物探新方法新技术之七:三维可视化技术(3DVisualization)

物探新方法新技术之七:三维可视化技术(3DVisualization)
物探新方法新技术之七:三维可视化技术(3DVisualization)

7 三维可视化技术

三维可视化(3D Visualization)技术是20世纪80年代中期诞生的一门集计算机数据处理、图像显示的综合性前缘技术。它是利用三维地震数据体显示、描述和解释地下地质现象和特征的一种图像显示工具。它可使地球物理学家和地质学家“钻入”到数据体中,更深刻地理解各种地质现象的发生、发展和相互之间的联系。

7.1 三维可视化技术概述

可视化技术是把描述物理现象的数据转化为图形、图像,并运用颜色、透视、动画和观察视点的实时改变等视觉表现形式,使人们能够观察到不可见的对象,洞察事物的内部结构。

可视化技术有两种基本类型:基于平面图的可视化(Surface Visualization)和基于数据体的可视化(Volume Visualization),也称为层面可视化和体可视化。

层面可视化指的是地质层位、断层和地震剖面在三维空间的立体显示,其主要用于解释成果的检验和显示。

体可视化是通过对数据体(可以是常规地震振幅数据体,也可以是地震属性数据体,如波阻抗体或相干体)作透明度等调整,从而使数据体呈透明显示,其主要用于数据体的显示和全三维解释。

在体可视化解释中,常用技术有5种:体元自动追踪技术、锁定层位可视化技术、锁定时窗可视化技术、垂直剖面叠合可视化技术和多属性可视化技术。

(1) 体元自动追踪技术

追踪过程是从解释人员定义种子体元(Seed Voxel)开始的,体元追踪是沿着真正的三维路径追踪数据体,因此追踪结果是数据体而不是层位。图7—1给出利用体元自动追踪技术解释某油田含油砂体的过程,即从油层标定、种子点拾取、体元追踪到三维显示。

(2) 锁定层位可视化技术

利用已有的层位数据(或者层位数据做定量时移)作为约束条件,将目的层段的数据从整个数据体中提取出来,然后针对层段内部数据体调整颜色、透明度和光照参数,可以更有效地圈定地质体的分布范围,更准确地判断断层的延展方向

和断层之间的切割关系。图7—2为淮南张集煤矿西部采区13—1煤层振幅体可视化图。

图7—1 利用体元自动追踪技术解释某油田含油砂体

(a)油层电测曲线特征;(b)油层强振幅异常显示和种子点拾取;(c)自动追踪出的含油砂体

图7—2 淮南张集煤矿西部采区13—1煤层振幅体可视化图层拉平可视化技术是锁定层位可视化技术的延伸,层拉平实际上是沿层将数据体拉平。层拉平后不仅可以研究构造发育特征,而且可以使用锁定时窗可视化技术更方便快捷地对大倾角地层进行可视化分析。

(3) 锁定时窗可视化技术

是最简单的可视化技术,对平缓地层的地质评价方便有效。使用该技术可以快速流浏览地质体,了解断层和沉积体的空间分布。

(4) 垂直剖面叠合可视化技术

将多个垂直剖面叠合并进行可视化显示,可以从视觉角度提高信噪比和分辨率,进而提高断层和异常体的解释精度。图7—3为淮南张集煤矿西部采区多个垂直剖面的显示。

图7—3 淮南张集煤矿西部采区多个垂直剖面

(5) 多属性可视化技术

多解性是地震资料的特点,多种数据体综合可视化解释有助于减少地震解释的多解性,这也是可视化解释优于传统解释方法的重要方面。

在多属性可视化技术中,可以同时使用多种数据体,如波阻抗体、相干体、瞬时频率数据体等。对每一个数据体都可以调整改变颜色、透明度等参数,在同一个窗口中,一次可以完成体元追踪、锁定时窗或锁定层位等可视化解释工作,从而最大限度上发挥多种信息综合解释的优势。

