螺栓采用M24六根够多。

路灯计算实例

路灯的工作原理实例 1、系统介绍 1.1系统基本组成简介 系统由太阳能电池组件部分(包括支架)、LED灯头、控制箱(内有控制器、蓄电池)和灯杆几部分构成;太阳能电池板光效达到127Wp/m2,效率较高,对系统的抗风设计非常有利;灯头部分以1W白光LED和1W黄光LED集成于印刷电路板上排列为一定间距的点阵作为平面发光源。 控制箱箱体以不锈钢为材质,美观耐用;控制箱内放置免维护铅酸蓄电池和充放电控制器。本系统选用阀控密封式铅酸蓄电池,由于其维护很少,故又被称为“免维护电池”,有利于系统维护费用的降低;充放电控制器在设计上兼顾了功能齐备(具备光控、时控、过充保护、过放保护和反接保护等)与成本控制,实现很高的性价比。 1.2工作原理介绍 系统工作原理简单,利用光生伏特效应原理制成的太阳能电池白天太阳能电池板接收太阳辐射能并转化为电能输出,经过充放电控制器储存在蓄电池中,夜晚当照度逐渐降低至10lux左右、太阳能电池板开路电压4.5V 左右,充放电控制器侦测到这一电压值后动作,蓄电池对灯头放电。蓄电池放电8.5小时后,充放电控制器动作,蓄电池放电结束。充放电控制器的主要作用是保护蓄电池。 2、系统设计思想 太阳能路灯的设计与一般的太阳能照明相比,基本原理相同,但是需要考虑的环节更多。下面将以香港真明丽集团有限公司的这款太阳能LED大功率路灯为例,分几个方面做分析。 2.1太阳能电池组件选型 设计要求:广州地区,负载输入电压24V功耗34.5W,每天工作时数8.5h,保证连续阴雨天数7天。⑴广州地区近二十年年均辐射量107.7Kcal/cm2,经简单计算广州地区峰值日照时数约为3.424h;⑵负载日耗电量==12.2AH ⑶所需太阳能组件的总充电电流=1.05×12.2×÷(3.424×0.85)=5.9A 在这里,两个连续阴雨天数之间的设计最短天数为20天,1.05为太阳能电池组件系统综合损失系数,0.85为蓄电池充电效率。⑷太阳能组件的最少总功率数=17.2×5.9=102W 选用峰值输出功率110Wp、单块55Wp的标准电池组件,应该可以保证路灯系统在一年大多数情况下的正常运行。

路灯基础及地脚螺栓设计

一、如何辨别一盏户外灯的好坏? 一般有如下几种方式: 1.首先检查其外观:对于户外灯具,外表涂层的质量很重要。如质量太差,几 个月后,造型再美的外观灯具也会锈迹斑斑,老态龙钟; 2.防水性:防水性能的好坏直接关系此灯的寿命; 3.高质量的电器光源:如果一盏灯,其光源电器造成无灯光,那些灯还有什么 用; 4.抗风强度:强风地区尤为重要。 二、路灯基础及地脚螺栓设计 本人作为道路照明设计战线上的一位新兵,以往在工程设计中主要进行照度、负荷、线路压降等方面的设计计算,有关路灯基础、地基及地脚螺栓的设计计算,只供鉴前人的经验或根据厂家提供的基础资料。去年,在疏港路灯工程施工时,有关人员向我提出:1997年在工农路安装11m高圆锥杆双挑路带着这个疑问,我多次到图书馆、新华书店翻阅有关规范,借阅了建筑学方面的有关资料,对基础及地脚螺栓进行了设计、计算与验算。 一)、栓的设计计算: 1.双挑路灯的数据: 灯杆高度 H1=10m ,灯杆选用 A3 钢板卷制焊接,梢经 D1-89m ,根径 D2=200mm ,灯臂迎风面积约为 1=0.4m2 ,灯具迎风面积 S2=0.3m2 ,灯具距地面H2=10.3m,地 脚螺栓 nv=4。 2.计算总弯矩: 根据《架空送电线路杆塔结构设计技术规定 SDGJ94-90》第 2.14 条,风力 F 按下式计算: F=KZ X KT X C X S X (V2/1600)(Kn) 式中,高度系数KZ取0.9风压调整系数KT取1.1,圆锥杆的体形系数C取0.7,S 是迎风面积(m2),当风速V=25(m/s)时,则风力F为: F=0.9X1.1X0.7XSX252/1600=0.27(KN) 1)灯杆上均匀分布的风力F1: F1=0.27X(D1+D2)XH1/2=0.27X(0.2+0.089)X10/2=0.39KN 2)灯臂上均匀分布的风力F2:F2=0.27XS1=0.27X0.4=0.11KN 3)灯具上受均匀分布的风力F3:F3=0.27XS2=0.27X0.3X2=0.16KN 4)在距地面H3=4m处,有2块S3=2m2的广告牌,其均匀分布的风力F4: F4=0.27XS3=0.27X2X2=1.08KN 则总风力F总为:F总=F1+F2+F3+F4=0.39+0.11+0.16+1.08=1.74KN 则每根螺栓承受的剪力NV=F总÷4=1.74÷4=0.44KN 风力产生的杆根总弯距M总为:则 M总=F1XH1/2+F2XH1+F3XH2+F4XH3=0.39X5+0.11X10+0.16+1.08X4=9.07KN.m 3.验算基础地脚螺栓: 在风载荷的作用下,通过法兰盘传递给地脚螺栓(共4根), 如右图所示,当风向为螺栓的对角线时,螺栓的拉力最大,其值为Nmax为:

