盾构施工渣土改良专项方案

盾构施工渣土改良专项方案
盾构施工渣土改良专项方案

编制依据

(1)隧道施工图

(2)铁路隧道工程施工技术指南(TZ204-2008)

(3)公司《质量管理体系-要求》(GB/T19001-2000)

一、工程概况

本工程盾构区间总长度3566.5m ,附属工程包括7个联络通道、2 个防淹门、12 个洞门。盾构区间采用德国进口的两台直径8.84 米的海瑞克土压平衡盾构机进行施工。

二、工程地质条件和水文地质条件

2.1地形地貌

本线地处广东省中部,沿线经过珠江三角洲海陆交互沉积平原区,地形平坦,地面高程多为0~10m,仅佛山西站附近有零星剥蚀残丘分布,高程10~20m。区内道路纵横,水网发达,河流纵多,主要河流有汾江、东平水道、吉利涌、潭洲水道、陈村水道等,均为通航河道。

2.2工程地质条件

(1)洞身地层本标段区间盾构隧道范围地层岩性按成因和时代分类主要有:第四系人工填土层<1-1>;第四系全新统海陆交互沉积层<2-1>、<2-2>、<3-1>、<3-2>、<3-3>、<3-4>、<4-1>;第四系全新统残积层<5>;白垩系下统基岩<7-1>、<7-2>、<7-3>。在里程DK31+439~DK32+260洞身范围地层主要为上软下硬,上部为砂层或全风化或强风化砂质泥岩、砂岩W4、W3(821m);里程DK32+260~DK34+50洞0 身范围地层主要为弱风化砂质泥岩、砂岩W2(2240m);里程

DK34+500~DK35+005.5洞身范围地层主要为上软下硬,上部为强风化砂质泥岩、砂岩W3,下部为弱风化砂质泥岩、砂岩W2(500.5m)。

(2)洞身地层分布统计根据目前提供的地质断面图,隧道洞身地层统计如下表所示:

表隧道地层统计

(3)岩层特性

全风化砂质泥岩、砂岩W4:灰色,棕红色,原岩结构已经破坏,岩芯呈土状,水浸易软化崩解。

强风化砂质泥岩、砂岩W3:棕红色、深灰色,泥质、铁质胶结,裂隙很发育,岩芯呈碎块状、局部短柱状,锤击易碎。

弱风化砂质泥岩、砂岩W2:棕红色、深灰色,泥质、铁质胶结,中厚层状构造,裂隙稍发育,岩芯呈短柱状、柱状。

(4)岩石的物理力学性质根据我司的勘察报告,在岩样中取样进行岩石试验及原位测试,结果如下所示:

岩石(弱风化)的天然抗压强度最大值为53.0MPa,最小值3.7MPa,平均值20.36MPa。

强风化岩层的推荐基本承载力为400kPa。

全风化岩层的实测标准贯入试验值N=10~59 击,标贯平均击数36击。○Ⅲ级硬土,推荐基本承载力为200kPa。

2.3水文地质条件

2.3.1地表水

地表水:线路主要经过河涌和陈村水道,地表水系主要为陈村水道水系2.3.2地下水

地下水主要是第四系土层中的孔隙水和基岩风化裂隙水。勘测期间测得第四系孔隙潜水地下水水位埋深在0.4 ~6.1m;主要接受大气降水、地表补给,通过地表蒸发、人工开采、地表径流等方式排泄。

第四系孔隙水主要赋存于海陆交互沉积层中的粉砂、细砂、中砂、粗砂中,海陆交互含水层厚度较大,分布较连续,径流畅通,渗透性好,水量较为丰富。

基岩风化裂隙水主要赋存于白垩系下统强、弱风化砂岩、泥岩及泥岩夹砂岩风化节理裂隙中,含水层埋深和厚度差异较大,砂岩、泥岩节烈裂隙较发育,水量一般。由于岩性及裂隙发育程度的差异,其富水程度与渗透性也不尽相同,裂隙发育,连通性较好,渗透性较强富水较好。

三、设备配置

本标段盾构区间采用德国进口的两台直径8.8 米的海瑞克土压平衡盾构机进行施工,渣土改良系统主要包括泡沫系统和膨润土系统,同时刀盘形式对渣土能否顺利进入土仓有很大影响。

3.1 泡沫系统泡沫系统主要包括泡沫剂桶、泡沫剂泵、水泵、溶液计量调节阀、空气剂量调节阀液体流量计、气体流量计、泡沫发生器及连接管路,泡沫系统有8 条泡沫管,分别通往刀盘面,土仓,螺旋输送机,其泡沫发生原理见图3-1 ,各部件连接示意图见图3-2 。向盾构机掘进仓中注入泡沫发生装置产生的泡沫,用于掘进面土壤的性状改良,掌子面土层在加入泡沫后,其塑性、流动性、防渗性都得到改进,同时亦可减少刀具的磨损。

图3-1 泡沫发生原理图

图3-3 泡沫原液泵、水泵图3-4 泡沫剂混合系统泡沫系统有关参数介绍如下:稀释液浓度(x) :稀释液中所含发泡剂原液的比例

FER=泡沫体积/ 稀释液体积

FIR=泡沫注入量/ 开挖土方量,即注入泡沫体积总量与盾构机刀盘切削的原状岩土的实方比

3.2膨润土系统

盾构机配置有一套膨润土注入系统。在确定不使用泡沫剂的情况下,关

闭泡 沫输送管道, 同时将膨润土输送管道打开, 通过输送泵将膨润土压入刀盘、 碴仓 和螺旋输送机内,达到改良碴土地目的。

根据实际需要, 可以把膨润土箱内装入泥浆注入土仓内。 膨润土只应用在一 些特殊的工程下。

四、渣土改良方法

4.1 渣土改良必要性 土压平衡式盾构的特点是用开挖出的渣土作为支撑开挖面稳定的介质, 因此 要求作为支撑介质的渣土具有良好的塑性变形和软稠度, 以及内摩擦角小及渗透 率小等特点。由于一般土壤不能完全满足这些特性, 所以要进行改良, 其技术要 点是在刀盘前部和泥土仓中注入水、 膨润土泥浆、 粘土、聚合物或泡沫等混合添 加材料,经强力搅拌,改善开挖渣土的塑性、流动性,降低渣土的透水性。

在富水含砂地层的掘进主要是要降低对刀具磨损、 降低刀盘扭矩、 螺旋

输送 机的磨损,防止喷涌,采取向刀盘前和土仓内及螺旋输送机内注入泥浆或泡沫混 合物的方法来改良碴土。 并增加对螺旋输送机内注入量, 以利于螺旋输送机形成 土塞效应,防止喷涌。

根据设计提供的地质勘察报告可知,本项目盾构前段区间 820m 左右和尾

段 区间 500m 左右为砂层、淤泥层及全强风化层,且地下水丰富,地下水位较高, 且上部砂层渗透性较好, 粘性较小, 不易形成密闭空间, 盾构在该区段掘进存在 喷涌的风险,且盾构机在砂层中掘进时对刀具磨损较快,增大了开仓换刀频率。

图 3-5 膨润土图 3-6 膨润土

同时该地层属于软弱地层,容易塌陷,且在始发和到达段附近,隧道埋深较

浅, 存在土仓漏气而保不住气压的风险。 因此,在盾构掘进过程中, 要保证出渣顺畅, 维持仓内土压(或气压)平衡,快速通过。

4.2 渣土改良剂种类

渣土改良剂能较好解决以上问题, 在盾构机掘进时, 向开挖面、 土仓

等处加 注改良添加剂,其具体功能如下:①对于富含水砂层,一方面止水,另一方面可 以改善砂的和易性; ②在砂性土和砂砾土地层中, 可以起到支撑作用而且可以改 善土的流动性; ③在粘性土层, 可以防止渣土附着刀盘和土仓室内壁, 另一方面, 由于改良剂中的微细气泡可以置换土颗粒中的孔隙水,因而可以达到止水效果。 目前常用的渣土改良剂包括膨润土、泡沫剂、高分子聚合物、增粘剂等,不同种 类改良剂的适用范围和改良效果有很大差别,具体见下表 4-1 。