图7—4介绍了利用振幅体和方差体综合可视化显示研究某油田断裂系统空间分布的实例。图7—4(a)为振幅数据,利用该数据很难进行断层解释图;图7—4(b)为振幅体和透明显示的方差体,断层的平面分布比较清楚;图7—4(c)为透明显示的方差体,通过旋转可以看出断层的空间分布规律;图7—4(d)为透明显示的振幅体和方差体,断层的空间分布特征和相互切割关系十分清楚。

体可视化解释技术直观、准确、快捷,无论是技术本身还是思维方式和传统

三维可视化机房智能监控系统

三维可视化机房智能监控系统 随着计算机技术的迅速发展,数字交换技术的日新月异,计算机通信已经深入到社会生活并对社会经济的发展起着决定性的作用,而在这其中计算机机房数据中心作为载体更是整体生态链中的重中之重。尤其是近年来,云技术的突飞猛进,计算机机房数据中心所承受的压力越来越大:机房计算机系统的数量与日俱增,其环境设备也日益增多,机房环境设备(如供配电系统、UPS 电源、空调、消防系统、保安系统等),由于各类设备各自独立,如果没有统一的监控系统进行管理,主要是依靠值班人员的定时巡检来进行系统监控,由于值班人员知识面和安全管理的问题,值班人员不可能详细地检查每套系统,所以存在较大的安全生产隐患。 为满足工作需要,提高机房维护和管理的安全性,北京金视和科技股份有限公司建立一套“可视化、智能化、远程化”的监控系统,为机房高效的管理和安全运营提供有力的保证。 三维可视化机房智能监控系统对机房实现远程集中监控管理,实时动态呈现设备告警信息及设备参数,快速定位出故障设备,使维护和管理从人工被动看守的方式向计算机集中控制和管理的模式转变。突破性的三维仿真技术是智能可视化数据中心建设的一个重要的组成部分,机房设备具有数量大、种类多、价值高、使用周期长、使用地点分散、缺少实时性管理、管理难度大等特点。全三维可视化监控平台,形象化的虚拟场景和真实数据相结合,增强机房设备、设施数据的直观可视性、提高其利用率。 系统特点 三维虚拟可视化平台 在现有资源管理系统数据库的基础上,以三维虚拟现实的形式展现数据中心的运行情况。实现可视化管理和服务器设备物理位置的精确定位。三维虚拟现实方式对机房楼层、设备区、设备安装部署情况及动力环境等附属设施的直观展示,实时展现监控和报警数据。可实现360度视角调整。 IT资产可视化管理 在三维环境中通过鼠标点击实现楼层、机房、机房子区域、机柜、设备的分级直接浏览。实现机房可用性动态统计,包括空间可用性、用电量分布、温湿度分布情况和机房承重分布情况统计。当上架设备物理位置发生变化时,设备位置根据数据库变化自动变更。用户也可通过维护工具自行调整。

