第10章 离散时间信号的z变换

第10章 离散时间信号的z变换
第10章 离散时间信号的z变换

matlab实现:常见的离散时间信号

1. 单位抽样序列,或称为离散时间冲激,单位冲激: ? ??=01)(n δ 00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01)(k n δ 0≠=n k n 2.单位阶跃序列 ? ??01)(n u 00<≥n n 在MATLAB 中可以利用ones( )函数实现。 );,1(N ones x = 3.正弦序列 )(cos )(0φω+=n A n x 这里, ,,0ωA 和φ都是实数,它们分别称为本正弦信号)(n x 的振幅,角频率和初始相位。 πω200=f 为频率。 4.复正弦序列 n j e n x ω=)( 5.实指数序列 n A n x α=)( 6. 随机序列 长度为N 的随机序列 基本数学函数参考教材P69页以及随后的使用说明。 注意使用行向量,特别是冒号运算符。 举例,长度为N 的实指数序列在MATLAB 中实现: n a x N n .^1 :0=-= 1. 单位采样 长度为N 的单位采样序列u(n)可以通过下面的MATLAB 命令获得:

u=[1 )1,1(-N zeros ]; 延迟M 个采样点的长度为N 的单位采样序列ud(n)(M

实验二-离散时间信号与系统的Z变换分析

实验二离散时间信号与系统的Z变换分析 一、实验目的 1、熟悉离散信号z变换的原理及性质 2、熟悉常见信号的Z变换 3、了解正/反Z变换的MATLAB实现方法 4、了解离散信号的Z变换与其对应的理想抽样信号的傅氏变换和拉氏变换Z间的关系 5、了解利用MATLAB实现离散系统的频率特性分析的方法 二、实验原理 1、正/反Z变换 Z变换分析法是分析离散时间信号与系统的重要手段。如果以时间间隔Ts对连续时间信号f(t)进行理想抽样,那么,所得的理想抽样信号 f (t)为: 理想抽样信号f (t)的双边拉普拉斯变换 F (s)为: F(s)f(t广 k (t kTs) e st dt f (kTs)e ksT s k 若令f (kTs)f(k),z esTi,那么f (t)的双边拉普拉斯变换F(s)为: F(s)f(k)z k FOzesI 则离散信号f(k)的Z变换定义为: F(z) f(k)z f (t) 惟广Ts(t) f (t) 从上面关于Z变换的推导过程中可知,离散信号 f (k)的Z变换F(z)与其对应的理想抽样信号 f (t)的

拉氏变换F (s)之间存在以下关系: F (s) F(z) f⑴的傅里叶变换之间的尖系为同理,可以推出离散信号f(k)的Z变换F(z)和它对应的理想抽样信号 F(j ) F(z)

MATLAB 程序如下: syms k z Fz=2* z/(2*z-1); fk=iztra ns(F z,k) 运行结果如下: fk = 例③:求序列f (k) clc;clear all syms n hn=sym( ' kroneckerDelta(n, 1) + kroneckerDelta(n, 2) + kroneckerDelta(n, 3)' 如果已知信号的Z 变换F(z),要求出所对应的原离散序列 f (k),就需要进行反Z 变换, f(k) 2〔j?F ⑵ Zk 1 dz 其屮,C 为包围F (z)z kl 的所有极点的闭合积分路线。 在MATLAB 语言1+1 有专门对信号进行正反 Z 变换的函数ztrans ()和itransO 下: F=ztrans ( f )对f(n)进行Z 变换,其结果为F(z) F=ztrans (f, v)对f(n)进行Z 变换,其结果为 F(v) F=ztrans (f, u, v)对f(u)进行Z 变换,其结果为 F(v) f=itrans ( F )对F(z)进行Z 反变换,其结果为 f (n) f=itrans (F, u)对 F(z)进行 Z 反变换,其结果为 f(u) f=itrans(F, v, u )对 F(v)进 行Z 反变换,其结果为f(u) 注意:在调用函数ztranO 及iztran()之前,要用syms 命令对所有需要用到的变量 行说明,即要将这些变量说明成符号变量。 反Z 变换的定义为: 其调用格式分别如 t,u,v,w )等进 例①.用MATLAB 求出离散序列f (k) (0. 5) (k)的Z 变换 MATLAB 程序如下: syms k z f 二0.5%; %定义离散信号 Fz=ztra %对离散信号进行Z 变换 ns(f) Fz 二 2*z/(2*z-l) 例②?已知一离散信号的 z 变换式为F(z) 2z 2z 1 ,求出它所对应的离散信号 f(k) %定义Z 变换表达式 %求反Z 变换

