高一数学必修5课件:34基本不等式(新人教A)

必修五-不等式知识点总结[1]

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

人教版高中数学必修5不等式练习题及答案

第三章 不等式 一、选择题 1.若a =20.5,b =log π3,c =log πsin 5 2π ,则( ). A .a >b >c B .b >a >c C .c >a >b D .b >c >a 2.设a ,b 是非零实数,且a <b ,则下列不等式成立的是( ). A .a 2<b 2 B .ab 2<a 2b C . 21ab <b a 21 D . a b <b a 3.若对任意实数x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ). A .a <-1 B .|a |≤1 C .|a |<1 D .a ≥1 4.不等式x 3-x ≥0的解集为( ). A .(1,+∞) B .[1,+∞) C .[0,1)∪(1,+∞) D .[-1,0]∪[1,+∞) 5.已知f (x )在R 上是减函数,则满足f (11 -x )>f (1)的实数取值范围是( ). A .(-∞,1) B .(2,+∞) C .(-∞,1)∪(2,+∞) D .(1,2) 6.已知不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中( ). A B C D 7.设变量x ,y 满足约束条件?? ? ??y x y x y x 2++- 则目标函数z =5x +y 的最大值是( ). A .2 B .3 C .4 D .5 8.设变量x ,y 满足?? ? ??5 --31+-3-+y x y x y x 设y =kx ,则k 的取值范围是( ). A .[ 21,3 4 ] B .[ 3 4 ,2] C .[ 2 1 ,2] D .[ 2 1 ,+∞) ≥0 ≤1 ≥1 ≥0 ≥1 ≤ 1 (第6题)

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

高中数学必修五-不等式知识点精炼总结

高中数学必修五-不等式知识点精炼总结 4.公式: 3.解不等式 (1)一元一次不等式 3.基 本不等式定理 ? ?? ? ? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab )b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形 式11 22a b a b --+≤≤≤+???? ? <<>> ≠>)0a (a b x )0a (a b x )0a (b ax 2.不等式的性质:8条性质.

(2)一元二次不等式: +bx+c x 1 x 2 x y O y x O x 1 y x O

一元二次不等式的求 解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)(ax – 2)>0 (2)x 2 – (a +a 2)x +a 3>0; (3)2x 2 +ax +2 > 0; 注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0 )())((21>---n a x a x a x Λ

高一数学必修5不等式

高一数学必修5不等式与不等关系总复习学案(教师版) 编写:邓军民 一,复习 1. 不等关系:参考教材73页的8个性质; 2. 一兀二次不等式ax 2bx - C ?0( a ?0)与相应的函数y = ax 2?bx ■ c(a . 0)、相 2 :::0 2.. .. -L a ax bx C :::0 ( a = 0 )恒成立:= . L - ::0 4. 一般地,直线y =kx ?b把平面分成两个区域(如图): y kx b表示直线上方的平面区域;y :::kx ?b表示直线下方的平面区域. 说明:(1) y _kx b表示直线及直线上方的平面区域; y乞kx ■ b表示直线及直线下方的平面区域. (2)对于不含边界的区域,要将边界画成虚线.

2 a ? 0 ax bx C 0 ( a = 0 )恒成立:= . 二:■ 0

5. 基本不等式: (1) .如果a, b 三R ,那么a 亠b 亠2 ab . (2). ab < a b (a . 0, b .0). 2 (当且仅当a =b 时取“ J') 2 . _ . =0的解为X 1 = 3, X 2 = 4 .根据y = X - 7x 12的图象,可 得原不等式X2 -7x ■ 12 - 0的解集是{ x | x ::: 3或X 4}. (2) 不等式两边同乘以 -1 ,原不等式可化为X 2 ? 2x - 3 _0 . 方程 X 2 ? 2x 「3 =0 的解为 X 1 = -3, X 2 =1 . 根据y =χ2 ? 2x -3的图象,可得原不等式-X 2 -2X ? 3 _0的解集是 { X |一 茫 X 乞 1.} 2 (3) 方程X -2x 1 =0有两个相同的解x 1 = X 2 =1. 根据y =χ2 -2x ' 1的图象,可得原不等式 X 2 -2x ,1 ::: 0的解集为". ⑷因为■■■: < 0 ,所以方程X 2 -2x 2=0无实数解,根据y =χ2 -2x ? 2的图象,可 得原不等式χ2 -2x 2 ::: 0的解集为?一. X 3 练习1. (1)解不等式 <0 ;(若改为 < 0呢?) X+7 X +7 2 X - 3 (2)解不等式 1 ; X +7 二.例题与练习 例1. 解下列不等式: 2 (1) X -7x 12 ■ 0 ; 2 2 (2) 「x 「2x 3_0 ; 2 (4) X -2x 2 ::: 0 . 解: (1)方程 x 2 -7x 12