三维地矿模型可视化控件研究

收稿日期:2011-10-25;修回日期:2012-01-29基金项目:国家自然科学基金项目(70971059) 作者简介:王彦彬(1977-),男,河北保定人,博士研究生,研究方向为网络数字矿山系统。 三维地矿模型可视化控件研究 王彦彬,车德福,郭甲腾,张维国 (东北大学资源与土木工程学院,辽宁沈阳110004) 摘 要:三维建模与可视化是网络数字矿山系统的一个重要组成部分,在网络环境下实现地矿模型的三维可视化,需要在 客户端对原始数据或者模型数据进行三维再现。为了便于与前期工作相结合,同时为了提高系统的运行效率,文中在分析ActiveX 控件的基础上,采用ActiveX 控件结合OpenGL 图形库的方法实现地矿模型在网络环境下的显示与交互。结果表明,使用控件将业务逻辑进行封装实现三维地矿模型可视化,有利于软件复用,提高软件开发效率,并能有效解决客户端与服务端负载平衡问题。 关键词:数字矿山;控件;ActiveX ;OpenGL ;地矿模型中图分类号:TP31 文献标识码:A 文章编号:1673-629X (2012)06-0061-03 Research on Visual Control of 3D Geological Model WANG Yan -bin ,CHE De -fu ,GUO Jia -teng ,ZHANG Wei -guo (School of Resources &Civil Engineering ,Northeastern University ,Shenyang 110004,China ) Abstract :3D modeling and visualization is important parts of web digital mine system.It needs to reconstruct the raw or model data to re-alize 3D visualization of geological model.In order to combine with the early works and to improve the working efficiency ,analyzed the realization of ActiveX controls ,realized the visualization and interaction under the internet environment by ActiveX and Open GL.The re-sults showed that using controls could benefit to software reusing ,help to improve programming efficiency and could efficiently solve the load balance between client and server. Key words :data mine ;controls ;ActiveX ;OpenGL ;geological model 0引 言 随着计算模式和网络的发展,B /S 模式得到广泛应用 [1] ,数字矿山系统的建设也逐渐与网络结合。数 字矿山系统建设中,三维地矿模型的建模与可视化是一个重要的组成部分,通过三维地矿模型工作人员可以直观地观察地质体内部结构和特征,同时也利于对模型进行空间分析,帮助地学工作者在动态场景中分析、推理,深入了解相关的变化特征以及规律。 网络数字矿山系统建设的重点之一就是在网络环境下再现三维地矿模型,当前网络三维可视化技术主要有VRML (X3D )、 Java3D (JOGL )以及采用控件结合DirectX3D 或者OpenGL 的方法进行实现 [2] 。其中 VRML (X3D )的运行需要相关插件的支持,虽然开发过程比较容易,比如现在的3D MAX 等建模软件均提供了对它的支持,可以直接将建模结果输出为VRML (X3D )文件,但是它很难与数据库结合,同时它的运 行效率也待进一步提高;Java3D (JOGL )是在Java 环境下进行三维模型开发的主要技术手段, 本身具有很多的优点,比如便于和数据库连接,具有跨平台性等,但是它也有一些缺点,如执行速度的问题、显示效果的问题等;采用控件结合DirectX3D 或者OpenGL 的方法可以提高渲染速度,并且可以方便地与前期开发的C ++成果进行结合,目前也有很多的软件和相关工作采用控件的方法进行实现,因此在网络数字矿山系统建设中可以采用控件结合OpenGL 的方式实现客户端模型的可视化。 1 ActiveX 控件 ActiveX 技术是微软公司提供的一种基于COM 的 综合技术,它与Windows 系列操作系统紧密结合,在很多领域得到广泛应用 [3 6] 。ActiveX 控件是ActiveX 技 术的重要组成部分,一个ActiveX 控件基本上是一个 支持IUnknown 接口的OLE Object [7] ,需要在ActiveX 容器中才能运行,容器通过控件中定义的方法、属性、事件等与控件进行通信。 ActiveX 控件具有如下的优点:容量小能通过IE 第22卷第6期2012年6月 计算机技术与发展 COMPUTER TECHNOLOGY AND DEVELOPMENT Vol.22No.6June 2012

