支持向量机通俗解释

支持向量机通俗解释
支持向量机通俗解释

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

R语言-支持向量机

支持向量机 一、SVM的想法 回到我们最开始讨论的KNN算法,它占用的内存十分的大,而且需要的运算量也非常大。那么我们有没有可能找到几个最有代表性的点(即保留较少的点)达到一个可比的效果呢? 我们先看下面一个例子:假设我们的训练集分为正例与反例两类,分别用红色的圆圈与蓝色的五角星表示,现在出现了两个未知的案例,也就是图中绿色的方块,我们如何去分类这两个例子呢? 在KNN算法中我们考虑的是未知样例与已知的训练样例的平均距离,未知样例与正例和反例的“距离”谁更近,那么他就是对应的分类。 同样是利用距离,我们可以换一个方式去考虑:假设图中的红线是对正例与反例的分类标准(记为w x+b=0),那么我们的未知样例与红线的“距离”就成了一个表示分类信度的标准,而w y+b(y为未知样例的数据)的符号则可以看成是分类的标识。 但是遗憾的是我们不知道这样的一条分类标准(分类线)是什么,那么我们一个比较自然的想法就是从已知的分类数据(训练集)里找到离分割线最近的点,确保他们离分割面尽可能的远。这样我们的分类器会更稳健一些。 从上面的例子来看,虚线穿过的样例便是离分割线最近的点,这样的点可能是不唯一的,因为分割线并不确定,下图中黑线穿过的训练样例也满足这个要求:

所以“他们离分割面尽可能的远”这个要求就十分重要了,他告诉我们一个稳健的超平面是红线而不是看上去也能分离数据的黄线。 这样就解决了我们一开始提出的如何减少储存量的问题,我们只要存储虚线划过的点即可(因为在w x+b=-1左侧,w x+b=1右侧的点无论有多少都不会影响决策)。像图中虚线划过的,距离分割直线(比较专业的术语是超平面)最近的点,我们称之为支持向量。这也就是为什么我们这种分类方法叫做支持向量机的原因。 至此,我们支持向量机的分类问题转化为了如何寻找最大间隔的优化问题。 二、SVM的一些细节 支持向量机的实现涉及许多有趣的细节:如何最大化间隔,存在“噪声”的数据集怎么办,对于线性不可分的数据集怎么办等。 我这里不打算讨论具体的算法,因为这些东西完全可以参阅july大神的《支持向量机通俗导论》,我们这里只是介绍遇到问题时的想法,以便分析数据时合理调用R中的函数。 几乎所有的机器学习问题基本都可以写成这样的数学表达式: 给定条件:n个独立同分布观测样本(x1 , y1 ), (x2 , y2 ),……,(xn , yn )

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

支持向量机的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 姓名: 学号: 专业: 任课教师: 研究生导师: 内容摘要

支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。 一、支持向量机原理概述

在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1 图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV 中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是,实验平台为Visual

R语言与机器学习(4)支持向量机

算法四:支持向量机 说到支持向量机,必须要提到july大神的《支持向量机通俗导论》,个人感觉再怎么写也不可能写得比他更好的了。这也正如青莲居士见到崔颢的黄鹤楼后也只能叹“此处有景道不得”。不过我还是打算写写SVM的基本想法与libSVM中R的接口。 一、SVM的想法 回到我们最开始讨论的KNN算法,它占用的内存十分的大,而且需要的运算量也非常大。那么我们有没有可能找到几个最有代表性的点(即保留较少的点)达到一个可比的效果呢? 要回答这个问题,我们首先必须思考如何确定点的代表性?我想关于代表性至少满足这样一个条件:无论非代表性点存在多少,存在与否都不会影响我们的决策结果。显然如果仍旧使用KNN算法的话,是不会存在训练集的点不是代表点的情况。那么我们应该选择一个怎样的“距离”满足仅依靠代表点就能得到全体点一致的结果? 我们先看下面一个例子:假设我们的训练集分为正例与反例两类,分别用红色的圆圈与蓝色的五角星表示,现在出现了两个未知的案例,也就是图中绿色的方块,我们如何去分类这两个例子呢?

