2020年初三数学上期中试卷附答案

2020年初三数学上期中试卷附答案
2020年初三数学上期中试卷附答案

2020年初三数学上期中试卷附答案

一、选择题

1.如图A ,B ,C 是

上的三个点,若

,则

等于( )

A .50°

B .80°

C .100°

D .130°

2.用配方法解方程2680x x --=时,配方结果正确的是( )

A .2(3)17x -=

B .2(3)14-=x

C .2(6)44x -=

D .2(3)1x -=

3.如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O→C→D→O 的路线匀速运动.设∠APB=y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( )

A .A

B .B

C .C

D .D

4.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )

A .(x+3)2=1

B .(x ﹣3)2=1

C .(x+3)2=19

D .(x ﹣3)2=19

5.已知实数0a <,则下列事件是随机事件的是( )

A .0a ≥

B .10a +>

C .10a -<

D .210a +<

6.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )

A .1

B .2

C .2

D 2

7.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =

1

4

x ﹣42(x ≥168).若宾馆每天的日常运营成本

为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( ) A .252元/间

B .256元/间

C .258元/间

D .260元/间 8.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4

B .k≤4

C .k<4且k≠3

D .k≤4且k≠3

9.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( ) A .1

2

k >

且k ≠1 B .12

k >

C .1

2

k ≥

且k ≠1 D .12

k <

10.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( ) A .2017

B .2018

C .2019

D .2020

11.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .

B .

C .

D .

12.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD

B .AB=BC

C .AC ⊥BD

D .AC=BD

二、填空题

13.已知x 1,x 2是一元二次方程x 2+2(m +1)x +m 2﹣1=0的两实数根,且满足(x 1﹣x 2)

2

=16﹣x 1x 2,实数m 的值为________.

14.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 15.已知方程x 2﹣3x+k=0有两个相等的实数根,则k=_____.

16.写出一个二次函数的解析式,且它的图像开口向下,顶点在y 轴上______________ 17.如图,在扇形CAB 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为__.

18.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.

19.要为一幅矩形照片配一个镜框,如图,要求镜框的四条边宽度都相等,且镜框所占面积是照片本身面积的四分之一,已知照片的长为21cm ,宽为10cm ,求镜框的宽度.设镜框的宽度为xcm ,依题意列方程,化成一般式为_____.

20.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为__.

三、解答题

21.小明和小亮进行摸牌游戏,如图,他们有四张除牌面数字不同外、其他地方完全相同的纸牌,牌面数字分别为4,5,6,7,他们把纸牌背面朝上,充分洗匀后,从这四张纸牌中摸出一张,记下数字放回后,再次重新洗匀,然后再摸出一张,再次记下数字,将两次数字之和做为对比结果.若两次数字之和大于11,则小明胜;若两次数字之和小于11,则小亮胜.

(1)请你用列表法或树状图列出这个摸牌游戏中所有可能出现的结果.

(2)这个游戏公平吗?请说明理由.

22.如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O 上,BD平分∠ABC交AC 于点E,DF⊥BC交BC的延长线于点F.

(1)求证:FD是⊙O的切线;

(2)若BD=8,sin∠DBF=3

5

,求DE的长.

23.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.

(1)求6月份全校借阅名著类书籍的学生人数;

(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.

24.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣2x+80(20≤x≤40),设这种健身球每天的销售利润为w元.

(1)求w与x之间的函数关系式;

(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?

25.已知抛物线y=-x2-2x+c与x轴的一个交点是(1,0).

(1)C的值为_______;

(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;x???1-1???y???0???

(3)根据所画图像,写出y>0时x的取值范围是_____.

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.D

解析:D

【解析】

试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.

故选D

考点:圆周角定理

2.A

解析:A 【解析】 【分析】

利用配方法把方程2680x x --=变形即可. 【详解】

用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17, 故选A . 【点睛】

本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.

3.B

解析:B 【解析】

试题分析:(1)当点P 沿O→C 运动时, 当点P 在点O 的位置时,y=90°, 当点P 在点C 的位置时, ∵OA=OC , ∴y=45°,

∴y 由90°逐渐减小到45°; (2)当点P 沿C→D 运动时, 根据圆周角定理,可得 y≡90°÷2=45°;

(3)当点P 沿D→O 运动时, 当点P 在点D 的位置时,y=45°, 当点P 在点0的位置时,y=90°, ∴y 由45°逐渐增加到90°. 故选B .

考点:动点问题的函数图象.

4.D

解析:D 【解析】 【分析】

方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】

方程移项得:2610x x -=, 配方得:26919x x -+=,

即2(3)19x -=, 故选D .

5.B

解析:B 【解析】 【分析】

根据事件发生的可能性大小判断相应事件的类型即可. 【详解】

解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意; B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;

C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;

D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】

本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

6.D

解析:D 【解析】 【分析】 【详解】

解:连接AO ,并延长交⊙O 于点D ,连接BD ,

∵∠C=45°,∴∠D=45°,

∵AD 为⊙O 的直径,∴∠ABD=90°, ∴∠DAB=∠D=45°, ∵AB=2, ∴BD=2, ∴22222222AB BD +=+=

∴⊙O 的半径AO=22

AD

=. 故选D .

【点睛】

本题考查圆周角定理;勾股定理.

7.B

解析:B 【解析】 【分析】

根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况. 【详解】

设每天的利润为W 元,根据题意,得: W=(x-28)(80-y )-5000

()128804245000x x ??=--- ????