物探工作方法技术

1:5000激电中梯剖面测量 1:5000激电中梯剖面测量采用长导线,针对重要异常带、矿化带进行,为寻找隐伏矿提供依据。 1、1:5000剖面敷设 剖面端点用全站仪或GPS RTK布设,用木桩标记;测点采用GPS RTK分段控制、罗盘定向、测绳量距布设,用带有编号的红布标记。质量检查按“一同三不同”的原则进行,检查点在空间上、时间上大致均匀,总检查量不低于5%,精度要求达到“B级”精度要求,即在相应比例尺图上平面点位限差<±2.5mm,点位中误差不超过12.5m;相邻点距误差限差10%,均方相对误差不超过5%。 2、野外工作方法 激电剖面法采用中间梯度装置,AB=1200米,MN=40米,点距=20米。 采用时间域激电测量,正反向标准直流脉冲供电,脉冲宽度2秒。 以上参数可根据野外实际情况,通过现场试验进行适当调整。 激电观测参数为一次电位Vp、供电电流强度I及视充电率Ms,计算视电阻率ρs。观测时,测量电极MN在供电电极AB的2/3区间移动,旁线距小于AB/5。全区装置大小、观测参数设置应保持一致。一条剖面不能在一个供电装置内完成时,每个装置接头处应有三个以上的重复观测点。供电电流应使二次电位观测值大于最小可靠值,一般应使一次电位观测的观测值绝大部分在30mV以上。野外要经常检查仪器、导线的漏电情况,对突变点、异常点应进行重复观测和加密观测,确保观测数据可靠。 3、电性参数测定 电性参数测定主要采用露头法测定,有条件时,应采集一定的岩矿石标本,用标本法测定,并分别统计。每类岩(矿)石标本不少于30块,参数测定的质量评定应以采用某一种岩性测定的全部标本检查结果来衡量,即用基本观测统计出来的常见值与检查观测结果统计出来的常见值相对误差不得超过20%。 4、质量标准 视电阻率观测精度(<±7%),视充电率观测精度(<±12%),达到B 级精度;电性参数总平均相对误差≤±20%。

基于Arcscene的三维可视化技术

基于ArcScene的三维可视化技术的实现 摘要:三维可视化是运用计算机图形学和图像处理技研究数字地形模型显示、简化、仿真的学科,它涉及到计算机科学与技术、信号与信息处理、通信与信息系统、控制科学与工程、摄影测量与遥感、空间信息科学与技术等诸多学科,广泛应用于计算机视景仿真、虚拟现实、图形图像生成、遥感信息处理和数字地球等领域。本文主要介绍基于ArcScene平台的三维可视化技术的内容,以及三维可视化的实现过程。 关键字:ArcScene,三维可视化 1引言 近年来随着计算机技术的迅速发展,一门新颖的技术在不断涌出。三维可视化技术作为当今世界的一门主流技术它能够利用大量数据,检查资料的连续性,辨认资料真伪,发现和提出有用异常,为分析、理解及重复数据提供了有用工具,对多学科的交流协作起到桥梁作用。与以往的二维技术相比,它能跟直观、可视、形象、多视角、多层次的模拟三维场景,可提供一些平面上无法直接获得或表示的信息。还可以直观的对区域地形起伏的形态及沟、谷、鞍部等基本地形形态进行判读,比二维图形(如等高线)更容易为大部分读者所接受。 2ArcScene简介 ArcScene是美国ESRI公司开发的ArcGIS软件桌面系统3D分析扩展模块中的一部分,是一个适合于展示三维透视场景的平台,可以

在三维场景中漫游并与三维矢量与栅格数据进行交互,适用于数据量比较小的场景3D分析显示。ArcScene是基于OpenGl的,支持TIN数据的显示。显示场景时,ArcScene会将所有数据加载到场景中,矢量数据以矢量形式显示。它可以更加高效的管理三维GIS数据、进行三位分析、创建三位要素以及建立具有三维场景属性的图层。例如,可以把平面二维图形突出显示为三维结构。与常规的可视化系统如 3dsMAX、Maya等相比ArcScene克服了3DMAX、MAYA难以克服的困难,为诸多问题提供了很好的解决方法。 3三维可视化过程 3.1要素的三维显示 ArcScene提供了要素图层在三维场景中的三种显示方式: (1)通过属性设置基准高程 在要素属性对话框中,选择基本高程选项卡,设置以常量或表达式作为基准高程,填写或点击按钮生成提供Z值的字段或表达式即可,如图1。 (2)使用表面设置基本高程 在设置基准高程时选择由表面获取要素图层的高程,选中Obtain heights for layer from surface单选框,选择所需表面即 可。要素将会以表面所提供的高程在场景中显示。如图2 (3)要素的突出显示 在图层属性对话框的突出标签中,选中对图层中的要素进行突出复选框。并且在文本框中填写或点击按钮打开突出表达式