各种改良剂特点及适用范围

4.3 泡沫剂的应用

在实际操作过程中,通过调整螺旋输送机的转速,可以调整土仓内土压

力, 而在不同地层和操作条件下, 渣土的类别和性质都不一样, 必须加入外加剂来改 良渣土。土压平衡盾构成功的关键是要将开挖面开挖下来的土体在土仓内调整成 一种“塑性流动状态”。

1、 发泡剂的使用量参数

数: ① 稀释液浓度 (x) 稀释液中所含发泡剂原液的比例,一般取值为 2%~

5%。

② 发泡倍率 FER

FER=泡沫体积 / 稀释液体积,一般取值为 8~15

③注入率FIR

FIR=泡沫注入量/ 开挖土方量。即注入泡沫体积总量与刀盘切削的原状岩土的实方比,通常取值20~45%。

表4-2 不同地层中注入率

2、泡沫用量计算

①泡沫流量Q F:Q F=A*V*FIR (1)

泡沫总流量,以L/min 为单位,

式中,

A=隧道开挖面积,A=3.14*(8.84/2)*(8.84/2)=61.3m 2;

V= 盾构推进速度;FIR=注入率。

②稀释液流量QL:Q L=Q F/FER=A*V*FIR/FER (2)

泡沫剂原液加水稀释后的混合物,通常按照2~5%的比例进行,以L/min 为单位;

式中,

V ——盾构推进速度;FIR——注入率;FER——发泡倍率。

则:原液流量Q=Q L*x (x=稀释液浓度)

③压缩空气流量QA:

Q A=Q F-Q L =A*V*FIR*(P+1)*(1-1/FER)(3)

即注入压缩空气的流量。

式中P=空气支持压力(相对压力,一般P=0.2~0.3MPa)

3、本工程泡沫剂用量计算

根据本工程实际情况确定以下参数:

盾构机开挖直径R=8.84m,故A=61.3m2 ;盾构机推进速度取

V=0.03m/min 。

稀释液浓度x=3%;注入率FIR=35%;发泡倍率FER=10 空气支持压力P =0.3MPa

按照公式(1): Q F=A*V*FIR

求得泡沫流量Q F=643.7 L/min ;

按照公式(2): Q L=A*V*FIR/FER 求得稀释液流量Q L=64.4L/min ;按照公式(3): Q A= A*V*FIR*(P+1)*(1-1/FER)求得压缩空气量Q A=2.317m3/min;

原液流量Q=Q L*X= 64.4L/min*3%=1.932 L/min 掘进1 米所需时间:1/0.03=33.33 min 每米用量为:33.33*1.932=64.39 L 每环用量为:64.39*1.6=103.0L

4、中控室电脑显示操作:

图4-1 F2 泡沫显示图

8

图4-2 F2 泡沫显示图

图4-3 泡沫参数调整

4.4 膨润土的使用膨润土浆液对土体的改良作用主要体现在较好的润滑及降低抗剪强度,浆液中的膨润土掺量、膨润土浆液的注入率均对土体改良效果产生影响。一般情况下浆液中膨润土掺量越高,则浆液的质量性能越好,相应的改良作用也较明显;浆液注入章越高,则相应的改良作用也越大。但掺量不宜过大,否则会造成土体的分层离析,不利于盾构开挖而的稳定。具体产掺入量和注入量要根据现场地层条件和膨润土品质进行试验,以确定最佳配比。

盾构施工用膨润土必须保证膨润土的质量,严禁膨润土泥浆中含有硬质颗粒,以防损坏中心回转体或卡死刀盘泡沫管路中的止回阀。

4.5 两种改良方式适用地层适合使用膨润土改良的地层,(1)细粒含沙量少的土体,膨润土泥浆能够补充砂砾土中相对缺乏的微细粒含量,提高和易性,级配性,从而可以提高止水性;(2)透水性高的土体,在高透水性土体中膨润土泥浆较易渗入,并形成具有气密性的泥模,可有效改善渣土喷涌。本工程中,里程DK32+260~DK34+500 洞身范围地层主要为弱风化砂质泥岩、砂岩W2(2240m),用膨润土泥浆对渣土进行改良较为适合。

适合使用泡沫改良的地层,(1)泡沫更适合于颗粒级配相对良好的土体,在级配良好的土体中,泡沫和土体颗粒结合得更完整和致密,容易形成更多封闭的空间(2)泡沫更适合平均粒径较大的土体(3)泡沫更适合含

水量较高的土体。本工程中,前面800m左右和尾段500m左右上部为砂层、淤泥层及全/ 强风化砂岩和泥岩,使用泡沫剂改良能取得较好效果。

五、防喷涌措施

本盾构区间附近河涌、水道较多,地下水丰富且水位较高,根据地质剖面图可知,线路洞身地层前800m左右主要为砂层、淤泥层及全/ 强风化砂岩和泥岩,中间,尾段500m左右上软下硬地层,上部为强风化砂质泥岩、砂岩,下部为弱风化砂质泥岩、砂岩。砂层渗透系数大,难以形成封闭空间,较易发生喷涌。喷涌的发生不但影响正常施工排土和压力舱压力的控制,严重时会过多的将开挖面和管片四周的土、砂带出,造成地表沉降、塌陷,管片漏水、移位等施工事故。

5.1喷涌产生原因

地层条件、水压、掘进参数是喷涌发生的决定因素,在砂层、砂卵石等敏感地层,地下水的通路没有阻断,泡沫剂或膨润土易稀释,土体改良效果差,未能有效改变土体的渗透性.在水流量大或水力梯度大的情况下,极易发生喷涌。

在中风化或者微风化岩层中,若裂隙水发育,后方水路又未封闭,土仓内土体由于水流的影响难以改良时,也经常会发生喷涌现象。高压力的水体穿越土仓和螺旋输送机形成集中渗流带动土仓内的土颗粒一起涌动,较大水流量的渗流经过土仓和螺旋输送机后其压力水头没有递减到接近于零的范围。渗流夹带土颗粒在输送至螺旋输送机出口的一瞬间,由于前方是临空的隧道内部,处于无压状态,渗流水便在忽然降低的压力下带动正常输送的砂土喷涌而出。

5.2防止喷涌措施

(1)严格控制掘进参数,注重同步注浆,裂隙水发育的情况下,要分段

做止水环,避免水路连通;

(2)认真分析勘探资料,在隔水层缺失的地层掘进要严格控制土仓压力,以免喷涌发生后土压难以建立,引起地面的塌陷;

(3)避免停机后开启螺旋输送机闸门引发的喷涌,在停机时要严格判断土仓压力显示的是土压还是水压;

(4)做好施工工序安排,减少盾构机停机等待的时问,从而减少土仓内的积水;

(5)控制每环的出渣量,在停机时适当建立土仓内的土压,使之大于停机处地层的水土压力,必要时可通过泡沫管路向土仓内适当加入压缩空气。

5.3喷涌发生时的处理措施

(1)分析喷涌原因

对于螺旋输送机的喷涌现象,首先应确认螺旋输送机喷涌的原因:水量增大导致渣土过稀不能在螺旋输送机形成堵塞效果?则尝试加快速度,使渣土变得浓稠,渣土被土仓内较大气压压出而且螺旋输送机内不能形成堵塞效果?则尝试检查泡沫发生效果,是否由于泡沫在压力状态下寿命过短或注入泡沫量过大。土仓内渣土的水量不能控制?则应首先通过管片二次注浆确定切断水从管片后部汇流所致,再尝试以泡沫会膨润土方式隔阻掌子面来水(2)在螺旋输送机停止旋转并且螺旋输送机后舱门开度无论如何调节仍无法满足渣土出土量控制时,应尝试反向旋转螺旋输送机出渣,避免所出渣土过量。

(3)控制螺旋出土器的转速,可以保证掘进中遇到突发性地下涌水的时候,能使螺旋机中的碴土有效地形成“土塞”,以便在封堵涌水的同时,还能将土仓中的碴土带出,继续掘进。不会出现带式螺旋从螺旋芯部不受控制地涌水的情况。

(4)螺旋出土器出料口可以用滑动闸门关上,然后向土舱内注入添加剂进行土壤调节后,再打开滑动闸门出土。滑动闸门靠液压油缸控制,具有停电时自动关闭的紧急功能,以防出现喷涌的时候恰逢停电,造成不可预料的事故。

六、防结泥饼措施

泥饼是盾构刀盘切削下来的细小砂土颗粒、碎屑在土仓内重新聚集而成的半固结和固结状的块状体,泥饼的存在加重了盾构机刀盘和刀具的负荷,常常使掘进参数出现突变,使施工效率大大降低。