-???

??

21

12984164

x x =-+-

()2

125882254

x =-

-+, ∵当x=258时,1

2584222.54

y =?-=,不是整数, ∴x=258舍去,

∴当x=256或x=260时,函数取得最大值,最大值为8224元, 又∵想让客人得到实惠, ∴x=260(舍去)

∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B . 【点睛】

本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.

8.B

解析:B 【解析】

试题分析:若此函数与x 轴有交点,则2

(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B. 考点:函数图像与x 轴交点的特点.

9.A

解析:A 【解析】 【分析】

由根的判别式求出k 的取值范围,再结合一元二次方程的定义,即可得到答案. 【详解】

解:∵关于x 的一元二次方程2

(1)220k x x -+-=有两个不相等的实数根, ∴224(1)(2)0k ?=-?-?->, 解得:12

k >

, ∵10k -≠,则1k ≠, ∴k 的取值范围是1

2

k >且k≠1; 故选:A . 【点睛】

本题考查了利用根的判别式求参数的取值范围,以及一元二次方程的定义,解题的关键是正确求出k 的取值范围.

10.B

解析:B 【解析】 【分析】

根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到

1a b +=-,即可得到答案. 【详解】

解:∵设a b ,是方程220190x x +-=的两个实数根, ∴把x a =代入方程,得:22019a a +=, 由根与系数的关系,得:1a b +=-,

∴2

2

2()201912018a a b a a a b ++=+++=-=; 故选:B . 【点睛】

本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值.

11.C

解析:C 【解析】 【分析】

根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【详解】

A 、不是轴对称图形,是中心对称图形,故本选项不符合题意;

B 、不是轴对称图形,是中心对称图形,故本选项不符合题意;

C 、既是轴对称图形,也是中心对称图形,故本选项符合题意;

D 、是轴对称图形,不是中心对称图形,故本选项不符合题意.

故选:C.

【点睛】

本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.D

解析:D

【解析】

【分析】

四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.

【详解】

添加AC=BD,

∵四边形ABCD的对角线互相平分,

∴四边形ABCD是平行四边形,

∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,

∴四边形ABCD是矩形,

故选D.

【点睛】

考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.二、填空题

13.1【解析】【分析】【详解】解:由题意有△=2(m+1)2﹣4(m2﹣1)≥0整理得8m+8≥0解得m≥﹣1由两根关系得x1+x2=﹣2(m+1)x1x2=m2﹣1(x1﹣x2)2=16﹣x1x2(x

解析:1

【解析】

【分析】

【详解】

解:由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,

由两根关系,得x1+x2=﹣2(m+1),x1x2=m2﹣1,(x1﹣x2)2=16﹣x1x2

(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,

∴m2+8m﹣9=0,解得m=﹣9或m=1.∵m≥﹣1,∴m=1

故答案为:1.

【点睛】

本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.

14.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据

圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π

解析:15π 【解析】

【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.

【详解】设圆锥母线长为l ,∵r=3,h=4,

∴母线5=,

∴S 侧=

12×2πr×5=1

2×2π×3×5=15π, 故答案为15π.

【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.

15.【解析】∵x2﹣3x+k=0有两个相等的实数根∴△=∴9﹣4k=0∴k=故答案为

解析:

94 【解析】

∵x 2﹣3x +k=0有两个相等的实数根,

∴△=2

(3)410k --??=,

∴9﹣4k=0, ∴k=

94

. 故答案为

94

. 16.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-

【解析】 【分析】

由题意可知:写出的函数解析式满足0a <、02b

a

-=,由此举例得出答案即可. 【详解】

解:设所求二次函数解析式为:2

y ax bx c =++ ∵图象开口向下 ∴0a < ∴可取1a =- ∵顶点在y 轴上

∴对称轴为02b

x a

=-= ∴0b =

∵顶点的纵坐标可取任意实数 ∴c 取任意实数 ∴c 可取0

∴二次函数解析式可以为:2

y x =-. 故答案是:2

y x =- 【点睛】

本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2

y ax bx c =++的顶点坐

标为24,24b ac b a a ??-- ???

;对称轴为2b

x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于

()0,c .

17.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC≌△EAB 即可解决问题详解:如图连接EC∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△

解析:135°. 【解析】

分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .

∵E 是△ADC 的内心,

∴∠AEC=90°

+1

2

∠ADC=135°, 在△AEC 和△AEB 中,

AE AE

EAC EAB AC AB =??

∠=∠??=?

, ∴△EAC ≌△EAB , ∴∠AEB=∠AEC=135°, 故答案为135°.

点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

18.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式 解析:26cm π

【解析】 【分析】

圆锥的侧面积=底面周长×母线长÷2=RL π. 【详解】

根据圆锥的侧面积公式:RL π

底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ??= 故答案是:26cm π 【点睛】

本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.

19.8x2+124x ﹣105=0【解析】【分析】镜框所占的面积为照片面积的四分之一为了不出差错最好表示出照片的面积=4(镜框面积-照片面积)【详解】解:设镜框的宽度为xcm 依题意得:21×10=4(21

解析:8x 2+124x ﹣105=0 【解析】 【分析】

镜框所占的面积为照片面积的四分之一,为了不出差错,最好表示出照片的面积=4(镜框面积-照片面积). 【详解】

解:设镜框的宽度为xcm ,

依题意,得:21×

10=4[(21+2x )(10+2x )﹣21×10], 整理,得:8x 2+124x ﹣105=0. 故答案为:8x 2+124x ﹣105=0. 【点睛】

本题考查了一元二次方程的应用,解题的难点在于把给出的关键描述语进行整理,解决本题的关键是要正确分析题目中等量关系.