到米路灯灯杆标准参数

6-12米灯杆标准参数 以下是公司6-12米灯杆的相关标准参数,签单计算杆子时可供参考。 ? 1、公司常用规格材料:常规灯杆宽为0.85米、1.25米、1.5米,厚度为2.75mm、 6米灯杆: (1)已知灯杆上口=φ60 锥度=11‰δ=2.75 L=6000 选用宽为1.25米钢板料;

得到:开料尺寸:上口开料尺寸=174 下口开料尺寸=387,根据下料尺寸,可开4张。 4张钢板的重量=×××600=145.33Kg (2)1.25米钢板全部利用完的重量=××125×600=161.9Kg (3)材料的利用率=×100%=% 7米灯杆: (1)已知灯杆上口=φ60 锥度=11‰δ=3.0 L=7000 选用宽为1.25米钢板料; 得到:开料尺寸:上口开料尺寸=179 下口开料尺寸=421,根据下料尺寸,可开4张。 4张钢板的重量=××120×700=197.82Kg (2)1.25米钢板全部利用完的重量=××125×700=206.06Kg (3)材料的利用率=×100%=96% 8米灯杆: (1)已知灯杆上口=φ60 锥度=11‰δ=3.0 L=8000 选用宽为1.25米钢板料; 得到:开料尺寸:上口开料尺寸=179 下口开料尺寸=456,根据下料尺寸,可开4张。 4张钢板的重量=××127×800=239.27Kg (2)1.25米钢板全部利用完的重量=××125×800=235.5Kg (3) 材料的利用率=×100%=101% 10米灯杆: (1)已知灯杆上口=φ70 锥度=11‰δ=3.75 L=10000 选用宽为1.5米钢板料; 得到:开料尺寸:上口开料尺寸=208 下口开料尺寸=553,根据下料尺寸,可开4张。 4张钢板的重量=×××1000=448.04Kg (2)1. 5米钢板全部利用完的重量=××150×1000=441.56Kg (3)材料的利用率=×100%=101%

轴的计算

14.3轴的强度计算 14 .3 .1 按扭转强度计算 轴不是标准零件,需要自己设计计算。在满足强度和保证轴正常工作的条件 下来设计轴。例如用于带式运输机的单级斜齿圆柱齿轮减速器的低速轴。 这种计算方法主要应用于传动轴,也可以初步估算轴的最小直径,在此基础 上进行轴的结构设计。 按扭转强度计算公式 式中,—许用扭转切应力,; —轴传递的转矩,也是轴承受的扭矩,; —轴的抗扭截面系数,; —轴传递的功率, KW; d—轴的直径, mm ; n—轴的转速, r/min 。 C—为由轴的材料和受载情况所决定的常数(见下表)。 -轴传递的转矩,也是轴承受的扭矩,单位: N.mm 按公式计算轴的直径,当轴截面上有一个键槽时,轴径应增大5%;有两个键 槽时,应增大10%。 轴常用材料的值和C值 注:当作用在轴上的弯矩比转矩小或只受转矩时,C取较小值,否则C取较 大值。 14 . 3 . 2 轴的刚度计算概念 按弯扭合成强度计算

1.作轴的受力简图 轴上零件所受的作用力,其作用点在轮毂宽度的中间点。而轴承处支承反力 作用点的位置,要根据轴承的类型和布置方式确定。 如果轴上的载荷不在同一平面内,需求出两个互相垂直平面的支承反力。 即 水平面和垂直面支承反力。 2.作弯矩图 根据受力简图分别作出水平面弯矩图和垂直面的弯矩,求出合成 弯 矩并作合成弯矩图。 3.作轴的扭矩图 4.作当量弯矩图 根据已作出合成弯矩图和扭矩图,按第三强度理论计算各剖面上的当量弯矩 ,并作当量弯矩图。 式中,—根据扭矩性质而定的校正系数,对于不变的扭矩,; 对 于脉动循环变化的扭矩,;对于对称循环变化的扭矩,。 5.轴的强度计算 求出危险截面的当量弯矩后,按强度条件计算: —轴的危险截面的抗弯截面系数,。 表 12.3 轴材料的许用弯曲应力:

智慧灯杆投资项目预算报告

智慧灯杆投资项目 预算报告规划设计 / 投资分析

一、预算编制说明 本预算报告是xxx有限责任公司本着谨慎性的原则,结合市场和业务拓展计划,在公司预算的基础上,按合并报表要求编制的,预算报告所选用的会计政策在各重要方面均与本公司实际采用的相关会计政策一致。本预算周期为5年,即2019-2023年。 二、公司基本情况 (一)公司概况 本公司秉承“以人为本、品质为本”的发展理念,倡导“诚信尊重”的企业情怀;坚持“品质营造未来,细节决定成败”为质量方针;以“真诚服务赢得市场,以优质品质谋求发展”的营销思路;以科学发展观纵观全局,争取实现行业领军、技术领先、产品领跑的发展目标。 经过多年的发展与积累,公司建立了较为完善的治理结构,形成了完整的内控制度。 公司建立了《产品开发控制程序》、《研发部绩效管理细则》等一系列制度,对研发项目立项、评审、研发经费核算、研发人员绩效考核等进行规范化管理,确保了良好的研发工作运行环境。 (二)公司经济指标分析 2018年xxx有限责任公司实现营业收入4864.20万元,同比增长22.36%(888.79万元)。其中,主营业务收入为4472.55万元,占营业总

收入的91.95%。 2018年营收情况一览表 根据初步统计测算,2018年公司实现利润总额1077.92万元,较2017年同期相比增长262.74万元,增长率32.23%;实现净利润808.44万元,较2017年同期相比增长108.57万元,增长率15.51%。 2018年主要经济指标

三、基本假设 1、公司所遵循的国家及地方现行的有关法律、法规和经济政策无重大变化; 2、公司经营业务所涉及的国家或地区的社会经济环境无重大改变,所在行业形势、市场行情无异常变化; 3、国家现有的银行贷款利率、通货膨胀率和外汇汇率无重大改变; 4、公司所遵循的税收政策和有关税优惠政策无重大改变;

市政路灯工程计算规则

第九章路灯工程 一、变配电设备工程。 本章消耗量定额包括:变压器安装,组合型成套箱式变电站安装,电力电容器安装,高低压配电柜及配电箱、盖板制作安装,熔断器、控制器、启动器、分流器安装,接线端子焊压安装。 变压器安装就是指变压器本体安装,按安装形式分为杆上安装与地上安装。杆上安装变压器综合考虑了单杆与双杆安装形式,使用时不得换算。定额不包括支架、横担、支撑铁等固定卡具得含量,应按实际计入其主材费,但定额中已包括其安装得人工费。跌落式保险、开关、避雷器及绝缘子等安装另套有关子目。地上安装变压器不包括基础砌体得工程量,应套用其她有关子目计算。变压器油过滤就是按每过滤合格油1t需要滤油纸52张考虑得,不论过滤多少次直到合格为止。组合型成套箱式变电站主要就是指10kV以下得箱式变电站。变压器搬运方式考虑用汽车及吊车搬运。 铁构件制作安装适用于本定额范围内得各种支架制作安装,但铁构件制作均不包括镀锌。铁构件厚度在3mm以内得,套用轻型铁构件项目;大于3mm得,套用 本章包括底盘、卡盘、拉线盘安装,电杆焊接、防腐、立杆、引下线支架安装,10kV以下横担安装、1kV以下横担安装、进户线横担安装,拉线制作安装,导线架设,导线跨越架设,路灯设施编号,绝缘子安装。 本定额就是按平原条件编制得,如在丘陵、山地施工时,其人工与机械乘以下 1、平原地带:指地形比较平坦、地面比较干燥得地带。 2、丘陵地带:指地形起伏得矮岗、土丘等地带。 3、一般山地:指一般山岭、沟谷地带,高原台地等。 线路一次施工工程量按5根以上电杆考虑,如5根以内者,其人工与机械乘以系数1、2。