6.1泥饼的成因

(1)地层原因

隧道穿越的复合地层多为全/ 强风化的泥岩、泥质粉砂岩、泥质砂岩,这几类岩层富含粘土矿物颗粒,在刀具的切削和刀盘的冲击作用下,岩块变成碎屑和粉末状,这些碎屑粉末状的粘土颗粒是形成泥饼的基础材料。本盾构区间在始发段和尾段上覆土为砂土和淤泥质土,岩层为全/强风化泥质砂岩,较易形成泥饼。

(2)盾构机刀盘和刀具的影响盾构刀盘和刀具设计制造缺陷会导致施工掘进中泥饼的产生,刀盘中心区开口率是泥岩和砂岩地层盾构掘进中结泥饼的重要因素。刀盘内的搅拌棒及幅条型式、数量也是泥饼产生的因素。刀具布置不合理会导致切削下的砂土块度不均、滚刀磨损,进而降低掘进和排土效率,使其产生泥饼。本区间盾构机刀盘开口率为26%,开口率较低,在掘进过程中要采取有效措施防止泥饼形成。

(3)施工控制因素

除地层地质和刀盘刀具设计制造缺陷外,施工过程中操作手的行为也是刀盘结泥饼的一个不可忽视的因素,归结为以下几条:

a)未能正确判断复合地层下的盾构掘进模式在土压平衡模式时土仓内土压设定值过高,导致切削下来的渣土不能顺利通过螺旋机排出,在土仓内堆积挤压,密实度和密度越来越大,最终形成泥饼。

b)掘进施工中砂土改良不到位

为改善切削砂土的和易性(干稀度、流动性),通常在刀盘和土仓内加入水、膨润土和泡沫剂,泡沫剂是一种化学物质,它对砂土有膨化、润滑和降低附着力的作用,对降低砂土和刀盘刀具温度也起主要作用。施工过程中因经验和现场判断失误,对加入的改良剂的浓度配比、注入压力、注入量等掌握不准,导致砂土得不到很好改良,促成泥饼产生。

c)盾构机械维护保养问题

因系统冷却水温度偏高,或是刀盘高速旋转后与周围土体介质摩擦生热,使土仓内温度升高,对泥饼有烧结促成作用。设置在刀盘面板上的注入孔时常被堵塞,无法适时按量加入泡沫剂,砂土和易性得不到有效改良。

6.2防结泥饼施工措施

设计上,在土仓内设置土压力传感器,及时反映土仓内泥土粘附情况,预防泥饼的形成。刀盘内侧(土仓侧)设有搅拌棒,随刀盘一起转动,可加速

土体流动及对螺旋机喂料,减少泥饼的形成。在施工中将采取如下措施:

(1)粘性土地层砂土的土体改良

在粘性土地层中的土压平衡盾构施工区段,为了降低土体间的粘聚力、减少土仓中土体压实结密的可能性、减少掘削土体与盾构机刀盘及结构间的粘着力,应改善土体的和易性,保证土仓内土压力的稳定性和出土的顺畅。在施工过程中,应及时观察所排土体的情况,分析土体粘性和含砂粒比例的情况,及时添加适量的土体改良剂——泡沫,进行土体改良,以减小土体粘性度和粘着力。

(2)盾构掘进参数的设定

在粘性土地层中的土压平衡盾构施工区段,土压力的设定以理论的土压力为基础,并作适当降低,具体可根据实际操作作调整。但在施工过程中必须观测分析盾构穿越地层的特性,在推进过程中应充分了解施工速度、盾构掘进性能、泥土温度之间的能量转换关系及其对泥饼形成的影响。控制好推进速度,减少泥饼产生的机率。

(3)土压力传感器的设置

在土仓内不同高度设置土压力传感器,通过两个固定高度点的土压力差可测出土体的表观密度;在感觉有泥饼生成前应用500×10-6/700×10-6漏斗法对土样的粘度进行测量,当粘度指标大于12s 时应在注入泡沫剂和膨润土方面加强,改良砂土的和易性。

(4)控制循环水温度

严格控制土砂密封温度,其密封温度与刀盘的冷却程度有很大关系,循环水是刀盘冷却系统的主要介质。当外界气温高于30℃、隧道内通风系统的功能较差时,随着单环掘进时间的增加,土仓内的温度很容易上升,因此应控制冷却水的温度,必要时需使用冰水。

(5)快速均衡施工盾构施工要求“连续、快速、稳定”,长时间的停机会导致土仓内土压逐步升高、流动性减弱、刀盘及刀具板结泥饼的可能性增加;掘进速度太慢,生成泥饼的可能性越大。

(6)定期开舱、清舱盾构施工中的开舱检查好比人的体检一样,要定期进行,而不是在出现病态后才采取补救措施。定期的开舱可以较准确地掌握前方地层的地质状况和刀具的磨损情况,对刀盘结泥饼可起到预防作用,

当检查出刀盘有泥饼粘着的情况时应及时、彻底清理。

七、质量安全保证体系

7.1组织架构

图7-1 质量管理架构图

7.2安全保证措施

渣土改良的过程伴随着盾构掘进的过程,互相影响,要想实现不断高效掘进,应确保渣土改良过程安全可靠,主要安全保障措施如下:

(1)膨润土的运输、拌合、发酵过程要注意安全;

(2)泡沫剂垂直与水平运输的要保证安全;

(3)如发生严重喷涌时,应远离螺旋输送机出土口,以免高压泥浆喷出受伤;

(4)渣土改良过程中要注意避免造成机械伤害。

7.3质量保证措施

在渣土改良能过程中,泡沫剂的发泡效率和膨润土的质量对渣土改良效果起着至关重要的作用,盾构机操作人员只有准确地掌握所使用泡沫剂的发泡率和稀释液最适合浓度,才能正确调整泡沫剂注入量,以达到最佳改良效果。膨润土的掺入量和浆液的配比是准确计算膨润土注入量的基础。同时膨润土必须纯净无颗粒,否则极易造成堵管。为控制改良剂质量,应做好一下几点措施:

(1)保证膨润土材料的质量;

(2)严格按照配合比拌制,并保证膨润土膨化时间;

(3)当确定使用膨润土泥浆改良时,要保证每环注入量;

(4)保证泡沫剂的质量;

(5)使用之前进行试验,确定最佳稀释比例、发泡率以及相应的半衰期;

6) 改良剂在拌合和使用过程中均要注意防止杂志进入,以免影响改良

效果和堵塞系统管道。

目录

编制依据 (1)

一、工程概况 (1)

二、工程地质条件和水文地质条件 (1)

2.1地形地貌 (1)

2.2工程地质条件 (1)

2.3水文地质条件 (3)

三、设备配置 (3)

3.1泡沫系统 (3)

3.2膨润土系统 (5)

四、渣土改良方法 (5)

4.1渣土改良必要性 (5)

4.2渣土改良剂种类 (6)

4.3泡沫剂的应用 (6)

4.4膨润土的使用 (9)

4.5两种改良方式适用地层 (9)

五、防喷涌措施 (10)

5.1喷涌产生原因 (10)

5.2防止喷涌措施 (10)

5.3喷涌发生时的处理措施 (11)

六、防结泥饼措施 (11)

6.1泥饼的成因 (12)

6.2防结泥饼施工措施 (13)

七、质量安全保证体系 (14)

7.1 组织架构 (14)

7.2安全保证措施 (14)

7.3质量保证措施 (14)