20.3【解析】连接OB ∵六边形ABCDEF 是⊙O 内接正六边形∴∠BOM==30°∴OM=OB?cos ∠BOM=6×=3故答案为:3

解析: 【解析】 连接OB ,

∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM=360

62

?

?

=30°,

∴OM=OB?cos∠BOM=6×3

=33,

故答案为:33.

三、解答题

21.(1)列表见解析;(2)游戏公平,理由见解析

【解析】

【分析】

(1)首先根据题意列表,由表格求得所有等可能的结果;

(2)根据小明获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平.【详解】

解:(1)

小亮

小明和

4567

4891011

59101112

610111213

711121314

总共有16种结果,每种结果出现的可能性是相同的,

两次数字之和大于11的结果有6种,

所以,P(小明获胜)

63 == 168

两次数字之和小于11的结果有6种,

所以,P(小亮获胜)

63 == 168

因为,33

=

88

所以,这个游戏是公平的.

【点睛】

本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.

22.(1)详见解析;(2)9 2

【解析】

【分析】

(1)连接OD,根据角平分线的定义得到∠ABD=∠DBF,由等腰三角形的性质得到

∠ABD=∠ODB,等量代换得到∠DBF=∠ODB,推出∠ODF=90°,根据切线的判定定理得到结论;

(2)连接AD,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到

∠DBF=∠ABD,解直角三角形得到AD=6,在Rt△ADE中,解直角三角形得到DE=9

2

【详解】

(1)连接OD,

∵BD平分∠ABC交AC于点E,∴∠ABD=∠DBF,

∵OB=OD,

∴∠ABD=∠ODB,

∴∠DBF=∠ODB,

∵∠DBF+∠BDF=90°,

∴∠ODB+∠BDF=90°,

∴∠ODF=90°,

∴FD是⊙O的切线;

(2)连接AD,

∵AB是⊙O的直径,

∴∠ADE=90°,

∵BD平分∠ABC交AC于点E,∴∠DBF=∠ABD,

在Rt△ABD中,BD=8,

∵sin∠ABD=sin∠DBF=3

5

∴AB=10,AD=6,

∵∠DAC=∠DBC , ∴sin ∠DAE=sin ∠DBC=

35, 在Rt △ADE 中,sin ∠DAC=35

, 设DE=3x ,则AE=5x , ∴AD=4x , ∴tan ∠DAE=

34DE x

AD x

= ∴DE=

92. 【点睛】

本题考查了切线的判定和性质,角平分线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键. 23.(1)1440人;(2)20% 【解析】 【分析】

(1)5月份借阅了名著类书籍的人数是1000(1+10%),则6月份借阅了名著类书籍的人数为:5月份借阅了名著类书籍的人数+340人;

(2)根据增长后的量=增长前的量×(1+增长率).设平均每年的增长率是x ,列出方程求解即可. 【详解】

解:(1)由题意,得

5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人), 则6月份借阅了名著类书籍的人数为:1100+340=1440(人); (2)设平均增长率为x . 1000(1+x )2=1440, 解得:x=0.2.

答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%. 【点睛】

本题是一道数学应用题中的增长率问题的实际问题,考查了列一元二次方程解实际问题的运用及一元二次方程的解法的运用,解答中对结果验根是否符合题意是解答的关键. 24.(1)w 与x 的函数关系式为w=-2x 2+120x-1600.(2)销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元. 【解析】

试题分析:(1)用每件的利润()20x -乘以销售量即可得到每天的销售利润,即

()()()2020280w x y x x =-=--+,然后化为一般式即可;

(2)把(1)中的解析式进行配方得到顶点式()2

230200y x =--+, 然后根据二次函数的最值问题求解;

(3)求函数值为150所对应的自变量的值,即解方程()2

230200150x --+=,然后利用销售价不高于每件28元确定x 的值.

试题解析:(1)根据题意可得:()20w x y =-?,

()()20280x x =--+,

221201600x x =-+-,

w 与x 之间的函数关系为:221201600w x x =-+-;

(2)根据题意可得:()2

221201*********w x x x =-+-=--+, ∵20-<,∴当30x =时,w 有最大值,w 最大值为200.

答:销售单价定为30元时,每天销售利润最大,最大销售利润200元. (3)当150w =时,可得方程()2

230200150x --+=. 解得1225,35x x ==,

∵3528>,∴235x =不符合题意,应舍去.

答:该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元. 25.(1)3;(2)见解析;(3)-3

(1)直接把(1,0)代入抛物线2

2y x x c =--+即可得出c 的值;

(2)先根据(1)抛物线的解析式得出其顶点坐标,再在顶点两边分别取两点,画出函数图象即可;

(3)根据函数图象可直接得出结论. 【详解】

解:(1)∵抛物线2

2y x x c =--+与x 轴的一个交点是(1,0),

∴2120,c --+= 解得c=3, ∴抛物线的解析式为2

2 3.y x x =--+ 故答案为:3.