在KNN算法中我们考虑的是未知样例与已知的训练样例的平均距离,未知样例与正例和反例的“距离”谁更近,那么他就是对应的分类。 同样是利用距离,我们可以换一个方式去考虑:假设图中的红线是对正例与反例的分类标准(记为w x+b=0),那么我们的未知样例与红线的“距离”就成了一个表示分类信度的标准,而w y+b(y为未知样例的数据)的符号则可以看成是分类的标识。 但是遗憾的是我们不知道这样的一条分类标准(分类线)是什么,那么我们一个比较自然的想法就是从已知的分类数据(训练集)里找到离分割线最近的点,确保他们离分割面尽可能的远。这样我们的分类器会更稳健一些。 从上面的例子来看,虚线穿过的样例便是离分割线最近的点,这样的点可能是不唯一的,因为分割线并不确定,下图中黑线穿过的训练样例也满足这个要求:

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

支持向量机(SVM)原理及应用概述

支持向量机(SVM)原理及应用 一、SVM得产生与发展 自1995年Vapnik(瓦普尼克)在统计学习理论得基础上提出SVM作为模式识别得新方法之后,SVM一直倍受关注。同年,Vapnik与Cortes提出软间隔(soft margin)SVM,通过引进松弛变量度量数据得误分类(分类出现错误时大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM得寻优过程即就是大得分隔间距与小得误差补偿之间得平衡过程;1996年,Vapnik等人又提出支持向量回归 (Support Vector Regression,SVR)得方法用于解决拟合问题。SVR同SVM得出发点都就是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR得目得不就是找到两种数据得分割平面,而就是找到能准确预测数据分布得平面,两者最终都转换为最优化问题得求解;1998年,Weston等人根据SVM原理提出了用于解决多类分类得SVM方法(MultiClass Support Vector Machines,MultiSVM),通过将多类分类转化成二类分类,将SVM应用于多分类问题得判断:此外,在SVM算法得基本框架下,研究者针对不同得方面提出了很多相关得改进算法。例如,Suykens 提出得最小二乘支持向量机(Least Square Support Vector Machine,LS—SVM)算法,Joachims等人提出得SVM1ight,张学工提出得中心支持向量机 (Central Support Vector Machine,CSVM),Scholkoph与Smola基于二次规划提出得vSVM等。此后,台湾大学林智仁(Lin ChihJen)教授等对SVM得典型应用进行总结,并设计开发出较为完善得SVM工具包,也就就是LIBSVM(A Library for Support Vector Machines)。LIBSVM就是一个通用得SVM软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM方法就是20世纪90年代初Vapnik等人根据统计学习理论提出得一种新得机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中得判别函数, 使学习机器得实际风险达到最小,保证了通过有限训练样本得到得小误差分类器,对独立测试集得测试误差仍然较小。 支持向量机得基本思想:首先,在线性可分情况下,在原空间寻找两类样本得最优分类超平面。在线性不可分得情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输入空

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

支持向量机(SVM)原理及

支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方 法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机通俗导论(理解SVM的三层境界)

支持向量机通俗导论(理解SVM的三层境界) 在本文中,你将看到,理解SVM分三层境界, ?第一层、了解SVM(你只需要对SVM有个大致的了解,知道它是个什么东西便已足够); ?第二层、深入SVM(你将跟我一起深入SVM的内部原理,通宵其各处脉络,以为将来运用它时游刃有余); ?第三层、证明SVM(当你了解了所有的原理之后,你会有大笔一挥,尝试证明它的冲动); 第一层、了解SVM 1.0、什么是支持向量机SVM 然在进入第一层之前,你只需了解什么是支持向量机SVM就够了,而要明白什么是SVM,便得从分类说起。 分类作为数据挖掘领域中一项非常重要的任务,目前在商业上应用最多(比如分析型CRM里面的客户分类模型,客户流失模型,客户盈利等等,其本质上都属于分类问题)。而分类的目的则是学会一个分类函数或分类模型(或者叫做分类器),该模型能吧数据库中的数据项映射到给定类别中的某一个,从而可以用于预测未知类别。 其实,若叫分类,可能会有人产生误解,以为凡是分类就是把一些东西或样例按照类别 给区分开来,实际上,分类方法是一个机器学习的方法,分类也成为模式识别,或者在概率统计中称为判别分析问题。 你甚至可以想当然的认为,分类就是恰如一个商场进了一批新的货物,你现在要根据这些货物的特征分门别类的摆放在相关的架子上,这一过程便可以理解为分类,只是它由训练有素的计算机程序来完成。 说实话,上面这么介绍分类可能你不一定内心十分清楚。我来举个例子吧,比如心脏病的确诊中,如果 我要完全确诊某人得了心脏病,那么我必须要进行一些高级的手段,或者借助一些昂贵的机器,那么若我 们没有那些高科技医疗机器怎么办?还怎么判断某人是否得了心脏病呢? 当然了,古代中医是通过望、闻、问、切“四诊”,但除了这些,我们在现代医学里还是可以利用一些比 较容易获得的临床指标进行推断某人是否得了心脏病。如作为一个医生,他可以根据他以往诊断的病例对 很多个病人(假设是500个)进行彻底的临床检测之后,已经能够完全确定了哪些病人具有心脏病,哪些没

支持向量机(SVM)原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号: 09601513 阅卷人: 刘晓志 考试日期: 2012年11月07日 姓名:赵亚楠 学号: 1001236 注意事项 1.考前研究生将上述项目填写清楚.