交叉跳线转交1、5 与设备连接0、5 量。每个跨越间距按50 m以内考虑,大于50 m、小于100 m时,按两处计算,依此类推。在同一跨越挡内有两种以上跨越物时,则每一跨越物视为“一处”跨越,分别套用子目。 三、电缆工程。 本章包括电缆沟铺砂盖板、揭盖板,电缆保护管敷设,电缆敷设,电缆中间头、终端头制作安装,电缆井设置等子目。 本章项目适用于各种型号电缆得敷设方式,执行本章电缆敷设子目时,不得换算。热缩式电缆头、中间头制作安装就是按工艺实际发生得人工、材料计算得,如果实际供应材料中就是按成套供应得,包括了绝缘材料、焊锡等材料,则应扣除定额中相应得材料用量。 电缆敷设子目中均未考虑波形增加长度及预留等富余长度,该长度应计入工程量之内。 电缆敷设长度应根据敷设路径得水平与垂直敷设长度,另加下表规定得附加长度: 序号项目预留长度说明 1电缆敷设驰度、波形弯 2.5%按电缆全长计算 度、交叉 2电缆进入构筑物内 2.0m规范规定最小值 1.5 m规范规定最小值 3电缆进入沟内或吊架时 引上预留 4变电所进出线 1.5 m规范规定最小值 5电缆终端头 1.5 m检修余量 6电缆中间头盒两端各2 m检修余量 7高压开关柜 2.0 m柜下进出线余量 各种配管得工程量应按不同敷设方式,敷设位置,管材材质、规格等分别计算,不扣除管路中间接线盒等所占得长度。 沿钢索配管与电缆子目,均不包括钢索架设,若发生时需另套钢索架设子目。 管内穿线子目中,线路得分支接头线得长度已综合考虑在子目中,不再计算接头长度。 开关、插座、按钮等预留线,已分别综合在相应子目内,不另计算。 五、照明器具安装工程。 本章项目包括单臂悬挑灯架安装、双臂悬挑灯架安装、广场灯架安装、高杆灯架安装、其她灯具安装、照明器件安装、杆座安装等。 各种灯架、元器件得配线,均已综合考虑在定额内,使用时不得调整。各种灯柱穿线均应套用相应得配管配线子目。 本章已考虑了高度在10m以内得高空作业因素,如安装高度超过10m时,其人工乘以系数1、40。 六、防雷接地装置工程。 本章包括接地极(板)制作安装、接地母线敷设、接地跨接线敷设、避雷针安装、避雷引下线敷设等子目。

11~12米灯杆基础计算书

12米灯杆基础计算书 基础砼:长0.7米,宽0.7米,深1.8米 螺栓:4-M27×1800 1、基本数据和风荷载计算 (1)、基本数据:杆根外径D1= 0.219m,预埋螺栓N=4根,其分布直径D2= 0.42m 按风速33.5米/秒计算,风压为Wk = 362 / 1600 = 0.7 kPa ①、灯具迎风面积:0.2*0.8 = 0.16平米,2只为0.32平米 ②、灯臂迎风面积: 5*0.08 = 0.40 平米 ③、灯杆迎风面积:长12米,梢径0.114米,根径0.219米,平均 0.17米,面积:12*0.17= 2.04平米 (2)、风荷载 灯具:0.32*0.7*12米 = 2.69 kN.m 灯臂:0.40*0.7*12米 =3.36 kN.m 灯杆:2.04*0.7*12/2米 =8.57 kN.m 合计:MΣ=14.62 kN.m 2、预埋螺栓验算 灯杆预埋螺栓应用砼包封填实,验算时不考虑安装过程中,杆根砝兰仅靠螺栓支撑的状态。即取旋转轴为杆根外接圆的切线。 杆根外接圆半径r1=D1÷2=0.219÷2=0.11m; 螺栓分布半径r2=D2÷2=0.42.÷2=0.21m 螺栓的间隔θ=360÷4=90度 第1个螺栓在旋转轴的另一侧。 第1对螺栓到旋转轴的距离为:Y(1)=0.11m 最后一个螺栓到旋转轴的距离为Ymax=Y(2)=0.21+0.11=0.32m Σ{[Y(i)]2 }=2×0.112+0.322=0.13平米 N max=MΣ×Ymax÷Σ{[Y(i)]2 }=14.62×0.32÷0.13=36KN 螺栓的最大拉力Nmax=36KN Q235钢在不控制预紧力时,M27最大允许拉力为40KN,因此采用M27螺栓。 3、基础稳定按深埋理论计算 (1)、计算式 (2)、基础埋深 h = 1.8米,宽 b0 =0.7米,长 b0 = 0.7米; h / b0 = 1.8/0.7=2.6,查表4-8 取k0 =1.10,根据公式4-5: b = k0×b0 = 1.10×0.7=0.77,杆高H0 =12米,H 0 / h = 12/