1

盾构分体始发掘进专项施工方案

第一章编制依据 1、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建施工项目招标文件、招标图纸、地质勘查报告、补遗书及投标文件。 2、广州市轨道交通六号线盾构7标段【天平架~燕塘~天河客运站】盾构区间土建工程承包合同。 3、广州市轨道交通六号线盾构7标段补充地质勘测资料、管线调查及现场调查资料。 4、广州市轨道交通六号线盾构7标段施工设计图纸。 5、国家现行有关施工及验收规范、规则、质量技术标准,以及广州地区在安全文明施工、环境保护、交通组织等方面的规定。 6、我公司在广州地铁建设中的成功的施工经验和研究成果及现有的施工管理水平、技术水平、科研水平、机械设备能力。 第二章工程概况 一、始发端头工程地质、水文概况 ㈠工程地质 根据《广州市轨道交通线网岩土工程勘察总体技术要求》的地铁沿线岩土分层系统和沿线岩土层的成因类型和性质、风化状态等,本基坑内各岩土分层及其特征如下: <1>人工填土层(Q4ml) 主要为杂填土和素填土,颜色较杂,主要为褐黄色、灰色、灰褐色、褐红色等,素填土组成物主要为人工堆填的粉质粘土、中粗砂、碎石等,杂填土则含有砖块、砼块等建筑垃圾或生活垃圾,大部分稍压实~欠压实,稍湿~湿。本层标贯击数6~18击,平均击数11击。 <4-2>河湖相沉积土层(Q3+4al) 呈深灰色、灰黑色,主要为淤泥及淤泥质土组成,组成物主要为粘粒,含有机质、朽木,饱和,流塑状,局部夹薄层细砂。标贯实测击数1~2击,平均击数为1.5击。 <5H-2>硬塑~坚硬状花岗岩残积土层 黄褐色、红褐色、灰白色、灰褐色、黑褐色等色,组织结构已全部破坏,矿物成分除石英外大部分已风化成土状,较多细片状黑云母,以粉粘粒为主,含较多中粗砂、砾石。残积土遇水易软化崩解。主要为砾质粘性土、砂质粘性土、粘性土,呈硬塑~坚硬状。

地铁盾构渣土改良研究报告

盾构渣土改良研究报告北京地铁8号线天桥站~永定门外站

目录 1 渣土改良研究现状 (1) 1.1 渣土改良的原因 (1) 1.2 渣土改良的作用及目的 (4) 1.2.1 渣土改良的作用 (4) 1.2.2 渣土改良要达到的状态 (4) 1.3 常用的土体改良剂 (5) 1.3.1 界面活性材料类 (6) 1.3.2 矿物类 (9) 1.3.3 高分子类聚合物 (11) 1.3.4 分散剂 (13) 1.3.5 水 (13) 1.3.6 不同渣土改良剂比较 (13) 1.4 渣土改良剂添加部位 (14) 2渣土改良应用实例 (15) 2.1 无水砂卵石地层 (15) 2.1.1 北京地铁4号线20标 (15) 2.1.2 北京地铁10号线2期 (15) 2.1.3 北京地铁10号线(莲花桥—六里桥) (15) 2.1.4 北京地铁4号线(动物园站—双榆树站) (16) 2.1.5 北京地铁5号线试验段 (17) 2.1.6 北京地铁4号线角门北路站—北京南站 (17) 2.1.7 北京地铁9号线丰台东大街站—丰台北路站 (18) 2.1.8 北京地铁7号线达官营站—广安门内站区间 (18) 2.1.9 无水砂卵石地层渣土改良应用小结 (18) 2.2 富水砂卵石地层 (19) 2.2.1 北京地铁九号线六标 (19) 2.2.2 成都地铁一号线 (19) 2.2.3 长沙地铁2号线(体育公园—长沙大道) (20) 2.2.4 富水砂卵石地层渣土改良应用小结 (21) 2.3 粉质黏土、粉土层 (21) 2.4 全断面砂层 (21) 2.4.1 西安地铁一号线二标 (21) 2.4.2 哈尔滨地铁一号线(程哈东站—南直路站) (22) 2.4.3 广州地铁3号线(珠江新城站—客村站) (22) 3 不同地层渣土改良剂选用 (24) 3.1 软土地层 (24) 3.2 砂卵石地层 (24) 3.3 砂性土地层 (25) 3.4 硬岩地层 (26) 3.5 富水地层 (26) 3.6 总结 (26) 4 北京地铁八号线三期05标渣土改良 (28)

盾构施工渣土改良专项方案

编制依据 (1)隧道施工图 (2)铁路隧道工程施工技术指南(TZ204-2008) (3)公司《质量管理体系-要求》(GB/T19001-2000) 一、工程概况 本工程盾构区间总长度3566.5m ,附属工程包括7个联络通道、2 个防淹门、12 个洞门。盾构区间采用德国进口的两台直径8.84 米的海瑞克土压平衡盾构机进行施工。 二、工程地质条件和水文地质条件 2.1地形地貌 本线地处广东省中部,沿线经过珠江三角洲海陆交互沉积平原区,地形平坦,地面高程多为0~10m,仅佛山西站附近有零星剥蚀残丘分布,高程10~20m。区内道路纵横,水网发达,河流纵多,主要河流有汾江、东平水道、吉利涌、潭洲水道、陈村水道等,均为通航河道。 2.2工程地质条件 (1)洞身地层本标段区间盾构隧道范围地层岩性按成因和时代分类主要有:第四系人工填土层<1-1>;第四系全新统海陆交互沉积层<2-1>、<2-2>、<3-1>、<3-2>、<3-3>、<3-4>、<4-1>;第四系全新统残积层<5>;白垩系下统基岩<7-1>、<7-2>、<7-3>。在里程DK31+439~DK32+260洞身范围地层主要为上软下硬,上部为砂层或全风化或强风化砂质泥岩、砂岩W4、W3(821m);里程DK32+260~DK34+50洞0 身范围地层主要为弱风化砂质泥岩、砂岩W2(2240m);里程 DK34+500~DK35+005.5洞身范围地层主要为上软下硬,上部为强风化砂质泥岩、砂岩W3,下部为弱风化砂质泥岩、砂岩W2(500.5m)。 (2)洞身地层分布统计根据目前提供的地质断面图,隧道洞身地层统计如下表所示: 表隧道地层统计

渣土池施工方案

目录 1渣土池概况 (2) 2渣土池施工 (2) 2.1渣土池施工技术控制 (2) 2.2施工工艺流程 (4) 2.3施工允许偏差和检查方法 (5) 2.4钢筋施工质量保证措施 (5) 2.5模板施工质量保证措施 (6) 2.6混凝土施工质量保证措施 (6) 3安全文明施工 (7)

九龙山站~大望路站 盾构工作井渣土池施工方案 1渣土池概况 九大区间盾构渣土池位于盾构始发井北侧,外皮尺寸为18m×18m,占地面积324m2,有效面积约208m2,地面以下深1m,地面以上高4米,能容纳渣土约900m3。东西两侧距45t龙门吊轨道1m,南侧紧靠盾构井围护结构。渣土池南侧设7.5m×4m宽出土平台,用于挖机行走,渣土池平面位置见图1。渣土池为钢筋混凝土挡土墙+0.4*1.5m梯形柱;渣土池混凝土结构上为工字钢立柱+钢板围挡,高2米。 2渣土池施工 2.1渣土池施工技术控制 渣土池开挖范围内有自来水闸井2个、排气井1个,热力小室井盖6个,地面以下1.8m左右有自来水管,东侧地面以下0.5米有热力小室,并存在通信光缆。开挖采用人工挖探和PC220挖机开挖,开挖过程中要注意保护地下管线,避免挖断水管和电缆。开挖到基坑底部后将所有井盖砌筑到渣土池底板标高。开挖到设计深度后回填夯实并浇注10cm砼垫层。 渣土池挡土墙为钢筋混凝土结构,采用混凝土等级为C30.,挡土墙厚40cm,底板厚35cm。侧墙设梯形柱,间距3.5m~4.5m,宽400cm下部长150cm,上部长100cm,横筋锚入挡土墙内。挖机平台加强同侧墙,地面用C30混凝土硬化30cm布置一层Φ16@200*200mm钢筋网,钢筋网锚入挡墙。