(2)∵抛物线的解析式为22 3.y x x =--+ 即2

(1)4,y x =-++ ∴其顶点坐标为(-1,4),

∴当x=-2时,y=3;当x=0时,y=3; 当x=-3时,y=0;当x=1时,y=0. 如下表:

y???03430???

(3)由函数图象可知,当y>0时,-3<x<1.

故答案为:-3<x<1.

【点睛】

本题考查的是抛物线与x轴的交点,能利用描点法画出函数图象,根据数形结合求解是解答此题的关键.

初三数学期中试卷及答案.doc

昆明三中、滇池中学 2011—2012 学年上学期期中测试 初三数学试卷 本试卷满分共 100 分,考试用时 120 分钟。 一.选择题 ( 每小题 3 分,共 24 分) 1 、如果 3 a 有意义,则 a 的取值范围是( ) A. a ≥ 0 B. a ≤ 0 C. a ≥ 3 D. a ≤ 3 2、连掷两次骰子,它们的点数之和是 7 的概率是( ) 1 1 1 D . 1 A . B . C . 36 6 4 16 3、已知⊙ O 的半径 r 为 3cm ,⊙ O 的半径 R 为 4cm ,两圆的圆心距 OO 为 1cm ,则这两圆的位置关系是 1 2 1 2 ( ) A .相交 B .内含 C .内切 D .外切 4、下列几个图形是国际通用的交通标志,其中不是中心对称图形的是 ( ) 5、如图,已知 AB 是半圆 O 的直径,∠ BAC=32o , D 是弧 AC 的中点,那么∠ DAC 的度数是( ) A. 25o B. 29o C. 30o D.32° 6、如图,一块边长为 8 cm 的正三角形木板 ABC ,在水平桌面上绕点 B 按顺时针方向旋转至 A ′BC ′的 位置时,顶点 C 从开始到结束所经过的路径长为 ( 点 、 、 ′在同一直线上 ) ( ) A B C A. 16 π B. 8 C. 64 16 π π D.π 3 3 3 第5题图 第 6题图 第7题图 7 、在一幅长 60cm ,宽 40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如 果要使整个挂图的面积是 2816cm 2,设金色纸边的宽为 x cm ,那么 x 满足的方程是( ) A .( 60+x )( 40+2x ) =2816 B .( 60+x )( 40+x ) =2816 C .( 60+2x )( 40+x ) =2816 D .( 60+2x )( 40+2x ) =2816 8 、如图,圆弧形桥拱的跨度 AB = 12 米,拱高 CD = 4 米,则拱桥的半 径为( ) A .米 B .9 米 C .13 米 D .15 米 二 . 填空题(每小题 3 分,共 24 分) 第 8题图 9、 2 3 = ______________ . 10、关于 x 的方程 x 2 ax 2a 0 的一个根是 1,则 a 的值为 _________. 11、如图是一个被分成 6 个相同扇形可自由转动的转盘,转动转盘,当转盘停 .... 止后,指针指向白色区域 的概率是 ____________ . 12、将一元二次方程 2x 2- 3 x - 2 = 0 通过配方后所得的方程是 . 13、若用半径为 x 的圆形桌布将边长为 60 cm 的正方 形餐桌盖住,则 x 的最小值 为 . 14、如 图,△ ABC 绕点 B 逆时针方向旋转到△ EBD 的位置,若∠ A=150∠ C=100, E , B , C 在同一直线上, 则旋转角度是 . D A A D C E B C

2020年初三数学上期中试卷(附答案)

2020年初三数学上期中试卷(附答案) 一、选择题 1.方程x 2 +x-12=0的两个根为( ) A .x 1=-2,x 2=6 B .x 1=-6,x 2=2 C .x 1=-3,x 2=4 D .x 1=-4,x 2=3 2.如图,BC 是半圆O 的直径,D ,E 是?BC 上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=?,那么A ∠的度数为( ) A .35° B .40° C .60° D .70° 3.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是( ) A .25° B .40° C .50° D .65° 4.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( ) A .①③ B .②③ C .②④ D .②③④ 5.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是 ( ) A . 3 10 B . 925 C . 425 D . 110 6.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3 C .5 D .7 7.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )

A .1 B .22 C .2 D .2 8.若2245a a x -+-=,则不论取何值,一定有( ) A .5x > B .5x <- C .3x ≥- D .3x ≤- 9.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4) B .(-3,4) C .(3,-4) D .(2,4) 10.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 11.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( ) A .k 16≤ B .1k 16 ≤ C .k 16≤且k 0≠ D .1 k 16 ≤ 且k 0≠ 12.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧?AMB 上一点,则∠APB 的度数为( ) A .45° B .30° C .75° D .60° 二、填空题 13.请你写出一个二次函数,其图象满足条件:①开口向下;②与y 轴的交点坐标为 (0,3).此二次函数的解析式可以是______________ 14.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________. 15.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____. 16.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.