8米路灯杆强度计算

8米路灯杆强度计算 本计算数据根据GB50135-2006《高耸结构设计规范》确定。已知条件: 1.计算按最大风速V=36m/s(12级台风进行)。 2.灯杆材料Q235,许用应力[σ]=225000KN/㎡。 3.灯杆外形尺寸:8m 灯杆高度H=8m,壁厚δ5㎜; 上口直径D上=60㎜,下口直径D下=165㎜; 灯杆上部挑臂长度尺寸为L=1.3m; 灯底板法兰420㎜×420㎜。 4.基础尺寸: 基础外形0.6m×0.6m,埋深1.5m 地脚螺栓孔距:320㎜×320㎜ 地脚螺栓直径:M24四根。 灯杆强度计算: 1.标准风压计算 由风速36m/s知基本风压为W0=0.8KN/㎡ 则标准风压W= W0·K t=0.8×1.1=0.88KN/㎡。 (式中风压调整系数Kt:取1.1) 2.灯杆灯头的风力计算 风荷载体行系数μs:圆锥形杆体取0.7 风压高速变化系数μz:取0.9

灯杆迎风面积:S杆=1.06㎡ 路灯头迎风面积:S灯=0.3㎡ 灯杆受风力F杆=W·μs·μz· S杆=0.588KN 灯头受风力F灯= W·μs·μz· S灯=0.166KN 3.灯杆受的总弯矩计算 灯杆弯矩M杆=F杆·H/2=1.176KN·m 灯头对灯杆的弯矩:M灯=F灯·H=1.328KN·m 总弯矩:ΣM=M杆+ M灯=2.504 KN·m 4.灯杆抗弯模量计算 Wz=π(D下4—D4)/ D下=3.14×(0.1654-0.1554)/32/0.165=0.0000976m3 5.灯杆弯曲应力计算 灯杆的弯曲应力Σσ=ΣM/ W0=25661.8KN/㎡ Σσ<[σ]=225000KN/㎡ 从以上的计算中看出,灯杆的强度足够。 地脚螺栓强度校核: 风向为对角线时,地脚螺栓的拉力最大 N=ΣM×Y/ΣY2=2.504×0.327/0.3272+2×0.12=6045KN 安全系数K取2.5 地脚螺栓M24有效截面积:S=314㎜2 Q235钢的屈服极限:σs=235N/㎜2 许用拉力N=σs×S/K=235×314/2.5=295KN>N=645KN 地脚螺栓采用M24四根够多。 扬州市金豆照明器材厂

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

路灯配电缆计算公式

道路照明配电相关问题汇总: 1. YJV 电缆各规格供电半径估算: 1.1 根据电压降计算初步确定电缆截面及长度: 一般情况下道路照明供电线路长,负荷小,导线截面较小,则线路电阻要比电抗大得多,计算时可以忽略电抗的作用。又由于照明负荷的功率因数接近1,故在计算电压损失时,只需考虑线路的电阻及有功功率。由此可得计算电压损失的简化计算公式: (0.5)%p X l M U CS CS +?== 由于从配电箱引出段较短为X ,支路电缆总长为L 。则: 2%CS U L X P ?=- 对于三相供电:1500S L X P =-,对于单相供电:251.2S L X P =- P —负荷的功率,KW ; L —线路的长度,m ; X —进线电缆的长度,m ; U%—允许电压损失(CJJ45-2006-22页,正常运行情况下,照明灯具端电压应维持在额定电压的90%—105%。为了估算电缆最大供电半径取%10%U ?= ) C —电压损失计算系数(三相配电铜导线75C =,单相配电铜导线 12.56C =)

举例:假设一回路负荷计算功率为N KW,试估算不同电缆截面的供电线路长度 ?

1.2 校验路灯单相接地故障灵敏度来确定电缆最大长度: 道路照明供电线路长、负荷小、导线截面较小,则回路阻抗较大。 故其末端单相短路电流较小(甚至不到100A ),这样就有可能在发生单相短路故障时干线保护开关不动作。 2. 路灯采用“TN-S 系统”相关配电问题汇总: 2.1路灯采用“ TN-S 系统”单相接地故障电流计算; 下面举例对TN-S 系统路灯单相接地故障进行计算: 一路灯回路长990m ,光源为250W 高压钠灯(自带电容补偿, cosa 0.85=,镇流器损耗为 10%)。布置间距为30m (该回路共有 990/30=30套灯具),采用一台100KV A 的路灯专用箱变来供电,箱变内带3m 长LMY —4(40X4)低压母线。采用三相配电,电缆截面为YlV —4X25+1X16。灯具引接线为BVV-3X2.5,灯杆高为10米。试计算其单相接地故障电流? 方法一:单相接地故障电流按照相—保回路进行计算。该相—保回路总共用高压系统、变压器、低压母线、低压电缆、灯头引接线等阻抗