地铁盾构施工总结

盾构工作总结 2015年在各位领导和部门的帮助,盾构工区顺利的完成了领导交办的各项工作任务。现对一年来的工作进行总结与归纳,并对新一年的工作作出展望,如有不妥之处恳请领导批评指正。 一、2015年盾构工区工作总结 在公司的大力支持下,2015年公司首次购置两台土压平衡盾构机,规格型号为CTE6250,投入到合肥地铁项目中。 盾构工区在项目部各部门的鼎力支持下,4月1日两台盾构机经过15天时间组装、调试完成。6月24日“铁兵一号”118#盾构机顺利始发;7月16日“铁兵二号”119#盾构机顺利始发,9月24日顺利到达接收,10月18日119#盾构机二次顺利始发。 2016年1月25日“铁兵一号”118#盾构机顺利接收,2016年3月11日“铁兵一号”118#盾构机在广德站二次顺利始发,3月27日“铁兵二号”119#盾构机在和县路站顺利接收。截止到2016年4月19日118#盾构机掘进里程1005米,119#盾构机掘进里程1905米。 1 盾构施工管理 项目部内部设置盾构施工组织机构,成立了盾构工区。盾构施工管理人员、盾构机操作司机、土木工程师、盾构机维修保养、地面调度、测量作业等为项目部自主配置人员;盾构施工管片粘贴止水条、龙门吊司机、盾构管片运输与拼装、洞内文明施工等进行临时招工,项目部统一管理。 在这种管理组织模式下,优缺点并存。 1.1 管理模式缺点: 1)项目部前期需要投入大量的培训时间,同时需要投入施工的人员较多,增加管理成本和人员投入。 2)前期施工经验不足,需要大量的时间去摸索施工经验,存在较大的安全、质量风险。 1.2 管理模式优点:

1)管理体系健全,能够直接有效的对现场进行管理,能够最直接掌握盾构施工信息并及时处置。 2)对于公司盾构技术人员的培养和提高有极大的帮助,有助于形成专业系统的盾构施工经验,有利于提高公司在地铁施工市场的竞争力。 3)可以有效的控制施工耗材的使用量。 2 盾构机日常维保 盾构施工设备是关键,盾构施工的正常进行,离不开盾构机及相关配套设备的正常运行,要想维持设备的良好的运行状态,使设备能够及时满足盾构施工的需要,则少不了机电技术人员对机械设备的维修保养工作。 2.1维保方式 盾构工区成立维修保养班负责机械设备的日常管理工作,根据施工要求配置盾构机操作及维护保养人员,盾构机操作以自有员工和少量外聘人员结合的方式组成,盾构机维保全部为自有员工,掘进过程中由项目部领导带班负责,及时发现隐患及时进行处理。 盾构施工过程中盾构机维保以“养修并重,预防为主”为主要原则,设备在使用过程中既要注重平时的保养维护,又要及时维修处理,这样才能保证盾构施工的顺利进行。盾构机及相关配套设备的日常保养分为日检、周检、月检等,具体内容根据物资设备部的设备保养计划,由机电技术人员按时进行保养,施工负责人负责督促检查。机械设备出现故障时,操作人员会及时通知当班维保人员,同维保人员一起做好设备的维修工作;故障难以排除时,由机电工程师组织进行设备维修工作。盾构机完成广龙区间的施工后,对盾构机状况进行全面检测评估,并对处理困难大的故障,利用转场时间进行专项维保。转场期间主要对刀盘主轴承密封圈进行了检修,因在掘进过程中处理难度大,无法维修。 2.2优缺点 项目部机电技术人员多数为刚毕业的学生,工作经验少,形式较单一,相对地铁施工综合性较高,大部分年轻人达不到独挡一面的程度,仍需要大量经验的积累。对于盾构机来说,若得不到机电技术人员的合理养护,随着盾构机使用年

盾构施工场地布置方案(建筑类别)

目录 1工程概况 (1) 2施工场地现状 (1) 3盾构施工场地布置计划 (2) 3.1 场地整体硬化 (2) 3.2 新设工地大门布置 (2) 3.3 地面办公室和生活区布置 (3) 3.4 拌浆系统布置 (3) 3.5 机加工场地和仓库布置 (3) 3.6 集土坑布置 (3) 3.7 45T行车布置 (3) 3.8 管片堆场 (4) 3.9 充电间布置 (4) 3.10 推进所需材料堆放区布置 (4) 3.11 水电布置 (4) 4主要工程量统计 (4)

南京地铁四号线土建工程D4-T A11标 汇通路站~灵山站区间盾构施工场地布置方案 1 工程概况 南京地铁四号线土建工程D4-TA11标盾构区间(汇通路站—灵山站)左、右线起止里程为均为DK33+352.900—DK34+239.500,左线全长885.444m(含1.156m的短链),右线全长886.6m。 根据线路、给排水和防灾疏散要求,在左线DK33+801.156(右线DK33+800.000)处设联络通道兼泵站。 南京地铁四号线土建工程D4-TA11标汇通路站~灵山站区间位于栖霞区仙林汇通路至江宁 区麒麟灵山根村,线路出汇通路站后沿规划麒麟路东行到达灵山站。 根据工程特点,区间隧道采用2台复合式土压平衡盾构机进行掘进施工,盾构切削直径6340mm,管片外径6200mm,管片厚度350mm,管片长度1200mm,每环管片由六块管片组成,采取错缝拼装的形式进行拼装。 区间线路走向基本呈东西走向,区间左、右线各包含半径为1500m的一段曲线,左右线间距为13.5~16m。 根据施工进度,本标段区间隧道施工筹划如下: 图1.1-1 区间隧道施工筹划示意图 2施工场地现状 根据施工筹划,将汇通路站作为盾构始发站,先施工车站东端始发井,车站结构长度满足盾构始发要求(底板浇筑115m)时即可进行盾构始发。 目前车站结构正在施工中,计划2013年11月29日完成东端头始发井施工,目前端头井东侧为未硬化场地,须提前进行盾构下井前的相关井下准备工作。 3盾构施工场地布置计划

渣土改良工法

盾构施工中的的渣土改良工法 一、前言 碴土改良是保证盾构施工安全、顺利、快速的一项不可缺少的重要技术手段,其主要作用是使碴土具有较好的土压平衡效果,利于稳定开挖面,控制地表沉降;使碴土具有较好的止水性,以控制地下水流失;使切削下来的碴土具有良好的塑性流动性,能够顺利快速进入土仓,并利于螺旋输送机顺利排土;有效防止土碴粘结刀盘而产生泥饼;可防止或减轻螺旋输送机排土时的喷涌现象;可有效降低刀盘扭矩,降低对刀具和螺旋输送机的磨损。 二、工法特点 1、可根据不同的地质情况以及不同的目的采取不同的技术措施来改善渣土的性质,以确保盾构安全快捷的掘进施工。 2、以信息化施工为手段,通过对通过地层的地质情况的及时、超前的预报来指导施工。 3、能有效地降低对刀具和螺旋输送机的磨损,具有良好的经济效益。 三、适用范围 土压平衡盾构机,在采取土压平衡模式掘进的隧道。 四、施工工艺及流程 1、总体流程

2、超前地质预报 a. 利用TSP202超前地质预报系统进行超前探测 TSP202超前地质预报系统是利用地震波在不均匀地质体中产生的反射波特性来预报隧道掌子面前方及周围临近区域的地质情况,其能够较准确地探测地层构造界面,同时也能准确探测到前方地层中的桩基等,其的预报距离为地质雷达的4~12倍。 隧道地震波超前地质预报原理图 b. 在掌子面进行超前探测 在地层复杂的地段,在采用TSP202系统进行超前地质预报的基础上,利用盾构机上自带的小型钻机进行超前钻探,依据相同压力下钻进速度的不同来判断前方地层的变化情况及位置,以进一步核实TSP202系统的超前预报结果,确认施工前方围岩物理特性,为盾构机选择正确的掘进模式及是否需要进行渣土改良提供科学的依据。 3、渣土改良方式的选择 土压平衡盾构机的掘进模式(敞开式Open、半敞开式semi-open、土压平衡式EPB)根据围岩的情况进行选定,即控制土仓内的土压力。土仓内的土压力受掘进速度和螺旋输送机的出土速度控制,为了保持开挖面的稳定性,必须控制此两个速度在适当的数值,同时确保开挖渣土的流动性和止水性。