2020-2021重庆巴川中学九年级数学下期中一模试卷(带答案)

2020-2021重庆巴川中学九年级数学下期中一模试卷(带答案) 一、选择题 1.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为() A.a B.a C.a D.a 2.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠ B,②∠ADE=∠C,③AE DE AB BC =,④ AD AE AC AB =,⑤AC2=AD?AE,使△ADE与 △ACB一定相似的有() A.①②④B.②④⑤C.①②③④D.①②③⑤ 3.如图,河堤横断面迎水坡AB的坡比是1:3,堤高BC=12m,则坡面AB的长度是() A.15m B.203m C.24m D.103m 4.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论: ①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为() A.4B.3C.2D.1 5.观察下列每组图形,相似图形是()

A . B . C . D . 6.已知2x =3y ,则下列比例式成立的是( ) A . B . C . D . 7.在ABC V 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是( ) A . 1 2 DE BC = B . 3 1 DE BC = C . 1 2 AE AC = D . 3 1 AE AC = 8.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴 的正半轴上,反比例函数k y x = (x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( ) A . 92 B . 74 C . 245 D .12 9.如图,在ABC ?中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( ) A .6 B .7 C .8 D .9 10.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE=0.5m ,EF=0.25m ,目测点D 到地面的距离DG=1.5m ,到旗杆的水平距离DC=20m ,则旗杆的高度为( ) A .5 B .(105 1.5) m

初三数学期中考试试卷 (2)

a 本文为本人珍藏,有较高的使用、参考、借鉴价值!! 涟水圣特外国语学校期中考试 初三数学试题 时间:120分钟 分值:150分 命题校对:侯林学 友情提醒:1.请将答案答在答题纸上,否则无效。2.请务必将自己的班级姓名等信息写在指定位置。 一、选择题(本大题共有8小题,每小题3分,共24分。在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号写在答题纸的相应位置。) 1.三角形的两个内角分别是80°和50°,则这个三角形是 ( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形 2.下列各式一定是二次根式的是 ( ) A .4- B .38 C .12x + D .1a 2 + 3.样本101、102、98、99、100的方差是 ( ) A .0 B .1 C .2 D .2 4.实数a 在数轴上的位置如图,则化简2 a a 1+-的结果是 ( ) A .1 B .-1 C .1-2a D .2a -1 第4题图 第5题图 第6题图 5.如图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是( ) A .外离 B .相交 C .外切 D .内切 6.如图,点A 、B 、C 在⊙O 上,若∠AOC=∠ABC ,则∠BAO+∠BC0= ( ) A .0 60 B .090 C .0120 D .0 150 7.如图将长为8,宽为4的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( ) A .3 B .23 C .5 D .25 8.在正方形网格中,A B C △的位置如图所示,则tanA 的值为 ( ) A .6 2 B . 3 3 C . 3 2 D . 3 1

【必考题】初三数学上期中试题(含答案)

【必考题】初三数学上期中试题(含答案) 一、选择题 1.若x 1是方程ax 2+2x+c =0(a≠0)的一个根,设M =(ax 1+1)2,N =2﹣ac ,则M 与N 的大小关系为( ) A .M >N B .M =N C .M <N D .不能确定 2.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①c >0; ②若点B (32-,1y )、C (52 -,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④2 44ac b a -<0,其中,正确结论的个数是( ) A .1 B .2 C .3 D .4 3.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5) B .(3,-13) C .(2,-8) D .(4,-20) 4.下列图形中是中心对称图形但不是轴对称图形的是( ) A . B . C . D . 5.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +> C .10a -< D .210a +< 6.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14 x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( ) A .252元/间 B .256元/间 C .258元/间 D .260元/间 7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3 D .k≤4且k≠3

人教版九年级数学上册期中测试卷带答案【精】

绝密★启用前 九年级上学期 数学期中考试卷 题号一二三四五总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一、选择题(题型注释) a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是() A.﹣1 B.1 C.1或﹣1 D.﹣1或0 2.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.12 3.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0; ②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两 点,则y1<y2其中结论正确的是() A.①② B.②③ C.②④ D.①③④ 4.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的 最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是() A.y=﹣2x2 B.y=2x2 C.y=﹣x2 D.y=x2 5.下列图形既是轴对称图形又是中心对称图形的是() A.B. C. D. 6.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.12 第II卷(非选择题) 请点击修改第II卷的文字说明 评卷人得分 二、填空题(题型注释) 7.关于x的一元二次方程2(21)51 x a x a ax +-+-=+的一次项系数为4,则常数项为:. 8.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=______. 9.抛物线y=2x2+3x﹣1向右平移2个单位,再向上平移3个单位,得到新的抛物 线解析式是. 10.如图,已知A,B两点的坐标分别为(2,0),(0,10),M是△AOB外接圆 ⊙C上的一点,且∠AOM=30°,则点M的坐标为______. 11.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点A逆时针旋 转60°,得到△ADE,连接BE,则BE的长是. 12.自主学习,请阅读下列解题过程. 解一元二次不等式:25 x x ->0. 解:设25 x x -=0,解得: 1 x=0, 2 x=5,则抛物线y=25 x x -与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=25 x x -的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即25 x x ->0,所以,一元二次不等式25 x x ->0的解集为:x<0或x>5. 通过对上述解题过程的学习,按其解题的思路和方法解答下列问题: (1)上述解题过程中,渗透了下列数学思想中的和.(只填序号) ①转化思想②分类讨论思想③数形结合思想 (2)一元二次不等式25 x x -<0的解集为. (3)用类似的方法写出一元二次不等式的解集:223 x x -->0.__________。 评卷人得分 三、计算题(每小题6分,共24分) )x2﹣2x﹣2=0;(2)(x﹣2)2﹣3(x﹣2)=0.