路灯杆强度计算

9米路灯杆强度计算 本计算数据根据GB50135-2006《高耸结构设计规范》确定。 已知条件: 1.计算按最大风速V=28m/s(10级台风风速为24.5~28.4 m/s)。 2.灯杆材料Q235,许用应力[σ]=225000KN/㎡。实际强度要求大于理论强度不少于3倍。 3.灯杆外形尺寸:9m 灯杆高度H=9m,壁厚δ6.0㎜; 上口直径D上=180㎜,下口直径D下=310㎜; 灯杆上部挑臂长度尺寸为左L1=3.4m;右L2=2.2m; 灯底板法兰直径500㎜×25㎜。 4.基础尺寸: 基础外形:高度1.5m,埋深2m 地脚螺栓孔距:直径420mm 地脚螺栓直径:M30六根。 灯杆强度计算: 1.标准风压计算 由风速28m/s知基本风压为W0=0.622KN/㎡ 则标准风压W= W0·K t=0.8×1.1=0.68KN/㎡。 (式中风压调整系数Kt:取1.1) 2.灯杆灯头的风力计算 风荷载体行系数μs:圆锥形杆体取0.7

风压高速变化系数μz:取0.9 灯杆迎风面积:S杆=2.205㎡ 灯头及灯箱迎风面积:S灯=8㎡ 灯杆受风力F杆=W·μs·μz· S杆=0.946KN 灯头受风力F灯= W·μs·μz· S灯=3.420KN 3.灯杆受的总弯矩计算 灯杆弯矩M杆=F杆·H/2=4.267KN·m 灯头对灯杆的弯矩:M灯=F灯·H·0.75=23.09KN·m 总弯矩:ΣM=M杆+ M灯=27.36 KN·m 4.灯杆抗弯模量计算 Wz=π(D下4—D4)/32/ D下=3.14×(0.3104-0.2984)/32/0.31=0.0004271m3 5.灯杆弯曲应力计算 灯杆的弯曲应力Σσ=ΣM/ W0=64075KN/㎡ Σσ<[σ]=225000KN/㎡满足3倍安全系数要求 从以上的计算中看出,灯杆的强度足够。 地脚螺栓强度校核: 风向为对角线时,地脚螺栓的拉力最大 N=ΣM×Y/ΣY2=27.36×0.4/0.42+2.2×0.12=60.14KN 安全系数K取2.5 地脚螺栓M30有效截面积:S=350㎜2 Q235钢的屈服极限:σs=235N/㎜2 许用拉力N=σs×S/K=235×350/2.5=329KN>N=60.14KN 地脚螺栓采用M24六根够多。

轴的强度计算

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 33102.09550?=n d P W T ρ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ []3 33 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率,KW ; n 为轴的转速,r/min ;d 为轴径,mm 。 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。 2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。 分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为 σ=W M τ= ρ W T

路灯基础图

路灯基础图

太阳能路灯基本设计方法初探(通为) 根据我公司多年来在通为地区进行太阳能路灯、LED灯、无极灯、庭院灯、草坪灯等的生产、制作、安装经验得出了一此在通为省各地安装太阳能产品的经验供通为地区从事太阳能产品的同行参考! 通为太阳能电池组件选型 通为太阳能设计要求:通为某地区,负载输入电压24V功耗34.5W,每天工作时数8.5h,保证连续阴雨天数7天。 ⑴陕西地区近二十年年均辐射量107.7Kcal/cm2,经简单计算广州地区峰值日照时数约为3.424h; ⑵负载日耗电量= = 12.2AH ⑶所需太阳能组件的总充电电流= 1.05×12.2×÷(3.424×0.85)=5.9A 在这里,两个连续阴雨天数之间的设计最短天数为20天,1.05为太阳能电池组件系统综合损失系数,0.85为蓄电池充电效率。 ⑷太阳能组件的最少总功率数= 17.2×5.9 = 102W 选用峰值输出功率110Wp、两块55Wp的标准电池组件,应该可以保证路灯系统在一年大多数情况下的正常运行。 通为太阳能蓄电池选型 蓄电池设计容量计算相比于太阳能组件的峰瓦数要简单。 根据上面的计算知道,负载日耗电量12.2AH。在蓄电池充满情况下,可以连续工作7个阴雨天,再加上第一个晚上的工作,蓄电池容量: 12.2×(7+1)= 97.6(AH),选用2台12V100AH的蓄电池就可以满足要求了。 通为太阳能电池组件支架 ( 1)通为太阳能倾角设计 为了让太阳能电池组件在一年中接收到的太阳辐射能尽可能的多,我们要为太阳能电池组件选择一个最佳倾角。 关于太阳能电池组件最佳倾角问题的探讨,近年来在一些学术刊物上出现得不少。本次路灯使用地区为通为地区,依据本次设计参考相关文献中的资料[1],选定太阳能电池组件支架倾角为16o。 通为太阳能抗风设计