用MATL新编实现常用的离散时间信号及其时域运算

用M A T L新编实现常用的离散时间信号及其 时域运算 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

实验四用MATLAB实现常用的离散时间信号及其时域运算 —— 摘要:在MATLAB中,只能用向量来表示离散时间信号。与连续信号不同,离散时 间信号无法用符号运算来表示。用适当的MATLAB语句表示出信号后,就可以利用MATLAB的绘图命令stem来绘出直观的信号波形图,stem是专门用于绘制离散时 间信号的。在MATLAB中离散序列的时域运算和变换不能用符号运算来实现,而必 须用向量表示的方法,即在MATLAB中离散序列的相加、相乘需表示成两个向量的 相加、相乘,因而参加运算的两序列向量必须有相同的维数。 一、实验目的:(1)学习MATLAB语言及其常用指令; (2)学习和掌握用MATLAB语言产生离散时间信号的编程方法; (3)通过编程绘制出离散时间信号的波形,加深理解信号的时域运 算。 二、实验内容:(1)运用MATLAB的绘图指令绘制离散时间信号; (2)用MATLAB语言实现离散时间信号的时域运算。 三、实验原理:(1)单位阶跃序列和单位样值序列。 离散时间信号只在某些离散的瞬时给出信号的值,因此,它是时间上不连续的 序列。单位阶跃序列和单位样值序列在离散时间信号与系统的分析中是两个非 常典型的序列,分别记为u(n)和δ(n)。它们的定义分别如下: 1 n≥0 1 n≥0 u(n)= δ(n)= 0 n<0 0 n≠0

若单位阶跃序列的起始点为n0,单位样值序列出现在n0时刻,则表达式分别为: 1 n≥n0 1 n=n0 u(n-n0)= δ(n-n0)= 0 n

离散系统与连续时间系统的根本差别是:离散系统(图)有采样开

离散系统与连续时间系统的根本差别是:离散系统(图3)有采样开关存在,而连续系统则无。连续信号经过采样开关变成离散信号(图4),采样开关起这理想脉冲发生器的作用,通过它将连续信号调制成脉冲序列。 图3 离散系统方块图 图4 离散型时间函数 调制之后的信号中,包含与脉冲频率相关的高频频谱(图5),相邻两频谱不相重叠的条件是: max 2f f s 其中: s f ---采样开关的采样频率 m ax f ---连续信号频谱中的最高频率 这就是采样定理,通常选择采样频率时取四倍连续信号的最大频率。实验中,信号源产生频率可调的周期性信号,计算机通过A/D 板将信号采集入内存,通过软件示波器显示出来,调整采样频率,可以得到不同的采样结果,以波形图直观显示出来。由此,可考察波形失真程度。 三、实验使用的仪器设备及实验装置 1. 装有LabVIEW 软件和PCI-1200数据采集卡的计算机一台 2. 频率计或信号发生器一台 3. 外接端子板、数据采集板、计算机、组态软件 基于LabVIEW 的信号测试系统主要包括信号发生器、DAQ 数据采集卡和计算机软件三部分组成。A/D 数据采集采用NI 公司PCMCIA 接口的PCI-1200型多功能数据采集卡;L abVIEW 7.1软件。 将PCI-1200数据采集卡插到计算机主板上的一个空闲的PCI 插槽中,接好各种附件,其驱动程序就是NI-DAQ 。附件包括一条50芯的数据线,一个型号为CB-50LP 的转接板,转接板直接与外部信号连接。 图5 信号频谱图