人教版九年级数学下学期期中试卷

主视图 左视图 俯视图 4 4 2 2020~2020学年度下学期期中考试 九年级数学 考试时间:120分钟,试卷分值:120分 题号 一 二 三 总分 17 18 19 20 21 22 23 24 得分 1、在2,-3,-5这三个数中,任意两数积的最小值为 ( ) A.-6 B.-10 C.-15 D.15 2、在Rt △ABC 中,∠C=90°,若sinA=21,则∠A 的度数是( ) A .30° B .45° C .60° D .90° 3、在平面直角坐标系内P 点的坐标(。。,45tan 30cos ),则P 点关于轴对称点P '的 坐标为 ( ) A .( 1,23 ) B .(23,1-) C . (1,23-) D . (23 -,-1) 4、袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是( ) A .51 B . 52 C .32 D .31 5、一个几何体的三视图如右,其中主视图和左视图都 是腰长为4、底边为2的等腰三角形,则这个几何体 的侧面展开图的面积为( ) A .π2 B .π2 1 C .π4 D .π8

A B C D P E 第6题 第7题 A B C D F E B (4,4) A (1,40 x y O C D 第10题 O x y B A D C E 第9题 A D E F B C I H G 第8题 6、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6.其中正确结论的序号是( ) A .①④ B .①② C .③④ D .①③ 7、如图,在四边形ABCD 中, E 、 F 分别是AB 、AD 的中点。若EF = 2,BC =5,CD =3,则tan C 等于 A .43 B .34 C .53 D .54 8、如图,在△ABC 中,AD=DE=EF=FB ,DG ∥EH ∥FI ∥BC ,已知BC=a ,则DG+EH+FI 的长是( ). A .52a B .32a C .2a D .43 a 9、如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是( ) A .3 B .311 C .3 10 D .4 10、如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线2()y a x m n =-+的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为( ) A .-3 B .1 C .5 D . 8 二、填空题(每空3分,共18 分) 11、.计算:x y ax y 4232 ÷??? ??-= 。

【必考题】初三数学上期中试卷及答案(1)

【必考题】初三数学上期中试卷及答案(1) 一、选择题 1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ). A .10x =,24x = B .11x =,25x = C .11x =,25x =- D .11x =-,25x = 2.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为 ( ) A .100° B .120° C .130° D .150° 3.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( ) A .68° B .20° C .28° D .22° 4.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( ) A . 1 6 B . 29 C . 13 D . 23 5.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A ( 3 2 ,0),B (0,2),则点B 2018的坐标为( ) A .(6048,0) B .(6054,0) C .(6048,2) D .(6054,2) 6.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为 ( )

2020-2021初三数学上期中试卷(及答案)(3)

2020-2021初三数学上期中试卷(及答案)(3) 一、选择题 1.若x1是方程ax2+2x+c=0(a≠0)的一个根,设M=(ax1+1)2,N=2﹣ac,则M与N的大小关系为( ) A.M>N B.M=N C.M<N D.不能确定 2.如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于() A.4 3 B. 4 5 C. 3 5 D. 3 4 3.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是() A.1B.2C.3D.4 4.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是() A.A B.B C.C D.D 5.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为()

A .32× 20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570 D .(32﹣2x )(20﹣x )=570 6.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3 C .5 D .7 7.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( ) A .30° B .60° C .90° D .120° 8.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4) B .(-3,4) C .(3,-4) D .(2,4) 9.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米. A .2 B .4 C .6 D .8 10.如图,在Rt ABC 中,90ACB ∠=,60B ∠=,1BC =,''A B C 由ABC 绕点C 顺时针旋转得到,其中点'A 与点A 、点'B 与点B 是对应点,连接'AB ,且A 、'B 、'A 在同一条直线上,则'AA 的长为( ) A .3 B .3 C .4 D . 311.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有

初三上册数学期中考试试卷及答案

精编 初三数学期中考试试卷2007.11 (100分钟完成,满分150分) 一、填空题(每小题3分,满分36分) 1. 方程 21 1 =-x 的根是______________. 2. 方程1 1 12+= +x x x 的根是________________. 3. 分解因式:=-+422 x x _______________________. 4. 在公式 2 11 11R R R + =中,已知正数R 、R 1(1R R ≠),那么R 2= . 5. 用换元法解方程02711222=+---x x x x 时,可设y =1 2 -x x ,那么原方程可化为关于y 的整式方程是 . 6. 某电子产品每件原价为800,首次降价的百分率为x ,第二次降价的百分率为2x ,那 么经过两降价后每件的价格为_____________________元(用x 的代数式表示). 7. 如图1,已知舞台AB 长10米,如果报幕员从点A 出发站在舞 台的黄金分割点P 处,且BP AP <,则报幕员应走 米 报幕(236.25≈,结果精确到0.1米). 8. 如图2,在ABC ?中,点D 、E 分别在边AB 、AC 上,DE ∥BC , 5:2:=AC AE ,则=BC DE : . 9. 已知ABC ?与DEF ?相似,且点A 与点E 是对应点,已知∠A =50o, ∠B =?60,则∠F = . 10. 在△ABC 中,点D 、E 分别在边AB 、AC 上,要使△ADE 与△ABC 相似,只须添加一个条 件,这个条件可以是___________(只要填写一种情况) . 11. 在△ABC 中,中线AD 和CE 相交于G ,则=AD AG :_________. 12. 如图3, 在△ABC 中, 点D 、E 分别在AB 、AC 上,DE//BC , 图1 图2