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

路灯电费计算公式太阳能路灯介绍及计算方法

路灯电费计算公式太阳能路灯介绍及计算方法 时间:2011-06-12 18:08来源:unknown 作者:admin wp÷17.4v = (1.67a × 7h × 120%)÷ 4 h 一、led灯 40w、电流:1.67a (4) 日头能组件的起码总功率数 = 17.2×5.9 = 102w 焊缝地点面即灯杆粉碎面 三、逐日放电时间10钟头,(以晚7点-晨5点为例) 电流= 60w÷12v = 5 a 二、本地日均有用采光以4h计较, 以是210ah也只是应用中真正规范的70%摆布 wp = 162(w) 吉光光电 4.同亮度下,耗电是电灯泡的十分之一,日光灯的三分之一,而生存的年限倒是电灯泡的50倍,日光灯的20倍,是继电灯泡、日光灯、气体放电灯然后的第四代照明产物 以下供给日头能干电池板和蓄干电池配备布置计较公式: 2.安全靠患上住性强 3: 因为led灯的生存的年限较长、且可以通留宿间分时段调低功率事情,一般工程商城市选用led灯做为日头能路灯的照明,可是led灯的质量层差不齐,光衰严重的led半年就可能衰减50%采光度以是肯定是要选择光衰较慢的led灯,led灯最首要的要做好散热与恒流需要别人解答的题目,恒流可以路程经过过程另加恒流驱动或施用节制器恒流,散热就必需寄托铝

板来散热,最佳是在铝板底下增加铜片或铜管来更有用的散热,节制好温度,led的生存的年限才会更长 二:计较出蓄干电池容积需求 (现实减低系统总损耗20%摆布,以下以15%计较) 日头能干电池组件一般选用单晶硅或多晶硅日头能干电池组件;led灯头一般选用大功率led光源;节制器一般放置在灯杆内,具备光控、时节制、过充过放掩护及反接掩护,更高级的节制器更具备四序调解亮灯时间功效、半功率功效、智能充放电功效等;蓄干电池一般放置于地下或则会有专门的蓄干电池保暖箱,可接纳阀控式铅酸蓄干电池、胶体蓄干电池、铁铝蓄干电池或锂干电池等日头能灯具全不佣人的劳力事情,不需要挖沟布线,但灯杆需要装配在预埋件(混凝土底座)上 =70 ah 2:蓄干电池的施用生存的年限也应该思量在全般路灯系统应用中,一般的蓄干电池包修三年或五年,但一般的蓄干电池在一年、甚或半年往后就会呈现充电不满意的环境,有些现实充电率可能降落到50%摆布,这势必影响持续阴雨天期间的夜里没事了照明,以是选择一款较好的蓄干电池尤为重要 相干文章 =1.67 a *储能干电池:全封闭免维护铅酸蓄干电池12v17ah—80ah(按照负载配备布置) 3.反映速率快,单位体积小,绿颜色环保 7.总结 综合组件价格:正片儿干电池板208w,31元/瓦,计 6448元 蓄干电池= 5a × 7h ×( 5+1)天

到米路灯灯杆标准参数

6-12米灯杆标准参数以下是公司6-12米灯杆的相关标准参数,签单计算杆子时可供参考。一、标准灯杆尺寸参数表?

二、利用率 1、公司常用规格材料:常规灯杆宽为0.85米、1.25米、1.5米,厚度为 2.75mm、 3.0mm、3.5mm、3.75mm。 2、6-12米利用率计算如下: 6米灯杆: (1)已知灯杆上口=φ60锥度=11‰δ=2.75L=6000选用宽为1.25米钢板料; 得到:开料尺寸:上口开料尺寸=174下口开料尺寸=387,根据下料尺寸,可开4张。 4张钢板的重量=7.85×0.275×112.2×600=145.33Kg (2)1.25米钢板全部利用完的重量=7.85×0.275×125×600=161.9Kg (3)材料的利用率=145.33/161.9×100%=89.77% 7米灯杆: (1)已知灯杆上口=φ60锥度=11‰δ=3.0L=7000选用宽为1.25米钢板料;

得到:开料尺寸:上口开料尺寸=179下口开料尺寸=421,根据下料尺寸,可开4张。 4张钢板的重量=7.85×0.3×120×700=197.82Kg (2)1.25米钢板全部利用完的重量=7.85×0.3×125×700=206.06Kg (3)材料的利用率=197.82/206.06×100%=96% 8米灯杆: (1)已知灯杆上口=φ60锥度=11‰δ=3.0L=8000选用宽为1.25米钢板料; 得到:开料尺寸:上口开料尺寸=179下口开料尺寸=456,根据下料尺寸,可开4张。 4张钢板的重量=7.85×0.3×127×800=239.27Kg (2)1.25米钢板全部利用完的重量=7.85×0.3×125×800=235.5Kg (3)材料的利用率=239.27/235.5×100%=101% 10米灯杆: (1)已知灯杆上口=φ70锥度=11‰δ=3.75L=10000选用宽为1.5米钢板料; 得到:开料尺寸:上口开料尺寸=208下口开料尺寸=553,根据下料尺寸,可开4张。 4张钢板的重量=7.85×0.375×152.2×1000=448.04Kg (2)1.5米钢板全部利用完的重量=7.85×0.375×150×1000=441.56Kg (3)材料的利用率=448.04/441.56×100%=101% 12米灯杆:

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

桥梁路灯设计资料汇总

关于桥梁路灯设计方 案 该帖被浏览了555次 | 回复了7次 手头正有个关于立交桥的路灯设计项目,一直也没做过,这两天查了下资料,发 现几种形式: 1.路灯基础有的做在人行道侧,这个和一般道路有些类似。 2.路灯基础在护栏的中间做,把护栏断开。 3.路灯基础做在护栏外侧浇灌。 问题如下: 1.不知道上面哪种形式较好,一般是根据什么来选择的? 2.桥梁路灯一般要预埋,需要预埋什么,有固定铁板,电缆管,还有什么呢? 3.路灯的基础尺寸是根据什么来定的,是否有标准可依呢?

不错,楼主通过自己细心观察,了解桥上路灯基础的常见位置。 至于哪种形式好,那要看桥上人行道的宽度以及桥板上桥梁专业是否允许做路灯基础。桥梁上人行道宽度有2米及以上的,路灯一般都做在人行道内。这种规范上都没有,而是看自己的工作总结或是业主的喜好程度。 桥上的路灯基础套不了普通路段的路灯基础,所以还是找结构专业做的好,不过论坛里前任版主也发了张桥上路灯基础的CAD图,你可以在论坛中搜索下。 预埋管有电缆保护套管镀锌钢管,如果从桥外沿支架过,当然还要固定支架。 回复 2# 的帖子 谢谢2楼回复,我现在遇到的是个通高铁的立交桥。 1.我发现现在有的高架上面把预埋的保护管放在护栏中一起浇灌,这样的话就可 以用尼龙管吗? 2.如果把基础放置在护栏中,那么10米高的路灯,预埋的钢筋长1080mm,底板 用400x400mm的可以吗? 1、过桥,不管预埋在护栏内还是梁板内,保护套管均采用镀锌钢管。 2、在护栏内设计路灯基础,其混凝土与钢筋等级都要比普通路段高一个等级吧。 钢筋埋设深度达不到普通路段的深度的吧。

路灯灯杆的抗风设计

在太阳能路灯系统中,抗风设计主要分为两大块,一为电池组件支架的抗风设计,二为灯杆的抗风设计。下面按以上两块分别做分析。 ⑴ 太阳能电池组件支架的抗风设计依据电池组件厂家的技术参数资料,太阳能电池组件可以承受的迎风压强为2400Pa。若抗风系数选定为27m/s (相当于十级台风),根据非粘性流体力学,电池组件承受的风压只有 477Pa。 风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5 ro v2(1) 其中wp为风压[kN/m2], ro为空气密度[kg/m3], v为风速[m/s]。由于空气密度(ro)和重度(r)的关系为r=ro g,因此有ro=r/g。在(1)中使用这一关系,得到 wp=0.5r r r v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2, 我们得到 wp=v2/1600 (3) 太阳板受力面积为0.770*0.680m+0.770*0.680m 即:太阳板所受风压=(27) 2(1600*0.77*0.68*2)=0.4771305kpa竝I77pa 所以,组件本身是完全可以承受27m/s的风速而不至于损坏的。所以,设计

中关键要考虑的是电池组件支架与灯杆的连接。 在本套路灯系统的设计中电池组件支架与灯杆的连接设计使用 螺栓杆固定连接。 ⑵ 路灯灯杆的抗风设计 路灯的参数如下: 电池板倾角A =25 度灯杆高度= 8m 设计选取灯杆底部焊缝宽度8 = 4mm灯杆底部外径二168mm 焊缝所在面即灯杆破坏面。灯杆破坏面抵抗矩W 的计算点P 到灯杆受到的电池板作用荷载F 作用线的距离为PQ = [8000+(168+6)/tan25] S in25 = 1545mm =1.545m。所以,风荷载在灯杆破坏面上的作用矩M二F S.545。 根据27m/s 的设计最大允许风速,2S70W 的双灯头太阳能路灯 电池板的基本荷载为477N。考虑1.3的安全系数,F = 1.3 S77 = 620.1N。 所以,M = F S1.545 = 949 1S.545 = 1466N.m。 根据数学推导,圆环形破坏面的抵抗矩W = n (3r2井3r 8缶83)。 上式中,r是圆环内径,8是圆环宽度。 破坏面抵抗矩W = n (3r2井3r 8缶8 3

相关文档
最新文档