四、具体实验步骤 (一)通过LabVIEW进行模拟信号的数据采集 1. 安装数据采集卡,根据数据采集卡接线指示(图6)连接线路,并检查测试。 2. 熟悉LabVIEW软件中与数据采集相关的控件与设置项。 3. 编制DAQ程序,并调试数据采集组态。 4. 应用该组态软件进行波形数据采集并存储,信号种类设置为正弦波,分别设置 信号发生器频率为50,100Hz,观察并记录波形变化。 5. 设置信号种类为方波或锯齿波,重复上述实验。 (二)采样定理验证实验 1. 按图8连接线路,并检查测试。 2. 熟悉GeniDAQ软件中与数据采集相关的控件与设置项。 3. 编制、调试数据采集组态。 4. 应用该组态软件进行波形数据采集并存储,信号种类设置为正弦波,分别设置 信号发生器频率为50,100Hz,采集频率设置为50、100、150、200、300、500Hz,观察并记录波形变化,体验采样定理的正确性。 五、实验准备及预习要求 1.认真阅读实验指导书,在老师答疑和同学讨论的基础上,完成实验准备任务: 1).了解数据采集及其硬件(A/D变换器和数据采集卡)选择的基本知识; 2).熟悉G语言编程环境和虚拟仪器的含义; 1.理解采样定理的意义;

离散时间信号表与运算

离散时间信号表与运算

————————————————————————————————作者:————————————————————————————————日期:

实验一 离散时间信号的表示与运算 一 实验目的 1、熟悉MATLAB 的绘图函数; 2、掌握单位取样序列、单位阶跃序列、矩形序列和正余弦序列的产生方法; 3、掌握离散时间信号基本运算的MATLAB 实现; 4、掌握离散时间信号线性卷积和运算的MATLAB 实现。 二 实验设备 1、计算机 2、MA TLAB R2007a 仿真软件 三 实验原理 1)序列相加和相乘 设有序列)(1n x 和)(2n x ,它们相加和相乘如下: ) ()()()()()(2121n x n x n x n x n x n x ?=+= 注意,序列相加(相乘)是对应序列值之间的相加(相乘),因此参加运算的两个序列必须具有相同的长度,并且保证位置相对应。如果不相同,在运算前应采用zeros 函数将序列左右补零使其长度相等并且位置相对应。在MATLAB 中,设序列用x1和x2表示,序列相加的语句为:x=x1+x2;然而要注意,序列相乘不能直接用x=x1*x2,该式表示两个矩阵的相乘,而不是对应项的相乘。对应项之间相乘的实现形式是点乘“.*”,实现语句为:x=x1.*x2。 2)序列翻转 设有序列:)()(n x n y -=,在翻转运算中,序列的每个值以n=0为中心进行翻转,需要注意的是翻转过程中序列的样值向量翻转的同时,位置向量翻转并取反。MATLAB 中,翻转运算用fliplr 函数实现。设序列)(n x 用样值向量x 和位置向量nx 表述,翻转后的序列 )(n y 用样值向量y 和位置向量ny 描述。 3)序列的移位 移位序列)(n x 的移位序列可表示为:)()(0n n x n y -=,其中,00>n 时代表序列右移 0n 个单位;00