物探新方法新技术之七:三维可视化技术(3DVisualization)

7 三维可视化技术 三维可视化(3D Visualization)技术是20世纪80年代中期诞生的一门集计算机数据处理、图像显示的综合性前缘技术。它是利用三维地震数据体显示、描述和解释地下地质现象和特征的一种图像显示工具。它可使地球物理学家和地质学家“钻入”到数据体中,更深刻地理解各种地质现象的发生、发展和相互之间的联系。 7.1 三维可视化技术概述 可视化技术是把描述物理现象的数据转化为图形、图像,并运用颜色、透视、动画和观察视点的实时改变等视觉表现形式,使人们能够观察到不可见的对象,洞察事物的内部结构。 可视化技术有两种基本类型:基于平面图的可视化(Surface Visualization)和基于数据体的可视化(Volume Visualization),也称为层面可视化和体可视化。 层面可视化指的是地质层位、断层和地震剖面在三维空间的立体显示,其主要用于解释成果的检验和显示。 体可视化是通过对数据体(可以是常规地震振幅数据体,也可以是地震属性数据体,如波阻抗体或相干体)作透明度等调整,从而使数据体呈透明显示,其主要用于数据体的显示和全三维解释。 在体可视化解释中,常用技术有5种:体元自动追踪技术、锁定层位可视化技术、锁定时窗可视化技术、垂直剖面叠合可视化技术和多属性可视化技术。 (1) 体元自动追踪技术 追踪过程是从解释人员定义种子体元(Seed Voxel)开始的,体元追踪是沿着真正的三维路径追踪数据体,因此追踪结果是数据体而不是层位。图7—1给出利用体元自动追踪技术解释某油田含油砂体的过程,即从油层标定、种子点拾取、体元追踪到三维显示。 (2) 锁定层位可视化技术 利用已有的层位数据(或者层位数据做定量时移)作为约束条件,将目的层段的数据从整个数据体中提取出来,然后针对层段内部数据体调整颜色、透明度和光照参数,可以更有效地圈定地质体的分布范围,更准确地判断断层的延展方向