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

最新高一下学期期末复习之——必修五不等式知识点及主要题型-讲义含解答

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、, ac b 42-=?, 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2

一元二次方程 ()的根 2 > = + + a c bx ax 有两相异实根 ) ( , 2 1 2 1 x x x x< 有两相等实根 a b x x 2 2 1 - = =无实根的解集 )0 ( 2 > > + + a c bx ax{} 2 1 x x x x x> <或 ? ? ? ? ? ? - ≠ a b x x 2 R 的解集 )0 ( 2 > < + + a c bx ax{} 2 1 x x x x< ?>≥?? ≠ ? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f>在区间D上恒成立,则等价于在区间D上() min f x A >若不等式()B x f<在区间D上恒成立,则等价于在区间D上() max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax+By+C=0同一侧的所有点(y x,),把它的坐标(y x,)代入

高中数学必修五《基本不等式》优秀教学设计

课题:基本不等式 一、教材分析: 本节课选自《普通高中课程标准实验教科书·数学5·必修》(人教A版)中第三章第四节。本节课主要研究基本不等式的几何背景、代数证明和实际生活中的应用。 基本不等式在现实生活中运用比较广泛。本节课通过从生活与几何背景中得到基本不等式、证明不等式与回归生活解决实际问题的思路,体现新课标“数学有用”的理念。同时,运用基本不等式求最值也是数列研究的基本问题。通过对本节的研究,培养学生数形结合的思想方法。 二、学情分析: 在本节课之前学生已经学习了不等关系与不等式和一元二次不等式及其解法,对不等关系的一般性质和不等式的求解证明有了一定的理解,为基本不等式的学习提供了基础。 授课班级为高一(1)班,我班学生整体基础知识一般、部分学生思维较活跃,能够较好的掌握教材上的内容,但处理、分析问题的能力还有待提高。 三、设计思想: 本课为新授课,积极践行新课程“数学有用”理念,倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高数学思维能力,在教与学的和谐统一中体现数学思想和文化价值;注重信息技术与数学课程的整合。

四、教学目标: 1、知识与技能: (1) 师生共同探究基本不等式; (2) 了解基本不等式的代数、几何背景及基本不等式的证明; (3) 会简单运用基本不等式。 2、过程与方法: 通过基本不等式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出基本不等式,培养学生数形结合的思维能力。 3、情感、态度与价值观: (1)培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力; (2) 通过具体的现实问题提出、分析与解决,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功的快乐。 五、教学重点: (1)用数形结合的思想理解并探索基本不等式的证明; (2)运用基本不等式解决实际问题。 教学难点:基本不等式的运用。 重、难点解决的方法策略: 本课在设计上采用了由特殊到一般、从具体图形到抽象代数的教

必修五不等式大复习-知识点加练习-适合整章复习

必修五不等式综合 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若 ,a b c d ><,则a c b d ->-) ,但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除, 但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 练习一、: (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c -> ->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______ 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。 练习二;(1)设0,10>≠>t a a 且,比较21 log log 21+t t a a 和的大小 (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小 (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积

最新高一数学必修5不等式知识点总结优秀名师资料

高一数学必修5不等式知识点总结 精品文档 高一数学必修5不等式知识点总结 不等式是高一数学必修5非常重要的概念,有哪些知识点需要了解?下面学习 啦小编给大家带来高一数学必修5不等式知识点,希望对你有帮助。 高一数学必修5不等式知识点不等式(inequality) 用不等号将两个解析式连结起来所成的式子。例如2x+2y?2xy,sinx?1, ex>0 ,2xx是超越不等式。 通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)?G(x,y,……,z )(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。 不等式的最基本性质有:?如果x>y,那么yy;?如果x>y,y>z;那么x>z;?如果x>y,而z为任意实数,那么x+z>y+z;? 如果x>y,z>0,那么xz>yz;?如果x>y,z 由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,其中比较有名的有: 柯西不等式:对于2n个任意实数x1,x2,…,xn和y1,y2,…,yn,恒有 (x1y1+x2y2+…+xnyn)2?(x12+x22+…+xn2)(y12+y22+…+yn2)。 排序不等式:对于两组有序的实数x1?x2?…?xn,y1?y2?…?yn,设yi1, yi2,…,yin是后一组的任意一个 1 / 7 精品文档