用MATLAB实现常用的离散时间信号及其时域运算

实验四用MATLAB实现常用的离散时间信号及其时域运算 —— 摘要:在MATLAB中,只能用向量来表示离散时间信号。与连续信号不同,离散时间信号无法用符号运算来表示。用适当的MATLAB语句表示出信号后,就可以利用MATLAB的绘图命令stem来绘出直观的信号波形图,stem是专门用于绘制离散时间信号的。在MATLAB中离散序列的时域运算和变换不能用符号运算来实现,而必须用向量表示的方法,即在MATLAB中离散序列的相加、相乘需表示成两个向量的相加、相乘,因而参加运算的两序列向量必须有相同的维数。 一、实验目的:(1)学习MATLAB语言及其常用指令; (2)学习和掌握用MATLAB语言产生离散时间信号的编程方法; (3)通过编程绘制出离散时间信号的波形,加深理解信号的时域运算。 二、实验内容:(1)运用MATLAB的绘图指令绘制离散时间信号; (2)用MATLAB语言实现离散时间信号的时域运算。 三、实验原理:(1)单位阶跃序列和单位样值序列。 离散时间信号只在某些离散的瞬时给出信号的值,因此,它是时间上不连续的序列。单位阶跃序列和单位样值序列在离散时间信号与系统的分析中是两个非常典型的序列,分别记为u(n)和δ(n)。它们的定义分别如下: 1 n≥0 1 n≥0 u(n)= δ(n)= 0 n<0 0 n≠0 若单位阶跃序列的起始点为n0,单位样值序列出现在n0时刻,则表达式分别为: 1 n≥n0 1 n=n0 u(n-n0)= δ(n-n0)= 0 n

单位样值序列与连续时间的单位冲激信号的异同。 (2)离散时间信号的时域运算。 与连续时间系统的研究类似,在离散系统分析中,经常遇到离散时间信号的运算,包括两信号的相加、相乘以及序列自身的移位、反褶、尺度等等,也需要了解在运算过程中序列的表达式以及对应的波形的变化。 序列x(n)的移位:x(n-n0) 序列x(n)的反褶:x(-n) 序列x(n)的尺度变换:x(an) 两序列x1(n)与x2(n)的相加减:x1(n) ±x2(n) 两序列与的相乘:x1(n) ·x2(n) (3)学习如何使用MATLAB语言产生离散时间信号并对离散时间信号进行时域运算。四、实验任务: (1)编制用于产生下列信号的通用程序,要求对于任意给定的参数都能实现所要求的信号。调试并运行这些通用的程序。 ①x(n)=Aδ(n-n0) 程序:function un(t1,t2,t0) t=t1:t2; n=length(t); tt=t1:t2; n1=length(tt); f=zeros(1,n); f(1,t0-t1+1)=3; stem(t,f),grid on title('μ¥??3??÷D?o?') axis([t1,t2 -0.2 4])

《离散时间信号的表示及运算》

实验一 离散时间信号的表示及运算 一、实验目的 1.掌握离散时间信号的时域表示; 2.掌握离散时间信号的基本运算; 3.用MA TLAB 表示的常用离散时间信号及其运算; 4.掌握用MA TLAB 描绘二维图形的方法。 二、实验原理 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。离散时间信号的波形绘制在MATLAB 中一般用stem 函数。 对离散时间序列实行基本运算可得到新的序列,这些基本运算主要包括加、减、乘、除、移位、反折等。两个序列的加减乘除是对应离散样点值的加减乘除,因此,可通过MATLAB 的点乘和点除、序列移位和反折来实现。 一些常用序列 1.单位冲激序列(单位抽样))(n δ ?? ?≠==0,00,1)(n n n δ (1) 2.单位阶跃序列)(n u ???=,,01)(n u 00<≥n n (2) 3.矩形序列)(n R N ???=,,01)(n R N 其他10-≤≤N n (3) 4.正弦序列和指数序列 正弦序列 )s i n ()(0?ω+=n A n x (4) 式中:A 为幅度,0ω为数字域的频率,它反映了序列变化的速率,?为起始相位。 实指数序列 )()(n u a n x n = (5)

式中,a 为实数。当1a 时,序列是发散的。a 为负数时,序列是摆动的。 复指数序列 n j e n x )(0)(ωσ+= (6) 它具有实部和虚部,0ω是复正弦的数字域频率。 三、实验内容 1.用Matlab 编制程序分别产生单位抽样序列)(n δ、单位阶跃序列)(n u 、矩形序列)()(5n R n x =、正弦序列)8 sin(2)(n n x π=、复指数序列n j e n x )641()(π+=,并画波形图; 绘制)(n δ波形 绘制n j e n x ][)()2.01.0(π+-=的实部和虚部的波形。