工程物探常用方法及技术

工程物探常用方法及技术 工程物探——工程地球物理勘探的简称,它是以地下岩土层(或地质体)的物性差异为基础,通过仪器观测自然或人工物理场的变化,确定地下地质体的空间展布范围(大小、形状、埋深等)并可测定岩土体的物性参数,达到解决地质问题的一种物理勘探方法。 按照勘探对象的不同,工程物探技术又分为三大分支,即石油工程物探、固体矿工程物探和水工环工程物探(简称工程物探),我们使用的为工程工程物探。 工程物探技术方法门类众多,它们依据的原理和使用的仪器设备也各有不同,随着科学技术的进步,工程物探技术的发展日趋成熟,而且新的方法技术不断涌现,几年前还认为无法解决的问题,几年后由于某种新方法、新技术、新仪器的出现迎刃而解的实例是常见的。它是地质科学中一门新兴的、十分活跃、发展很快的学科,它又是工程勘察的重要方法之一,在某种程度上讲,它的应用与发展已成为衡量地质勘察现代化水平的重要标志。 常用工程物探方法及特点 ①电法勘探:包括电测深法、电剖面法、高密度电法、自然电场法、充电法、激发极化法、可控源音频大地电磁测深法、瞬变电磁法等; ②探地雷达:可选择剖面法、宽角法、环形法、透射法、单孔法、多剖面法等; ③地震勘探:包括浅层折射波法、浅层反射波法和瑞雷波法; ④弹性波测试:包括声波法和地震波法。声波法可选用单孔声波、穿透声波、表面声波、声波反射、脉冲回波等;地震波法可选用地震测井、穿透地震波速测试、连续地震波速测试等; ⑤层析成像:包括声波层析成像、地震波层析成像、电磁波吸收系数层析成像或电磁波速度层析成像等; 地下管线探测 主要检测内容: (1)金属管线探测 地下金属管线适宜用管线探测仪和探地雷达进行探测,管线仪对于金属管线探测具效率高、仪器轻便、结果准确等优点;探地雷达可用于埋深较大和密集管线的探测。 (2)非金属管线探测 目前地下非金属管线探测的首选方法是探地雷达。探地雷达具有连续无损探测、高效、高精度、易反演解释等优点。 使用探地雷达具有独特的天线阵技术,可以极大提高探测结果的精度和有效性。 考古探测 利用地下古代遗物与周边物质的物性差异,采用地球物理勘探手段对它们的平面位置、埋深、分布范围进行调查。利用雷达多天线阵列技术,探测的精度高,在小面积精确定位方面有无可比拟的优势;磁法探测能更快、更大面积地揭示地下遗址的面貌,结合已经为考古发掘与考古调查所认识的部分,加以典型影像校正,能更完整地认识遗址的全貌。 主要应用于找出遗址内土城墙、壕沟、坑、柱洞、房屋、墓穴等的位置及分布情况。 成都建测科技有限公司拥有领先的无损检测设备与检测系统方案,主要提供工程物探设备、基桩检测设备、建筑检测设备、路基基坑监测设备。

三维可视化智能安防系统

三维可视化智能安防系统 重点: 数字三维技术、门禁系统、监控系统、陌生人智能分析报警四大系统全方位保护。防止暴力、盗窃和安全事故的综合性安防解决方案。 一、概述 三维可视化智能安防系统,是一套集三维景观漫游、三维场景仿真、视频监控、视频分析于一体的三维可视化安保系统。该系统以虚拟现实技术研发的三维数字模型数据为基础平台,提供给用户直观的三维交互界面,所有操作针对三维实体模型进行数据交互。包括:监控摄像机、报警设备、门禁等系统设备的基础数据、状态控制数据等。所有数据交互到三维实体模型系统中后,由三维实体模型系统进行状态展现,并反馈用户所进行的操作给各系统。

二、功能特点 三维场景交互式操作 系统可完成真实景观快速建模,亦可导入三维模型,形成由大量三维模型组成的三维场景。在场景中可以轻松地对模型进行移动、旋转、复制、缩放等操作。 三维摄像头的操作 主要包括查找、查看、编辑、布局分析等功能。针对摄像头查找功能,系统提供多个检索选项,包括:坐标点检索,按名称检索,摄像头型号检索和模型位置检索等。检索完成后,用户可以选择检索出的某摄像头进入监控画面(画中画)。 属性数据管理 系统可对三维模型进行查询、浏览、统计等操作,支持载入语音、文字、图片等多媒体信息;系统完善的层管理机制可实现对不同层的数据进行各种属性管理操作,支持ODBC数据库接口,可链接各种商用数据库。 门禁显示 门禁开关的动作,非法卡刷卡时报警提示刷卡情况和报警周边的情况,报警状态在三维场景中提醒显示,同时通过信息提示。