盾构施工——粘土中的渣土改良方案

粘土中的渣土改良方案 一、基本情况 近段时间源天盾构项目部在珠江新城旅游观光线的盾构施工过程中,出现掘进缓慢,刀盘结泥饼等现象,影响了施工进度。其中先后试用了ELCO,东莞明洁和巴斯夫的麦斯特等三种品牌发泡剂,效果均不是很明显,没有解决根本问题。经同相关人员沟通和现场了解情况,在盾构机始发阶段,有约十多环砂层,喷涌厉害,采用日本TAC高分子材料和ELCO发泡剂搭配改良渣土,解决了喷涌问题。随后进入8号粘土层,渣土粘度大,推进困难。在第19环(约10月12号)项目部撤下ELCO发泡剂,换上另一品牌泡沫剂,在16号晚我司接到项目部电话,告之结泥饼厉害,掘进不顺利。17号上午我方派人到现场了解情况,盾构机已经开仓清理过泥饼,当天已经掘进到23环,25日再到现场了解情况,已经掘进到40环,平均每天2环左右,其间一直在试用另两种发泡剂,但没有根本解决问题。二、原因分析 在此过程中项目部采取各种措施来解决问题,但由于地层条件恶劣等因素,目前未能根本解决此难题。经过多年的工程实践,我方认为如下因素会导致这种不利情况出现: 1.盾构通过地层条件差,广州这种典型的复合地层对盾构施工是个极大的考验。在这种粘土层中,经过改良剂和水的浸润,在刀盘的搅拌下,土体粘度增大,很容易粘附在刀盘上,同时由于相互之间的摩擦

产生瞬间高热,使土体结焦附着在刀盘上不易除掉。 2.泡沫剂等外加剂使用不当,在不同的盾构条件下,泡沫剂的使用参数应做相应调整,包括注入率,发泡倍率,稀释倍率,流量等。正确使用泡沫剂有利于防止结泥饼,降低扭矩,提高工作效率。 3.使用工艺不恰当,在恶劣地质条件下,刀盘转速,推进速度,螺旋剂排土速度,外加剂的配合使用都会影响施工质量。 三、产品介绍 针对项目部目前出现的问题和对其影响因素的分析,我们建议采取ELCO高分子材料和发泡剂配合使用来预防和解决盾构机在粘土层中的掘进问题。 ELCO STP 401A是一种长链分子的有机化合物,可以单独使用,也可与膨润土及泡沫配合使用。当高分子材料与渣土混合时,这种长链分子就会附着在渣土颗粒的表面形成高分子膜,当这些颗粒相互碰到一起时,聚合物分子就将颗粒粘结在一起形成网络结构,防止水分渗透,改良渣土的和易性。ELCO高分子材料的水溶液注入到砂层中,在地层中发生交联反应,形成凝胶体系,迅速锁住水分,以此降低高含水地层的渗透率,防止喷涌。ELCO高分子材料的稀溶液亦可使用在粘性土中,它能够在渣土的表面形成一层韧性的高分子膜,具有极好的润滑性能,防止土仓内结泥饼,使其粘土成塑性流动,减少刀具和皮带的磨损。在实际使用时,在沙砾层中建议按2~5‰的比例稀释,注入率为10~20%;在粘性土中建议按0.3~1‰的比例稀释,注入率为25~40%。当与其他外加剂配合使用时,请酌量增减。具

渣土改良总结

渣土改良技术总结 摘要:在土压平衡式盾构施工过程中,开挖面土体的流动性十分重要,为了提高开挖面土体的流动性,通过对开挖出渣土进行改良,用以满足施工要求。本文依托南昌地铁长~蛟区间盾构施工,对砂卵石和全、强、中风化千枚岩地层渣土改良技术加以总结,对之后类似工程提供经验。 关键字:盾构施工开挖面渣土改良地层 1、工程概况 长江路站~蛟桥站区间分为两个工程地质区,蛟桥站(北一环站)~中间风井、中间风井~里程约SK3+410为工程地质I区;里程约SK3+410~长江路站为工程地质II区。 (1)蛟桥站(北一环站)~中间风井~里程约SK3+410区间 区间隧道通过的地层主要由⑥1全风化千枚岩、⑥2强风化千枚岩、⑥3-2中风化千枚岩等组成,地质条件复杂,施工难度大。 (2)里程约SK3+410~长江路站区间 区间隧道通过的地层主要由②4中砂、②5粗砂、②6砾砂、②7圆砾、⑤1-1强风化泥质砂岩、⑥1全风化千枚岩、⑥2强风化千枚岩等组成,地质条件复杂,施工难度大。

2、盾构机具有的渣土改良设备 为改善土体的流塑性和开挖面的稳定性,有效的开挖面稳定辅助支撑装置主要由三个部分组成:泡沫系统、膨润土装置、土仓压力控制系统。 (1)泡沫装置 泡沫装置主要由活性剂泵、水泵、空压机、泡沫发生器、管路及阀件等组成,安放在后方台车上。 泡沫装置首先按一定比例将活性剂和水分别由活性剂泵和水泵泵入泡沫发生器,然后在在泡沫发生器中进一步和压缩空气进行混合生成泡沫,其中一部分通过四条独立的管道将泡沫经过盾构机前部的中心回转接头输送到刀盘,其余部则经过各自的管道进入土仓和螺旋输送机对碴土进行改良。 泡沫的加入具有手动和自动多种控制方式,并可根据实际需要实现泡沫混合比例、加注数量和加注点的不同选择。 (2)膨润土装置 膨润土装置主要由注浆泵、储浆箱、管道、自动阀门等组成。安放在后方台车上。膨润土由膨润土泵泵出,经管道通到前面的密封土仓和螺旋输送机内,对碴土进行改良。膨润土的注入可实现手动控制和自动控制。 (3)土仓压力控制系统 土仓压力控制系统主要有土压传感器等元件组成。土压传感器安装在土仓里。土仓里面的土压力通过传感器反映到显示屏上,操作人员通过观察显示屏了解土仓里的压力变化,从而做出相应的调整。 3、渣土改良 3.1 渣土改良剂的选择 在盾构机掘进时,向开挖面、土仓等处加注改良添加剂,其具体功能如下:①对于富含水砂层,一方面止水,另一方面可以改善砂的和易性;②在砂性土和砂砾土地层中,可以起到支撑作用而且可以改善土的流动性;③在粘性土层,可以防止渣土附着刀盘和土仓室内壁,另一方面,由于改良剂中的微细气泡可以置换土颗粒中的孔隙水,因而可以达到止水效果。 表1 渣土改良剂的种类

盾构施工组织设计

盾构施工组织设计 一、工程概况 1、工程范围 本标段盾构隧道包括三个区间,分别为长隆隧道进口明挖段至长隆车站、长隆车站至番禺大道车站、番禺大道车站至长隆隧道出口明挖段区间。 长隆隧道进口明挖段至长隆车站盾构区间起止点里程为:左线DK0+225~DK4+840,长4615米;右线YDK0+165~YDK4+840,短链27.05米,长4647.95米。区间设置联络通道10座,里程分别为:1#联络通道DK0+490.1、2#联络通道DK0+874.1、3#联络通道DK1+365.3、4#联络通道DK1+954.9、5#联络通道DK2+254.9、6#联络通道DK2+637.3、7#联络通道 DK3+131.7、8#联络通道DK3+525.3、9#联络通道DK3+989.3、10#联络通道DK4+400.5。 长隆车站至番禺大道车站盾构区间起止点里程为:左线DK5+375~DK9+345,长3970米;右线YDK5+375~YDK9+345.617,长链12.93米,长3983.547米。区间设置联络通道8座,里程分别为:11#联络通道DK5+830.4、12#联络通道DK6+320、13#联络通道DK6+790.801、14#联络通道DK7+300.8、15#联络通道7+785.6、16#联络通道DK8+275.2、17#联络通道DK8+750.4、18#联络通道DK9+180.8。此区间还设置两个临时工作井,其中1#工作井设置在左线,起止点里程为DK8+457.96~DK8+465.96; 2#工作井设置在右线,起止点里程为 YDK8+485.31~YDK8+493.31. 番禺大道车站至长隆隧道出口明挖段盾构区间起止点里程为:左线DK9+615~DK10+370,长链24.21米,长779.21米;右线YDK9+614.23~YDK10+371.641,长链17.18米,长774.591米。区间设置联络通道1座,里程为:19#联络通道DK10+070.590。 2、主要工程量清单 本合同段盾构施工主要内容有: ?长隆隧道进口明挖段至长隆车站、长隆车站至番禺大道车站、番禺大道车站至长隆隧道出口明挖段区间盾构掘进。 ?联络通道施工 ?临时工程的施工、安装及拆除,施工用水用电等 ?工程及其影响范围内的建筑物、构筑物、管线的保护等。 3、工程地质、水文及气象等自然条件 ?地形地貌:本标段地处珠三角地区的中南部,为三角洲冲积平原和丘坡地貌,地形平坦开阔,地势相对较低。