2020年初三下期中考试数学试题及答案

初三数学第1页 共22页 初三数学第2页 共22页 一、选择题(每题3分,共30分) 1.下列函数是二次函数的是( ) A .12+=x y B .22 1y x =- + C .22+=x y D .22 1-=x y 2.已知二次函数y=ax 2+bx+c (a ≠0)的图像如图所示,下 列说法错误的是( ) A .图像关于直线x=1对称 B .函数y=ax 2+bx+c (a ≠0)的最小值是-4 C .-1和3是方程ax 2+bx+c=0(a ≠0)的两个根 D .当x <1时,y 随x 的增大而增大 3.已知二次函数y=x 2 -3x+m (m 为常数)的图像与x 轴的 一个交点为(1,0),则关于x 的一元二次方程x 2 -3x+m=0的两实数根是( ) A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1, x 2=0 D .x 1=1,x 2=3 4.如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1, 则OB 的长是( ) A . 3 B .5 C . 15 D . 17 5.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=70°,连接AE ,则∠AEB 的度数为( ) A .26° B .24° C .25° D .20° 6.在直角坐标系中,⊙P 、⊙Q 的位置如图所示.下列 四个点中,在⊙P 外部且在⊙Q 内部的是( ) A .(1,2) B .(2,1) C .(2,-1) D .(3,1) 7.已知⊙O 的半径为5,圆心O 到直线l 的距离为3, 则反映直线l 与⊙O 的位置关系的图形是( ) 8.用反证法证明“三角形的三个外角中至少有两个钝 角”时,假设正确的是( ) A .假设三个外角都是锐角 B .假设至少有 一个钝角 C .假设三个外角都是钝角 D .假设三个外角中只有一个钝角 9.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠

第一学期初三数学期中考试卷

第一学期初三数学期中 考试卷 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第一学期初三数学期中考试卷 说明:考试时间(全卷120分,90分钟完成) 一、选择题:(每小题3分,共15分) 1.一元二次方程042=-x 的根为( ) A 、x=2 B 、x=-2 C 、x 2=2,x 2=-2 D 、x 2=2,x 2= 2.如图,四边形ABCD 内接于⊙O ,若∠BOD=1000 , 则∠DAB 的度数为( ) A 、500 B 、800 C 、1000 D 、3.用换元法解方程1)2()2(2=+-+x x x x ,设x x y 2 +=,则原方程可化为( ) A 、012=--y y B 、012=++y y C 、012=-+y y D 、012=+-y y 4.在ABC Rt ?中,090=∠C ,则正确的是( )。 A . A b a sin = B .B c a cos = C .b a B =tan D .A a b cot = 5.以31+与31-为根的一元二次方程的是( ) A 0222=++x x B 0222=+-x x C 0222=--x x D 0222=-+x x 二、填空题:(每小题4分,共20分) 6.关于x 的方程02)32()1(2 =---+-m x m x m 则m 的取值范围为 。 7.如图,⊙O 的半径是10cm ,弦AB 的长是12cm ,OC 是⊙O 且OC ⊥AB ,垂足为D ,则OD= cm ,CD= cm 8.比较大小:,30cot _____35tan ,25cos ______0324cos ???'? 9.方程0622=--x x 的两根为21x x ,,则 =+2 111x x 。

初三上学期数学期末考试试卷及答案

初三数学第一学期期末考试试卷 第Ⅰ卷(共32分) 一、选择题(本题共8道小题,每小题4分,共32分) 在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母填在下面的表格中. 1.如果 53 2x =,那么x 的值是 A .15 2 B .215 C .103 D . 310 2.在Rt △ABC 中,∠C =90°,1 sin 3 A =,则 B cos 等于 A .13 B .2 3 C . D .3 3.把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机 地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为 A . 12 B .13 C .19 D .4 9 4.已知点(1,)A m 与点B (3,)n 都在反比例函数x y 3 =(0)x >的图象上,则m 与n 的关系是 A .m n > B .m n < C .m n = D .不能确定 5.如图,⊙C 过原点,与x 轴、y 轴分别交于A 、D 两点.已知∠OBA =30°,点D 的坐标为(0,2),则⊙C 半径是

A B C . D .2 6.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论: ①因为a >0,所以函数y 有最大值; ②该函数的图象关于直线1x =-对称; ③当2x =-时,函数y 的值等于0; ④当31x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是 A .4 B .3 C .2 D .1 7.如图,∠1=∠2=∠3,则图中相似三角形共有 A .4对 B .3对 C .2对 D .1对 D . 第Ⅱ卷(共88分) 二、填空题(本题共4道小题,每小题4分,共16分) 3 2 1 E D C B A 第5题 第6题 第7题 O 24 4 2

2020年初三数学上期中试卷附答案

2020年初三数学上期中试卷附答案 一、选择题 1.如图A ,B ,C 是 上的三个点,若 ,则 等于( ) A .50° B .80° C .100° D .130° 2.用配方法解方程2680x x --=时,配方结果正确的是( ) A .2(3)17x -= B .2(3)14-=x C .2(6)44x -= D .2(3)1x -= 3.如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O→C→D→O 的路线匀速运动.设∠APB=y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( ) A .A B .B C .C D .D 4.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( ) A .(x+3)2=1 B .(x ﹣3)2=1 C .(x+3)2=19 D .(x ﹣3)2=19 5.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +> C .10a -< D .210a +< 6.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( ) A .1 B .2 C .2 D 2 7.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y = 1 4 x ﹣42(x ≥168).若宾馆每天的日常运营成本