2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交 研究生院培养办公室,专业课成绩单与试卷交各学院,各学院把成 绩单交研究生院培养办公室. 东北大学研究生院培养办公室 支持向量机(SVM)原理及应用 目录 一、SVM的产生与发展 (3) 二、支持向量机相关理论 (4) (一)统计学习理论基础 (4) (二)SVM原理 (4) 1.最优分类面和广义最优分类面 (5) 2.SVM的非线性映射 (7)

3.核函数 (8) 三、支持向量机的应用研究现状 (9) (一)人脸检测、验证和识别 (10) (二)说话人/语音识别 (10) (三)文字/手写体识别 (11) (四)图像处理 (11) (五)其他应用研究 (12) 四、结论和讨论 (12) 支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目 标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即

20.ENVI4.3 支持向量机分类原理、操作及实例分析

ENVI4.3 支持向量机分类原理、操作及实例分析 一、支持向量机算法介绍 1.支持向量机算法的理论背景 支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。 与传统统计学相比,统计学习理论(SLT)是一种专门研究小样本情况下及其学习规律的理论。该理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将许多现有方法纳入其中,有望帮助解决许多原来难以解决的问题,如神经网络结构选择问题、局部极小点问题等;同时,在这一理论基础上发展了一种新的通用学习方法——支持向量机(SVM),已初步表现出很多优于已有方法的性能。一些学者认为,SLT和SVM正在成为继神经网络研究之后新的研究热点,并将推动机器学习理论和技术的重大发展。 支持向量机方法是建立在统计学习理论的VC维(VC Dimension)理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 支持向量机的几个主要优点有: (1)它是专门针对有限样本情况的,其目标是得到现有信息下的最优解而不仅仅是样本数趋于无穷大时的最优值; (2)算法最终将转化成为一个二次型寻优问题,从理论上说,得到的将是全局最优点,解决了在神经网络方法中无法避免的局部极值问题; (3)算法将实际问题通过非线性变换转换到高维的特征空间(Feature Space),在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,特殊性质能保证机器有较 好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关; 2.支持向量机算法简介 通过学习算法,SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。 最优分类面(超平面)和支持向量

支持向量机SVM分类算法

支持向量机SVM分类算法 SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。 机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。 这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛

随机森林与支持向量机分类性能比较

随机森林与支持向量机分类性能比较 黄衍,查伟雄 (华东交通大学交通运输与经济研究所,南昌 330013) 摘要:随机森林是一种性能优越的分类器。为了使国内学者更深入地了解其性能,通过将其与已在国内得到广泛应用的支持向量机进行数据实验比较,客观地展示其分类性能。实验选取了20个UCI数据集,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行,得到的结论可为研究者选择和使用分类器提供有价值的参考。 关键词:随机森林;支持向量机;分类 中图分类号:O235 文献标识码: A Comparison on Classification Performance between Random Forests and Support Vector Machine HUANG Yan, ZHA Weixiong (Institute of Transportation and Economics, East China Jiaotong University, Nanchang 330013, China)【Abstract】Random Forests is an excellent classifier. In order to make Chinese scholars fully understand its performance, this paper compared it with Support Vector Machine widely used in China by means of data experiments to objectively show its classification performance. The experiments, using 20 UCI data sets, were carried out from three main aspects: generalization, noise robustness and imbalanced data classification. Experimental results can provide references for classifiers’ choice and use. 【Key words】Random Forests; Support Vector Machine; classification 0 引言 分类是数据挖掘领域研究的主要问题之一,分类器作为解决问题的工具一直是研究的热点。常用的分类器有决策树、逻辑回归、贝叶斯、神经网络等,这些分类器都有各自的性能特点。本文研究的随机森林[1](Random Forests,RF)是由Breiman提出的一种基于CART 决策树的组合分类器。其优越的性能使其在国外的生物、医学、经济、管理等众多领域到了广泛的应用,而国内对其的研究和应用还比较少[2]。为了使国内学者对该方法有一个更深入的了解,本文将其与分类性能优越的支持向量机[3](Support Vector Machine,SVM)进行数据实验比较,客观地展示其分类性能。本文选取了UCI机器学习数据库[4]的20个数据集作为实验数据,通过大量的数据实验,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行比较,为研究者选择和使用分类器提供有价值的参考。 1 分类器介绍 1.1 随机森林 随机森林作为一种组合分类器,其算法由以下三步实现: 1. 采用bootstrap抽样技术从原始数据集中抽取n tree个训练集,每个训练集的大小约为原始数据集的三分之二。 2. 为每一个bootstrap训练集分别建立分类回归树(Classification and Regression Tree,CART),共产生n tree棵决策树构成一片“森林”,这些决策树均不进行剪枝(unpruned)。在作者简介:黄衍(1986-),男,硕士研究生,主要研究方向:数据挖掘与统计分析。 通信联系人:查伟雄,男,博士,教授,主要研究方向:交通运输与经济统计分析。 E-mail: huangyan189@https://www.360docs.net/doc/2f10955496.html,.