06渣土改良技术

砂卵石地层盾构渣土改良技术 粟路好 中铁五局城通分公司沈阳地铁二号线三标项目部 摘要:在土压平衡式盾构施工过程中,开挖面支撑的土砂具有十分重要的作用,通过对开挖出渣土进行改良,用以满足施工要求。本文依托沈阳地铁北~崇区间盾构施工,对砂卵石地层渣土改良技术加以总结,对之后类似工程提供经验。 关键词:砂卵石渣土改良盾构 1 概述 1.1 工程概况 沈阳地铁二号线第三合同段北~崇区间单线全长为703.8m,盾构通过地段主要为砂卵石地层,其中粘土(即粒径≤0.075mm)约占18.1%,砂(即粒径<5mm,≥0.075mm)约占44.1%,砾卵石(即粒径≥5mm)约占37.8%,隧道结构底最大埋深22.7m;工~文区间单线全长为1302.7m,盾构通过地段主要为砂卵石地层,其中粘土(即粒径≤0.075mm)约占3.2%,砂(即粒径<5mm,≥0.075mm)约占56.7%,砾卵石(即粒径≥5mm)约占30.1%,,隧道结构底最大埋深31.66m。 1.2 渣土改良在砂卵石地层施工中的重要性 目前我国所应用的盾构机类型主要为土压平衡式盾构,其特点是用开挖出的土砂作为支撑开挖面稳定的介质,因此要求作为支撑介质的土砂具有良好的塑性变形、软稠度、内摩擦角小及渗透率小。由于一般土壤不能完全满足这些特性,所以要进行改良,其技术要点是在刀盘前部和泥土仓中注入水、膨润土泥浆、粘土、聚合物或泡沫等混合添加材料,经强力搅拌,改善开挖的土砂塑性、流动性,降低渣土的透水性。渣土改良系统已成为盾构法施工的一个重要组成部分,对盾构法隧道施工的发展有着深远的影响。纵观目前国内各台盾构机的使用工况,不难发现土质改良技术应用的好坏,对降低工程造价、提高工程施工进度都有着决定性的作用。 1.3 渣土改良技术的国内外现状 盾构法施工的主要机械就是盾构机,有泥水盾构和土压平衡盾构,土压平衡式盾构机因其能较好地控制地面沉降,保护环境,适应在市区和建筑密集区施工等优点,在隧道施工中被广泛应用。土压平衡式

【隧道方案】盾构渣土池施工方案

目录 第一章 编制说明 ..................................................................................................... 1
1.1 编制依据 ............................................................................................................. 1 1.1.1 相关文件.......................................................................................................... 1 1.2 主要规程规范 ..................................................................................................... 1 1.3 编制原则 ............................................................................................................. 1 第二章 工程概况 ..................................................................................................... 3 2.1 工程简介..............................................................................错误!未定义书签。 2.2 ##站工程概况.......................................................................错误!未定义书签。 第三章 总体施工部署 .............................................................................................. 4 3.1 施工部署 ............................................................................................................. 4 3.1.1 人员配置.......................................................................................................... 4 3.2 施工准备 ............................................................................................................. 4 3.2.1 施工用水用电.................................................................................................. 4 3.2.2 资源配置.......................................................................................................... 4 第四章 渣土池施工.................................................................................................. 6 4.1 渣土池设计概况 ................................................................................................. 6 4.2 施工工艺 ............................................................................................................. 6 4.2.1 测量放线.......................................................................................................... 6 4.2.2 钢筋工程.......................................................................................................... 6 4.2.3 预埋件施工...................................................................................................... 8 4.2.4 操作平台搭设.................................................................................................. 9 4.2.5 模板工程........................................................................................................ 10 4.2.6 混凝土工程.................................................................................................... 12 4.2.7 混凝土养护.................................................................................................... 13 第五章 质量保证措施 ............................................................................................ 14 5.1 模板质量控制................................................................................................... 14 5.2 钢筋质量控制................................................................................................... 14 5.3 混凝土质量控制............................................................................................... 14 第六章 安全文明施工措施 .................................................................................... 16

(完整版)盾构施工场地临建布置方案

昆明轨道交通* **盾构区间临建方案 1.编制说明及依据 为高起点、高标准地建设好* **盾构区间工程,按照总体施工方案的要求,根据昆明轨道交通有限公司及股份有限公司的相关管理标准及要求,编制了《昆明轨道交通* **盾构区间临建方案》,以实现施工现场的标准化、规范化管理。 主要编制依据如下: (1)昆明地铁建设工程安全和文明工地标准; (2) 股份有限公司企业视觉识别系统管理手册; (3)昆明轨道交通3号线工程招标文件及投标文件; (4)施工设计图纸及其他收集的工程资料等。 2.工程概况 2.1区间概况 昆明市轨道交通3号线工程西标段起点石咀站,终点市体育馆站,线路沿春雨路、人民西路敷设,全长7.89km。 盾构区间施工 场地人民西路 春雨路 图2-1 **盾构区间位置示意图

昆明轨道交通3号线工程西 标段**盾构区间,区间工程起点 为云南冶炼厂专有铁路线东侧的 眠山站,沿人民西路向西南方向 左拐,经过春雨路、昆瑞路和人 民西路三路交汇处,进入春雨路, 并沿春雨路行进, 绕过大沙沟桥后抵达西山盐政管图2-2 **盾构区间线路示意图 理所东侧的马街站。 区间线路右线起止里程为YCK6+943.950~YCK8+605.950,长1650.121m(含11.879m短链),左线为ZCK6+943.950~ZCK8+605.950,长1668.055m(含6.055m长链)。全线长3318.176m。 3驻地建设 3.1 **盾构区间项目经理部驻地建设 驻地建设分为现场驻地与经理部办公驻地,现场驻地主要用于现场管理人员住宿、工作,经理部驻地为生活区和办公区。 **盾构区间经理部办公及生活区租赁昌源中路路与石武客运专线交汇处的高新综合执法大楼5、6层。 办公及生活 区所在地

施工方案-盾构下穿河道施工方案

一、工程概况 中和村站~元通站区间,设计里程为K2+983.05~K4+392.099,为单圆盾构区间,右线长度为1431.81m,左线长度为1453.491m,在K3+350和K3+908.500处分别有一个河道,盾构机在此两处将下穿河道近距离桩基施工。K3+350处河道长约m,宽约m,盾构与桥桩基距离约2m K3+908.5处河道长约m,宽约m,盾构与桥桩基距离约2m。二、工程地质水文情况 K3+350处隧道埋深13m,洞身经过地层为粉细砂层(②-3d2-3,中密,局部稍密);K3+908.5处隧道埋深15.8m,洞身经过地层为粉细砂层(②-3d2-3,中密,局部稍密),赋存与地下的水具有一定的承压性,但对砼不具腐蚀性,对砼结构中钢筋不具腐蚀性。地下水的补给来源主要为大气降水及生产、生活用水的入渗。 粉细砂层中分布有承压水,盾构推进时做好以下工作: 加强盾构掘进管理 1.加强同步注浆管理,控制注浆量。 2.充分压注盾尾油脂,防止泥水从盾尾进入。 3.加强盾构补压浆系统管理。由于土体已扰动,需要不断地调整各项参数,进行补压浆。 4.确保螺旋机的密封性能。 加强对施工范围的监测,及时反馈,调整施工参数。 三、桩基础情况 两处桥的桩基为钢筋砼结构,桩长约m,直径约m, 四、沉降控制措施 1.到达河道前的准备工作

1)准备支顶加固材料、注浆加固材料、抢险机具设备、车辆、警戒标识物等以备用。 2)在到达特殊段前选择一开挖面自稳性较好的地段对盾构机进行全面检修,减少在特殊地段停机检修的风险。 3)对破损较大的盾尾刷进行更换。 4)全面检测刀具,对磨损超标的刀具进行更换。 5)对堵塞的注浆管进行疏通处理。 6)对分别通往开挖面、土仓、螺旋输送器的主从泡沫管进行疏通,并在刀盘面中心附近增设1根泡沫管。 2.盾构机通过技术措施 1)做好各项准备工作,提前对盾尾密封进行检查。 2)调整同步注浆浆液的配合比,缩短凝结时间,同时增大注浆量和注浆压力。 3)在盾构机通过后及时进行二次双液注浆,通过调整水泥水玻璃的配比参数,控制双液注浆的凝结速度,达到加固土体和加固充填溶洞的目的。 4)加强掘进姿态控制,全面贯彻信息化施工。 5)同时备好抽排水设备等应急设备和物资,制订应急抢险预案。 3.盾构掘进过程的施工技术 掘进过程的施工技术:要求盾构在通过该特殊段时有序、平衡、平稳。