离散时间信号与系统

实验:离散时间信号与系统的时域分析 一、实验目的 1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数; 2、掌握离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程; 3、牢固掌握系统的单位序列响应的概念,掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。 基本要求:掌握用MATLAB描述离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。掌握线性时不变离散系统的时域数学模型用MATLAB描述的方法,掌握线性常系数差分方程的求解编程。 二、实验原理 信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。 在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。 在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。但是,还有一些信号的独立时间变量是离散变化的,这种信号称为离散时间信号。前面提到的股票市场的日收盘指数,由于相邻两个交易日的日收盘指数相隔24小时,这意味着日收盘指数的时间变量是不连续的,因此日收盘指数是离散时间信号。 而系统则用于对信号进行运算或处理,或者从信号中提取有用的信息,或者滤出信号中某些无用的成分,如滤波,从而产生人们所希望的新的信号。系统通常是由若干部件或单元组成的一个整体(Entity)。系统可分为很多不同的类型,例如,根据系统所处理的信号的不同,系统可分为连续时间系统(Continuous-time system)和离散时间系统(Discrete-time system),根据系统所具有的不同性质,系统又可分为因果系统(Causal system)和非因果系统(Noncausal system)、稳定系统(Stable system)和不稳定系统(Unstable system)、线性系统(Linear system)和非线性系统(Nonlinear system)、时变系统(Time-variant system)和时不变系统(Time-invariant system)等等。 然而,在信号与系统和数字信号处理中,我们所分析的系统只是所谓的线性时不变系统,这种系统同时满足两个重要的基本性质,那就是线性性和时不变性,通常称为线性时不变(LTI)系统。 1. 信号的时域表示方法 1.1将信号表示成独立时间变量的函数

离散时间信号的表示及运算

第2章 离散时间信号的表示及运算 2.1 实验目的 ● 学会运用MATLAB 表示的常用离散时间信号; ● 学会运用MATLAB 实现离散时间信号的基本运算。 2.2 实验原理及实例分析 2.2.1 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 )0()0(01)(≠=???=n n n δ (12-1) 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例2-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1])

实验二 离散时间信号与系统的Z变换分析

实验二 离散时间信号与系统的Z 变换分析 一、 实验目的 1、熟悉离散信号Z 变换的原理及性质 2、熟悉常见信号的Z 变换 3、了解正/反Z 变换的MATLAB 实现方法 4、了解离散信号的Z 变换与其对应的理想抽样信号的傅氏变换和拉氏变换之间的关系 5、了解利用MATLAB 实现离散系统的频率特性分析的方法 二、 实验原理 1、正/反Z 变换 Z 变换分析法是分析离散时间信号与系统的重要手段。如果以时间间隔s T 对连续时间信号f (t)进行理想抽样,那么,所得的理想抽样信号()f t δ为: ()()*()()*()Ts s k f t f t t f t t kT δδδ∞ =-∞ ==-∑ 理想抽样信号()f t δ的双边拉普拉斯变换F δ (s)为: ()()*()()s ksT st s s k k F s f t t kT e dt f kT e δδ∞∞∞ ---∞=-∞=-∞??=-=????∑∑? 若令()()s f kT f k = ,s sT z e = , 那么()f t δ的双边拉普拉斯变换F δ (s)为: ()()()sT s k z e k F s f k z F z δ∞-==-∞= =∑ 则离散信号f (k )的Z 变换定义为: ()()k k F z f k z ∞-=-∞= ∑ 从上面关于Z 变换的推导过程中可知,离散信号f (k )的Z 变换F(z)与其对应的理想抽样信号()f t δ的拉氏变换F δ (s)之间存在以下关系: ()()sT s z e F s F z δ== 同理,可以推出离散信号f (k )的Z 变换F(z)和它对应的理想抽样信号()f t δ的傅里叶变换之间的关系为 ()()j Ts z e F j F z δωΩ== 如果已知信号的Z 变换F(z),要求出所对应的原离散序列f (k ),就需要进行反Z 变换,反Z 变换的定义为: 11()()2k f k F z z dz j π-=? 其中,C 为包围1()k F z z -的所有极点的闭合积分路线。 在MATLAB 语言中有专门对信号进行正反Z 变换的函数ztrans( ) 和itrans( )。其调用格式分别 如下: F=ztrans( f ) 对f(n)进行Z 变换,其结果为F(z)