排列,记S=x1yn+x2yn-1+…+xny1,M=x1yi1+x2yi2+…+xnyin, L=x1y1+x2y2+…+xnyn,那么恒有S?M?L。 根据不等式的基本性质,也可以推出解不等式可遵循的一些同解原理。主要的有:?不等式F(x)F(x)同解。?如果不等式F(x) 0与不等式同解;不等式F(x)G(x) 不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号―>‖― ―?‖―?‖连接的不等式称为非严格不等式,或称广义不等式。 在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式. 如:甲大于乙(甲>乙),就是一个不等式.不等式不一定只有「>」,「0,即A>B.又同理可证:A>C,A>D.所以,A最大. 不等式是不包括等号在内的式子比如:(不等号大于等于号,小于等于号)只要用这些号放在式子里就是不等式咯.. 1.符号: 不等式两边都乘以或除以一个负数,要改变不等号的方向。 .确定解集: 比两个值都大,就比大的还大; 比两个值都小,就比小的还小; 比大的大,比小的小,无解; 比小的大,比大的小,有解在中间。 2 / 7 精品文档 三个或三个以上不等式组成的不等式组,可以类推。 .另外,也可以在数轴上确定解集: 把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集

必修五-不等式知识点汇总复习课程

必修五-不等式知识点 汇总

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 0>? 0=? 0a )的图象 ) )((212x x x x a c bx ax y --=++= ) )((212x x x x a c bx ax y --=++= c bx ax y ++=2 一元二次方程 ()的根 00 2>=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ??????-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21x x x x << ? ? 注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a

高中数学必修5基本不等式练习题

一.选择题 1.若,,a b c R ∈,且a b >,则下列不等式中一定成立的是( ) A.a b b c +≥- B.ac bc ≥ C.2 0c a b >- D 2()0a b c -≥ 2.对于任意实数,,,a b c d ,命题①若,0,a b c ><则ac bc >;②若a b >,则22ac bc >;③若22ac bc <,则 a b <;④若a b >,则 11a b <;⑤若0,0a b c d >>>>,则ac bd >。其中正确的个数是( ) A.1 B.2 C.3 D.4 3.已知22π π αβ-≤<≤,则2αβ -的取值范围是( ) A.,22ππ??- ??? B.[,0]2π- C.[,0)2π- D.[0,]2π 4.已知,a b R +∈,且5a b +=,则22a b +的最小值是( ) A.32 B. C. D. 10 5.下列命题中,其正确的命题个数为①1x x +的最小值是2;2的最小值是2;③2log log 2x x +的最小值2;④ 0,2x π <>=,则s =取最小值时x 的值为( ) A.1 B.2 C. D.422 9.甲乙两人同时从A 地出发B 地,甲在前一半路程用速度1v ,在后一半路程用速度2v (12v v ≠),乙在前一半时间用速度1v ,在后一般时间用速度2v ,则两人中谁先到达( ) A.甲 B.乙 C.两人同时 D.无法确定

高一数学必修5不等式题型总结

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24 22 1a a a x +- --= a a a x 24 22 2++ --= ∴当0>a 时,解集为?? ? ???????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?? ???> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a ∴当0>a 时,解集为{}32|>?; 例3 解不等式042 >++ax x 分析 本题中由于2 x 的系数大于0,故只需考虑?与根的情况。 解:∵162 -=?a ∴当()4,4-∈a 即0a 或4-?,此时两根分别为2 162 1-+-= a a x ,2 162 2---= a a x ,显然21x x >, ∴不等式的解集为?? ? ???? ? ??----+-> 21621622a a x a a x x 〈或 例4 解不等式( ) ()R m x x m ∈≥+-+01412 2 解 因,012 >+m ( )( )2 2 2 3414)4(m m -=+--=?,所以当3± =m ,即0=?时,解集为???? ?? =21|x x ; 当33< <-m ,即0>?时,解集为?? ? ????? ??+--+-+>1321322 222m m x m m x x 〈或; 当33> -