为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( ) A .252元/间 B .256元/间 C .258元/间 D .260元/间 8.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3 D .k≤4且k≠3 9.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( ) A .1 2 k > 且k ≠1 B .12 k > C .1 2 k ≥ 且k ≠1 D .12 k < 10.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( ) A .2017 B .2018 C .2019 D .2020 11.下列图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D . 12.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AB=BC C .AC ⊥BD D .AC=BD 二、填空题 13.已知x 1,x 2是一元二次方程x 2+2(m +1)x +m 2﹣1=0的两实数根,且满足(x 1﹣x 2) 2 =16﹣x 1x 2,实数m 的值为________. 14.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 15.已知方程x 2﹣3x+k=0有两个相等的实数根,则k=_____. 16.写出一个二次函数的解析式,且它的图像开口向下,顶点在y 轴上______________ 17.如图,在扇形CAB 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为__. 18.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________. 19.要为一幅矩形照片配一个镜框,如图,要求镜框的四条边宽度都相等,且镜框所占面积是照片本身面积的四分之一,已知照片的长为21cm ,宽为10cm ,求镜框的宽度.设镜框的宽度为xcm ,依题意列方程,化成一般式为_____.

2020-2021初三数学下期中试卷带答案(1)

2020-2021初三数学下期中试卷带答案(1) 一、选择题 1.有一块直角边AB=3cm ,BC=4cm 的Rt △ABC 的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( ) A . 67 B . 3037 C . 127 D . 6037 2.若反比例函数k y x = (x<0)的图象如图所示,则k 的值可以是( ) A .-1 B .-2 C .-3 D .-4 3.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( ) A .(2,5) B .(2.5,5) C .(3,5) D .(3,6) 4.在Rt ABC ?中,90,2,1C AC BC ∠=?==,则cos A 的值是( ) A 25 B 5 C 5 D . 12 5.若3 5 x x y =+,则x y 等于 ( ) A . 3 2 B .38 C . 23 D . 85 6.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点

E ,如果 12C EAF C CDF =V V ,那么S EAF S EBC V V 的值是( ) A . 12 B . 13 C . 14 D . 19 7.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( ) A .1:3 B .1:4 C .1:6 D .1:9 8.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( ) A .a :d =c :b B .a :b =c :d C .c :a =d :b D .b :c =a :d 9.如图,在ABC ?中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为 ( ) A .6 B .7 C .8 D .9 10.在平面直角坐标系中,点E (﹣4,2),点F (﹣1,﹣1),以点O 为位似中心,按比例1:2把△EFO 缩小,则点E 的对应点E 的坐标为( ) A .(2,﹣1)或(﹣2,1) B .(8,﹣4)或(﹣8,4) C .(2,﹣ 1) D .(8,﹣4) 11.在小孔成像问题中,如图所示,若为O 到AB 的距离是18 cm ,O 到CD 的距离是6 cm ,则像CD 的长是物体AB 长的( ) A . 13 B . 12 C .2倍 D .3倍 12.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为

初三数学期中试卷

江苏省泰州中学附属初级中学2011~2012学年度 第二学期九年级数学期中考试试题 (考试时间:150分钟 满分:150分) 一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是正确的) 1.﹣3的倒数是( ) A .﹣3 B .3 C .31 D .3 1 2.某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( ) A .2.58×107 B .0.258×107 C .2.58×106 D .25.8×106 3.将抛物线y=x 2向左平移两个单位,再向上平移一个单位,可得到抛物线( ) A .y=(x -2) 2+1 B .y=(x -2) 2-1 C .y=(x+2) 2+1 D .y=(x+2) 2-1 4.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( ) A .和 B .谐 C .泰 D .州 5.数据1,2,2,3,5的众数是( ) A .1 B .2 C .3 D . 6.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .6cm B .5cm C .11cm D .13cm 7.已知两圆的半径分别为5cm 和7cm ,圆心距为15cm ,那么这两个圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 8.如图,抛物线y=x 2+1与双曲线y=x k 的交点A 的横坐标是2,则关于x 的不等式 — x k + x 2 +1>0的解集是 ( ) A .x>2 B .x<0 或x>2 C .0

【必考题】初三数学上期中试题(及答案)

【必考题】初三数学上期中试题(及答案) 一、选择题 1.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( ) A .100° B .120° C .130° D .150° 2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C . D . 3.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32 ,0),B (0,2),则点B 2018的坐标为( ) A .(6048,0) B .(6054,0) C .(6048,2) D .(6054,2) 4.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +> C .10a -< D .210a +< 5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )

A .30° B .60° C .90° D .120° 6.如图,从一张腰长为90cm ,顶角为120?的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( ) A .15cm B .12cm C .10cm D .20cm 7.如图,在Rt ABC V 中,90ACB ∠=o ,60B ∠=o ,1BC =,''A B C V 由ABC V 绕点C 顺时针旋转得到,其中点'A 与点A 、点'B 与点B 是对应点,连接'AB ,且A 、'B 、'A 在同一条直线上,则'AA 的长为( ) A .3 B .23 C .4 D . 43 8.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( ) A .① B .② C .③ D .④ 9.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴 的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13 a >;其中,正确的结论有( )

相关文档
最新文档