SVM分类器的原理及应用

SVM分类器的原理及应用 姓名:苏刚学号:1515063004学院:数学与计算机学院 一、SVM分类器的原理 SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具 有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以 最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边 界样本的类别来决定最后的分类结果。支持向量机算法的目的在于寻找一个超平面H(d),该 超平面可以将训练集中的数据分开,且与类域边界的沿垂直于该超平面方向的距离最大,故SVM法亦被称为最大边缘(maximum margin)算法。待分样本集中的大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响,SVM法对小样本情况下的自动分类有着较好的 分类结果. SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性 可分的问题。简单地说,就是升维和线性化。升维,就是把样本向高维空间做映射,一般情 况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以 通过一个线性超平面实现线性划分(或回归)。一般的升维都会带来计算的复杂化,SVM方 法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复 杂性,而且在某种程度上避免了“维数灾难”。这一切要归功于核函数的展开和计算理论。 选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种: ⑴线性核函数K(x,y)=x·y; ⑵多项式核函数K(x,y)=[(x·y)+1]^d; ⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2); ⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b);

支持向量机原理及matlab实现

1. Introduction Statistics for numeric domains: 2. Algorithm Description 考虑到数据的可分性,对年龄的预测是一个回归问题,所以采用支持向量机对数据进行回归分析。 一、支持向量机的基本原理 支持向量机(SVM)是Corinna和Vapnik于二十世纪末首先提出的。支持向量机方法Vapnik-Chervonenkis理论与构造风险最小理论为根底,使离超立体最接近的元素到超平面的间隔最大。通常超平面不止一个,也就是说支持向量机的目标就是最大化超平面之间的间隔,也就是建立最好的分类超平面,从而来提高学习分类机器的的泛化处理能力。该方法在解决高维小样本数据、数据的非线性以及解的局部极小点等多个问题中均展示出了很多独有的优点,并进而将其推行使用到了其余相联系的机器学习问题中。支持向量机方法早已被广泛的应用到了肿瘤数据分类等领域的问题研究中。

支持向量机的具体求解过程如下: (1) 设已知样本训练集: ()(){}() 11,, ,n n n T x y x y X Y =∈? 其中,{}(),1,11,2,,n i i x X R y Y i n ∈=∈=-+=,i x 为特征向量。 (2) 选择适当核函数(,)i j K x x 以及参数C ,解决优化问题: ()111 1,2min n n n i i j j i j j i j j y y K x x αααα===-∑∑∑ 1.. 0,0,1, ,n i i i i s t y C i n αα==≤≤=∑ 得最优解:()*** 1,...,T n ααα=。 (3) 选取α* 的正分量,计算样本分类阈值:* *1 (,)l i i i i j i b y y K x x α==-∑。 (4) 构造最优判别函数: 1()sgn (,)n i i i j i f x y a K x x b **=?? =+???? ∑。 支持向量机内积核核函数K 的主要种类有: ① 线性内核函数 (,)(,)i j i j K x x x x = ② 多项式核函数 (,)[(,)1q i j i j K x x x x =+ ③ 高斯径向基核函数 (RBF) 2 2 (,)e x p {} i j i j x x K x x σ-=- ④ 双曲正切核函数 (Sigmoid 核函数) (,)t a n h (()i j i j K x x v x x c =?+ 一般地,用SVM 做分类预测时必须调整相关参数(特别是惩罚参数c 和核函数参数g ),这样才可以获得比较满意的预测分类精度,采用Cross Validation 的思想可以获取最优的参数,并且有效防止过学习和欠学习状态的产生,从而能够对于测试集合的预测得到较佳的精度。 根据输入数据的线性可分性(线性可分或近似线性可分和线性不可分),可以将支持向量机分为两大类:非线性支持向量机、线性支持向量机。 (1)线性支持向量机 若要介绍线性支持向量机,首先需要介绍下一个定义:线性分类器。A 、B 是两个不同的类别,需要在其中间加一个分类函数,这样就能够将A 、B 样本区分开,那么则说这个数据集是线性可分,其所对应的分类器便是线性分类器。对于二维空间,显然,分类函数可以看成是一条直线。同理,三维空间里分类函数就是一个平面,忽略空间的维数,分类函数就可以统称为超平面。 (2)非线性支持向量机

相关文档
最新文档