最新必修五不等式知识点

不等式的基本知识 1 (一)不等式与不等关系 2 1、应用不等式(组)表示不等关系;不等式的主要性质: 3 (1)对称性:a b b a (2)传递性:c a c b b a >?>>, 4 (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) 5 (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, 6 bd ac d c b a >?>>>>0,0(同向同正可乘) 7 (5) 倒数法则:b a a b b a 110,> 8 (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 9 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 10 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号11 ——结论) 12 3、应用不等式性质证明不等式 13 (二)解不等式 14 1、一元二次不等式的解法 15 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 16 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,17 ac b 42-=?,则不等式的解的各种情况如下表: 18

0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根 002>=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(0 2>>++a c bx ax {}21x x x x x ><或 ??????-≠a b x x 2 R 的解集)0(0 2><++a c bx ax {}21x x x x << ? ? 2、简单的一元高次不等式的解法: 19 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次20 项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通21 过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,22 写出不等式的解集。()()()如:x x x +--<112023 23

高中数学必修五 第3章 不等式 同步练习 3.4基本不等式(含答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A.12 B.22a b + C.2ab D.a 3. 设x >0,则133y x x =--的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且141x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C .1 1 1 a b c ++≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .111x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2a b ab a b ++三个数的大小顺序是 ( ) A. 22a b ab a b ++ 22a b ab a b +≤+ C.22ab a b a b ++ D.22 ab a b a b +≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

基本不等式的应用(适合高二必修五)

基本不等式的应用 一.基本不等式 1.(1)若R b a,,则ab b a 22 2 (2)若R b a,,则2 2 2 b a ab (当且仅当b a 时取“=”)2. (1) 若* ,R b a ,则 ab b a 2 (2) 若 * ,R b a ,则a b b a 2(当且仅当 b a 时取“=”) (3)若 * ,R b a ,则2 2 b a ab (当且仅当b a 时取“=”) 3.若0x ,则12x x (当且仅当1x 时取“=”);若0x ,则12x x (当且仅当1x 时取“=”) 若0x ,则11122-2x x x x x x 即或 (当且仅当b a 时取“=”) 4.若0ab ,则2a b b a (当且仅当b a 时取“=”)若0ab ,则 22-2a b a b a b b a b a b a 即 或 (当且仅当b a 时取“=”) 5.若R b a,,则2 ) 2 (2 2 2 b a b a (当且仅当b a 时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大” . (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、 证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2 +1 2x 2 (2)y =x + 1 x 解:(1)y =3x 2 + 1 2x 2≥23x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1 x ≥2 x · 1x =2; 当x <0时,y =x + 1x = -(-x -1 x )≤-2x · 1x =-2 ∴值域为(-∞,- 2]∪[2,+∞) 解题技巧:技巧一:凑项例1:已知54 x ,求函数142 45 y x x 的最大值。 解:因45 0x ,所以首先要“调整”符号,又1(42) 45 x x 不是常数,所以对42x 要进行拆、凑项, 5,5 404 x x , 1142 5 43 45 5 4y x x x x 231 当且仅当15454x x ,即1x 时,上式等号成立,故当1x 时,max 1y 。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案) 1.重要不等式 当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式 (1)有关概念:当a ,b 均为正数时,把a +b 2叫做正数a ,b 的算术平均数, 把ab 叫做正数a ,b 的几何平均数. (2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b 2 ,当且仅当a =b 时,等号成立. (3)变形:ab ≤? ????a +b 22≤a 2+b 2 2,a +b ≥2ab (其中a >0,b >0,当且仅当a =b 时等号成立). 题型一:利用基本不等式比较大小 1.已知m =a + 1 a -2 (a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m b >1,P =lg a ·lg b ,Q =1 2(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________. 题型二:利用基本不等式证明不等式 3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3. 4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:? ????1a -1? ????1b -1? ?? ?? 1c -1≥8. 题型三:利用基本不等式求最值 5.已知lg a +lg b =2,求a +b 的最小值. 6.已知x >0,y >0,且2x +3y =6,求xy 的最大值. 7.已知x >0,y >0,1x +9 y =1,求x +y 的最小值.

相关文档
最新文档