盾构施工渣土改良专项方案[优秀工程方案]

编制依据 (1)隧道施工图 (2)铁路隧道工程施工技术指南(TZ204-2008) (3)公司《质量管理体系-要求》(GB/T19001-2000) 一、工程概况 本工程盾构区间总长度3566.5米,附属工程包括7个联络通道、2个防淹门、12个洞门.盾构区间采用德国进口的两台直径8.84米的海瑞克土压平衡盾构机进行施工. 二、工程地质条件和水文地质条件 2.1地形地貌 本线地处广东省中部,沿线经过珠江三角洲海陆交互沉积平原区,地形平坦,地面高程多为0~10米,仅佛山西站附近有零星剥蚀残丘分布,高程10~20米.区内道路纵横,水网发达,河流纵多,主要河流有汾江、东平水道、吉利涌、潭洲水道、陈村水道等,均为通航河道. 2.2工程地质条件 (1)洞身地层 本标段区间盾构隧道范围地层岩性按成因和时代分类主要有:第四系人工填土层<1-1>;第四系全新统海陆交互沉积层<2-1>、<2-2>、<3-1>、<3-2>、<3-3>、<3-4>、<4-1>;第四系全新统残积层<5>;白垩系下统基岩<7-1>、<7-2>、<7-3>.在里程DK31+439~DK32+260洞身范围地层主要为上软下硬,上部为砂层或全风化或强风化砂质泥岩、砂岩W4、W3(821米);里程DK32+260~DK34+500洞身范围地层主要为弱风化砂质泥岩、砂岩W2(2240米);里程DK34+500~DK35+005.5洞身范围地层主要为上软下硬,上部为强风化砂质泥岩、砂岩W3,下部为弱风化砂质泥岩、砂岩W2(500.5米). (2)洞身地层分布统计 根据目前提供的地质断面图,隧道洞身地层统计如下表所示:

全风化砂质泥岩、砂岩W4:灰色,棕红色,原岩结构已经破坏,岩芯呈土状,水浸易软化崩解. 强风化砂质泥岩、砂岩W3:棕红色、深灰色,泥质、铁质胶结,裂隙很发育,岩芯呈碎块状、局部短柱状,锤击易碎. 弱风化砂质泥岩、砂岩W2:棕红色、深灰色,泥质、铁质胶结,中厚层状构造,裂隙稍发育,岩芯呈短柱状、柱状. (4)岩石的物理力学性质 根据我司的勘察报告,在岩样中取样进行岩石试验及原位测试,结果如下所示: 岩石(弱风化)的天然抗压强度最大值为53.0米Pa,最小值3.7米Pa,平均值20.36米Pa. 强风化岩层的推荐基本承载力为400kPa.

盾构施工场地临建布置方案

昆明轨道交通 * **盾构区间临建方案 1. 编制说明及依据 为高起点、高标准地建设好 * **盾构区间工程,按照总体施工方案的要求,根据昆明轨道交通有限公司及 股份有限公司的相关管理标准及要求,编制了《 昆明轨道交通 * **盾构区间临建方案》,以实现施工现场的标准化、规范化管理。 主要编制依据如下: (1)昆明地铁建设工程安全和文明工地标准; (2) 股份有限公司企业视觉识别系统管理手册; (3)昆明轨道交通3号线工程招标文件及投标文件; (4)施工设计图纸及其他收集的工程资料等。 2. 工程概况 2.1 区间概况 昆明市轨道交通3号线工程西标段起点石咀站,终点市体育馆站,线路沿春雨路、人民西路敷设,全长7.89km 。 图2-1 **盾构区间位置示意图 盾构区 间施工场地 人民西路 春雨路

昆明轨道交通3号线工程西标 段**盾构区间,区间工程起点为 云南冶炼厂专有铁路线东侧的眠 山站,沿人民西路向西南方向左 拐,经过春雨路、昆瑞路和人民 西路三路交汇处,进入春雨路, 并沿春雨路行进, 绕过大沙沟桥后抵达西山盐政管 理所东侧的马街站。 区间线路右线起止里程为YCK6+943.950~YCK8+605.950,长1650.121m(含11.879m短链),左线为ZCK6+943.950~ZCK8+605.950, 长1668.055m(含6.055m长链)。全线长3318.176m。 3驻地建设 3.1 **盾构区间项目经理部驻地建设 驻地建设分为现场驻地与经理部办公驻地,现场驻地主要用于现场管理人员住宿、工作,经理部驻地为生活区和办公区。 **盾构区间经理部办公及生活区租赁昌源中路路与石武客运专线交汇处的高新综合执法大楼5、6层。 图3-1 **盾构区间经理部办公楼位置示意图办公及 生活区所在 地 图2-2 **盾构区间线路示意图

土压平衡模式盾构掘进渣土改良

土压平衡模式盾构掘进渣土改良 摘要:渣土改良是盾构掘进的重要措施,在不良地质条件下通过良好的渣土改 良能有效改善渣土的流塑性、增加渣土的阻水性、减小渣土摩擦性,从而减小掘 进扭矩、延长刀具和刀盘使用寿命、使螺旋输送机出土顺畅降低喷涌的发生及有 利于控制地面沉降,对于土压平衡模式盾构掘进非常重要。 关键词:流塑性;阻水性;摩擦性 引言 不良地质土压平衡模式盾构掘进时,易出现刀具和刀盘磨损严重、刀盘结泥饼、土仓压力控制困难造成地面沉降超标、螺旋输送机出土口喷涌的问题,影响 盾构掘进进度,严重时造成地面塌陷建筑物损坏。良好的渣土改良可有效地保护 盾构设备,避免盾构掘进中非正常情况的发生,使盾构掘进安全可控,从而加快 施工进度,提高经济效益。 正文 土压平衡盾构掘进的平衡原理是以土仓内渣土的土压力来平衡刀盘前方的土 体压力以实现刀盘前方地面沉降的控制,因此土仓内充满了渣土。不同地质渣土 的流塑性、粘性、摩擦性各不相同,在盾构施工中表现出来的问题也不相同,现 将具有代表性地质在盾构掘进中的问题归纳如下: 石英岩、花岗岩、玄武岩、砂岩等 具有高石英含量,被盾构滚刀碾压破碎为棱角的石块,这些石块在刀盘前方 对刀具和刀盘产生磨损,在土仓内对滚刀产生二次磨损以及对土仓隔板产生磨损,并且土仓内石块间的内摩擦角很大使得刀盘转动的扭矩很大。如果岩层具有裂隙水,土仓内易产生水压造成螺旋输送机出口喷涌。 泥岩 泥岩中含有大量的粘性物资,被盾构滚刀碾压成块和细小颗粒,细小颗粒中 的粘性物资容易粘附在刀盘上逐渐在刀盘上产生泥饼,使刀盘的挖掘功能大大降低。 砂卵石 具有高石英含量,在刀盘前方对刀具和刀盘产生磨损,在土仓内对滚刀产生 二次磨损以及对土仓隔板产生磨损,并且土仓内石块间的内摩擦性很大使得刀盘 转动的扭矩很大。如果岩层具有裂隙水,土仓内易产生水压造成螺旋输送机出口 喷涌。 粘土 含有大量的粘性物资,粘附性强,容易在刀盘上结泥饼,严重时会糊住刀具 和刀盘开口时盾构难以掘进。 盾构在土压平衡模式下掘进上述地质时须进行渣土改良。 一.渣土改良的概念 在盾构掘进时通过刀盘上的喷口在刀盘面上注入改良剂减轻刀具和刀盘磨损 和防止结泥饼;通过土仓隔板上的注入口向土仓内注入改良剂,改善渣土的流塑 性和减小渣土的内摩擦角,以增加渣土的流动性和止水水以及降低刀盘扭矩;通 过螺旋输送机上的注入口注入改良剂增加螺旋输送机内渣土的止水性,防止螺旋 输送机出土口喷涌。 二.渣土改良的原理 渣土块或渣土粒之间有面的摩擦和点的接触并且存在一定的缝隙,改良剂渗

相关文档
最新文档