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k 。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

离散时间信号期末试题

一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 第一 2.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( c )。 A.R3(n) B.R2(n) C.R3(n)+R3(n-1) D.R2(n)+R2(n-1) 3.下列哪一个单位抽样响应所表示的系统不是因果系统?( d ) A.h(n)=δ(n) B.h(n)=u(n) C.h(n)=u(n)-u(n-1) D.h(n)=u(n)-u(n+1) 4.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( a )。 A.当|a|<1时,系统呈低通特性 B.当|a|>1时,系统呈低通特性 C.当0

离散时间信号的表示及运算

第2章离散时间信号的表示及运算 2.1实验目的 学会运用MATLAB表示的常用离散时间信号;学会运用MATLAB实现离散时间信号的基本运 算。 2.2实验原理及实例分析 221 离散时间信号在 MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列 通常用x(n)来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB中一般用Stem函数。stem函数的基本用法和Plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill、"‘filled ,或者参数:”。由于MATLAB中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示 出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列J.(n),也称为单位冲激序列,定义为 (n =0) (12-1) (n = 0) 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n=0处是取确定的值1。在MATLAB中,冲激序列可以通过编写以下的impDT.m文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n必须为整数或整数向量。 【实例2-1】禾U用MATLAB的impDT函数绘出单位冲激序列的波形图。 解:MATLAB源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列’)

实验一离散时间信号的分析报告

工程大学信号分析与处理实验一 专业:通信02班 学生:瑶华 学号:1304200113 完成时间:2020年11月19日

实验一: 离散时间信号的分析 一、实验目的 1.认识常用的各种信号,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的简单运算及计算机实现与作用。 4.理解离散时间傅立叶变换、Z 变换及它们的性质和信号的频域特性。 二、实验设备 计算机,MATLAB 语言环境。 三、实验基础理论 1.序列的相关概念 2.常见序列 ● 单位取样序列?? ?≠==0n 0,0 n 1n ,)(δ ● 单位阶跃序列???<≥=0 ,00 ,1)(n n n u ● 单位矩形序列???-≤≤=其他,01 0,1)(N n n R N ● 实指数序列)()(n u a n x n = ● 复指数序列n jw e n x )(0)(+=σ ● 正弦型序列)n sin()(0?+=w A n x

3.序列的基本运算 ● 移位 y(n)=x(n-m) ● 反褶 y(n)=x(-n) ● 和 )()()(21n x n x n y += ● 积 )()()(21n x n x n y ?= ● 标乘 y(n)=mx(n) ● 累加∑-∞ == n m m x n y )()( ● 差分运算 ???--=?-+=?)1()()() ()1()(x n x n x n x n x n x n 后相差分前向差分 4.离散傅里叶变换的相关概念 ● 定义 ∑+∞ -∞ =-=n jwn jw e n x e X )() ( ● 两个性质 1) [] ) 2()2()2()()(,2)(ππππ++∞ -∞ =+-+--== =∑w j n n w j jw n w j jwn jw e X e n x e X e e w e X 故有。由于的周期函数,周期为是 2) 当x (n )为实序列时,)(jw e X 的幅值)(jw e X 在π20≤≤w 区间是偶对称函 数,相位)(arg jw e X 是奇对称函数。 5.Z 变换的相关概念 ● 定义 ∑+∞ -∞=-=n n z n x z X )() ((双边Z 变换) ∑+∞ =-=0 )()(n n z n x z X (单边Z 变换) 四、实验容与步骤 1.离散时间信号(序列)的产生