视频监控及管理 用户可实时浏览监控点,报警点,查询监控点、报警点的相关属性信息。当发生报警时能自动切换到事发地点,显示报警效果,弹出相关视频。结合在办公楼内部署的红外探测等报警设备,实现对人员通过被检测区域时的报警提示,并在三维场景中表示出来,提供管理员直观了解布防区域的情况。 视频分析 视频行为分析技术——对校园内的相关运动目标(人或物体)进行检测、分类及轨迹追踪,并根据制定的分析(触发)规则,由系统自动分析、判断运动目标的行为信息,并将信息输出到三维可视化系统中。 三、功能阐述: 传统以人来监视的监控系统中越来越多的视频通道变得非常困难,因此,视频分析迅速成为安防应用中的一个关键元素。使用以智能视频分析和传感器输入为中心的数字产品和以虚拟现实技术研发的三维数字模型为平台的系统,可实现系统功能与操作可视化要求的最佳协调。这对于具有不同安防需要的广泛而复杂的地点来说变得日益重要。 门禁控制产品包括: 门控器

矿井三维模型可视化系统的设计与实现教学提纲

矿井三维模型可视化系统的设计与实现

矿井三维模型可视化系统的设计与实现 摘要:巷道包含了复杂的拓扑信息和空间信息,是矿井其他信息的空间载体,其建模尤为重要。本文针对矿井三维模型可视化的需要,设计并实现了一套基于Java语言的矿井三维可视化模型。系统主要包括不同断面巷道模型的分类和参数化构建、矿井液压支架模型的实现、巷道纹理材质库的选择、光照选择,巷道漫游等。 关键词:矿井三维可视化,JOGL,Java,巷道 1引言 数字矿山作为一种复杂的三维空间信息系统,不仅能够存储、分析和表达真实矿山中各种空间实体对象的属性信息,而且涉及大量复杂的空间定位特征及可能拓扑关系的组织和管理。因而,数字矿山的三维空间数据模型是联结真实矿山世界和计算机中抽象的矿山世界的桥梁[1]。 本研究就是对矿井三维模型可视化系统进行设计与实现。 通过数字矿山建设至少可以在以下几个方面给矿山企业带来好处: 1、提高矿山企业的生产效率和资源优化; _________________________________________________ _

2、加强矿山的安全管理,积极的预防矿难事故; 3、降低决策的风险性,提高企业快速反应能力。 本文针对煤矿井下环境抽象出各类图元,在空间上模拟真实井下系统,实现了矿井三维模型可视化系统[2-3]。 2 JOGL图形库 JOGL是Java对OpenGL API绑定的开源项目并设计为采用Java开发的应用程序提供2D/3D图形硬件支持。JOGL 对OpenGL 2.0[4-5]规范中的API和几乎所有第三方开发商的扩展提供完整访问,而且集成了AWT和Swing界面组件。JOGL函数库的简单抽象要比高度抽象如Java 3D函数库执行起来高效的多,因为其大部分代码是自动生成的,所以JOGL的升级可以迅速的与OpenGL升级相统一[6-8]。 3矿井三维模型可视化的设计 3.1巷道图元三维模型分析 巷道由于存在于地下,其数据提取不像地表实体一样简单。巷道图元与巷道图元间采用非直线形式,以实际角度进行弧形连接。根据巷道的不同用途,其断面形状, _________________________________________________ _