离散时间系统的变换域分析

第八章离散时间系统的变换域分析 §8-1 引言 一、变换域分析的目的: 类似于连续时间系统的L.T.,离散时间系统通过Z变换(Z.T.),可以将原来求解差分方程的问题转变为求解代数方程的问题,其目的是通过变换域分析将原来的求解问题简化。 二、Z变换的发展史 十八世纪,英国数学家棣莫弗(De Moivre)提出生成函数,并应用于概率论。实质上,生成函数与Z变换的形式相同。从十九世纪拉普拉斯(https://www.360docs.net/doc/2f13222519.html,place)到二十世纪沙尔(H.L.Seal)等人都对其进行了进一步深入研究。 二十世纪六十年代起,由于计算机技术和控制技术的飞速发展,抽样控制理论的应用,离散信号处理和数字信号处理得到了广泛应用。作为离散时间系统分析的重要工具,Z.T.得到了很大的发展,其用途甚至超过了L.T.

三、离散时间系统的分析方法 1.离散时间系统的Z域分析法,这在本课程进行研究。 2.离散时间系统的频域分析法,即利用离散傅里叶变换(DFT)——在离散时间 系统分析中同样占用很重要的地位,而 DFT的快速算法——FFT——的提出使 得DFT在各种信号处理场合得到的广 泛的应用。这在数字信号处理课程中进 行。 3.除了DFT以外,还有如沃尔什变换等分析方法,在离散信号处理中同样得到的 很广泛的应用。这在数字信号处理课程 中进行。 §8-2 Z变换定义及其收敛区域 一、Z变换的定义 Z变换的定义可以从纯数学的角度进行,也可以通过信号分解的角度提出,后者更加容易理解。本课程中,通过连续时间系统的F.T.导出Z.T.。 离散时间信号f(k)可以看成是连续时间信号

通过抽样而得到的冲激序列: )(k f ——>∑+∞ -∞ =-= k kT t t f t f )()()(δδ 对其)(t f δ进行F.T.: [ ] () ∑∑∑ ?∑??∑?∑?∑?∞ +-∞ =-∞+-∞ =-∞ +-∞ =∞ +∞--∞ +-∞ =∞ +∞ --∞ +∞ --∞+-∞=∞+∞ --∞+-∞=∞ +∞ --∞+-∞=+∞ ∞ --= = -=-=?? ? ???-=?? ? ???-=??? ???-==k kT j k kT j k t j k t j t j k t j k t j k t j e k f e k f dt e kT t k f dt e kT t k f dt e kT t k f dt e kT t kT f dt e kT t t f dt e t f j F ωωωωωωωωδδδδδδω)()()()()()()()()()()()()()( 根据Dirichlet 条件,只有在信号满足绝对可积条件的情况下才成立,即满足绝对可和条件: +∞<∑+∞ -∞ =k k f )(时,FT 才存在。如果不满足,可以 利用LT 中的方法,在信号上首先乘以一个衰减因子rkT e -,然后再求FT 。这样一来上式就可以变成 为:

实验1离散时间信号的产生与运算

数字信号处理 实验报告 班级: 学号: 姓名:

实验1离散时间信号的产生与运算 一、实验目的 (1)了解离散时间信号的特点。 (2)掌握在计算机中生成及绘制各种常用离散时间信号序列的方法。 (3)掌握序列的加、减、乘、除和平移、反转、尺度变换等基本运算及计算机的 实现方法。 二、实验原理 信号是随时间变化的物理量,而计算机只能处理离散信号。离散信号是在某些不连续的时间上有信号值,而在其它时间点上没有定义的一类信号。离散信号一般可以由连续信号通过模数转换得到。 常用的离散信号有单位脉冲序列、单位阶跃序列、复指数序列、正弦信号序列、随机序列等。 离散信号的基本运算包括信号的加、减、乘、除。离散信号的时域变换包括信号的平移、反转、尺度变换等。 三、实验内容与方法 1、编写程序,生成如下数字信号:sqrt(2*k)u(k3),δ(k+5)。 (1) f(k)=sqrt(2*k)u(k3) 代码: k=(1:10); n=3; u=[(k-n)>=0]; a=sqrt(2*k); stem(k,a.*u); title('sqrt(2*k)u(k 3)的图像'); xlabel('时间(k)');ylabel('幅值f(k)'); 运行图:

(2) f(k)= δ(k+5) 代码: k1=-10;k2=0;k=k1:k2; n=-5; %单位脉冲出现的位置 f=[(k-n)==0]; stem(k,f,'filled');title('δ(k+5)序列的图像') xlabel('时间(k)');ylabel('幅值f(k)'); 运行图:

2、f(k)=sin(0.1πk),设计并编写程序,完成信号f(k)到f(2k+2)的转化。 (1) f(k) 代码: k1=-20;k2=20; k=k1:k2; f=sin(0.1*pi*k); stem(k,f,'filled'); title('正弦序列');xlabel('时间(k)');ylabel('幅值f(k)'); 运行图: (2) f(2k+2) 代码: k1=-20;k2=20; k=k1:k2; d=k+1; %对k平移一个单位 f1=sin(0.2*pi*d); %周期变为原来的一半 stem(k,f1,'filled'); title('正弦序列2');xlabel('时间(k)');ylabel('幅值 f(2k+2)'); 运行图:

离散时间系统概念附常见离散信号

连续时间信号:一般也称模拟信号。 连续时间系统: 系统的输入、输出都是连续的时间信号。 离散时间信号:离散信号可以由模拟信号抽样而得,也可以由实际系统生成。 离散时间系统: 系统的输入、输出都是离散的时间信号。如数字计算机。 量化: 采样过程:就是对模拟信号的时间取离散的量化值过程。——得到的就是离散信号。 幅值量化:幅值只能分级变化。 数字信号:离散信号在各离散点的幅值被量化的信号。 系统分析: 连续时间系统——微分方程描述 时域分析:经典法(齐次解 + 特解) 【零输入响应 + 零状态响应】

变换域分析(频域分析):拉氏变换法。 离散时间系统——差分方程描述 时域分析:经典法( 齐次解 + 特解 ) 【零输入响应 + 零状态响应】 变换域分析(频域分析):Z 变换法。 离散时间系统的数学模型——差分方程 单位序列: 时移性: 比例性: 抽样性: δ(k)与δ(t) 差别: 0,0()1,0k k k δ≠?=?=?k O ()k δ110,()1,k j k j k j δ≠?-=?=?k (1)k δ-11O (),() c k c k j δδ-()()(0)() f k k f k δδ=???≠=∞=000)(t t t δ1)(=?∞ ∞ -dt t δ

? δ(t)用面积表示强度, (幅度为∞,但强度为面积); ? δ(k)的值就是k=0时的瞬时值(不是面积); ? δ(t) :奇异信号,数学抽象函数; ? δ(k):非奇异信号,可实现信号。 利用单位序列表示任意序列 单位阶跃序列: ???=≠=0,10,0)(k k k δ0()()() i x k x i k i δ∞ ==-∑ 10()00k k k ε≥?=?

离散时间信号与离散时间系统..

§7-1 概述 一、 离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、 连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、 离散信号的表示方法: 1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、 典型的离散时间信号 1、 单位样值函数: ?? ?==其它001)(k k δ 下图表示了)(n k -δ的波形。

这个函数与连续时间信号中的冲激函数)(t δ相似,也有着 与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。 2、 单位阶跃函数: ?? ?≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数) (t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列: )(k a k ε 比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。 4、 单边正弦序列:)()cos(0k k A εφω+ 双边正弦序列:)cos(0φω+k A (a) 0.9a = (d) 0.9a =- (b) 1a = (e) 1a =- (c) 1.1a = (f) 1.1a =-

相关文档
最新文档