物探新方法、新技术

第一章 地震模拟技术 地震模拟技术是指用物理模型和数学模型代替地下真实介质,用物理实验和数学计算模拟地震记录的形成过程,以得到理论地震记录的各种方法和技术。 物理模拟 :物理模拟是用一些已知参数的介质做成一定几何形态的模型来模拟地下地质结构,采用超声波模拟地震波,专用换能器模拟震源和检波器,将野外地震勘探过程在实验室内重现,得到理论地震记录的方法和技术。 物理模拟的优点是与实际情况接近,真实性和可比性高;缺点是模型制作和改变参数均困难、成本较高。 合成地震记录 制作合成地震记录的假设条件是: (1) 地下介质是水平层状的,无岩性横向变化,各层间密度变化不大,均可视为常数; (2) 地震子波以平面波形式垂直向下入射到界面,各层反射波的波形与子波波形相同,只是振幅和极性不同; (3) 所有波的转换、吸收、绕射等能量损失均不考虑。 制作合成地震记录的步骤是: (1) 获得反射系数 反射系数曲线?)(t R 波阻抗曲线),(ρv z 根据假设(1),可用速度曲线代替波阻抗曲线。 通常用声速测井资料即可,但某些地区无声速测井资料,也可利用电测井资料获得声速资料(法斯特公式) 6/13)(102)(ρh h v ?= (1-1) (2) 地震子波的选择 选用不同的子波来制作合成记录,与井旁的地震道比较,选择最接近的一个。 (3) 不考虑多次波及透射损失情况 地震子波与地层反射系数的褶积为合成记录 )()(*)(t s t t b =ξ (1-2) (4) 不考虑多次波,但考虑透射损失情况 )()(*)(t s t t b =ξ (1-3) 式中 )(t ξ——t 时刻并考虑以上各界面透射损失的等效反射系数。 例如第n 个界面的等效反射系数为 )1()1)(1(212221ξξξξξ---=-- n n n n (5) 考虑多次波及透射损失情况 )()(*)(t s t t b =ξ (1-4) 式中 )(t ξ——t 时刻并考虑多次波与以上各界面透射损失的等效反射系数。 图1—3为合成地震记录的示意图。利用合成地震记录,对地震剖面上的地质层位

论述可视化三维模型的建模实例

论述可视化三维模型的建模实例 1、技术路线 由于部队“直线加方块”的生活特殊性,部队营房建设相对居民生活小区来说,要规则很多。由于部队保密的规定,不能实地完成数据采集任务,住宿楼、办公楼、训练场地的基本数据以我校北区海军楼为主体。在纹理制作过程中,结合使用了photoshop8.0等相应软件。 2、建模过程 对于一个全新的模型数据库来说,用户需要确定一些关于数据库的基本参数来决定它的大小和范围。 (1)用File/New命令创建一个新的文档aaaa.flt; (2)将窗口边缘向上拉伸使视图分割为模型视图和层级视图; (3)打开Info/Preferences面板,点击Flight tab按钮。将默认的单位设置为“Meters”,点击“OK”按钮并关闭面板,所有单位都变为“米”; (4)打开View panel并为网格设置合适的参数。参数大小可根据需要自行调整; (5)在层级视图中,按下Alt键同时单击g2节点,将g2设置为父节点,选择g2,按Ctrl+J键将其改名为“aaaa”,则所有新建立的模型都将附属于这一父节点或它的子节点; (6)这时视图如下图所示。将view视图拖到一边以备用。 2.1 地形建模 由于受视角范围限制,场景的可视范围比较小,所以地面仿真对地形模型的精度要求就比较高,同时也需要更加精细、更加逼真的地物模型和特征模型。标准的数字地面高程模型DEM,或者其他类型的地形数据必须转换成DED格式才能被Creator读取,继而为创建地形模型数据库所使用。另外,Creator还提供了功能强大的DED数据文件生成器,以用于灵活创建数字高程数据。对于原始地形数据损坏导致DED无法获取的情况,还可以通过地形模型数据库生成相应的DED数据文件。 由于本论文所建造的可视化军营模型以生活区为主,考虑到生活区域地表起伏变化不大,故将地形设置为平面。

物探工作方法

5.3 物探工作 5.3.1 激电测量 布置于面积性异常查证区内,1:1万测量网度为100×40m,1:2万测量网度为200×40m。采用中梯(短导线)装置,极距AB=1000-1500m、MN=40m。观测范围限于AB极距2/3以内,测线长度大于2/3AB时,相邻测段需有2—3个重复观测点。一线供电多线观测时,主测线距旁测线间距应小于AB距的1/5,可以用时间域激电也可以采用双频激电。 1、时间域激电 具体要求如下: (1)参数选择 采用双向短脉冲供电方式,占空比为1:1,供电周期、延时、采样宽度通过该地区实验确定。 (2)发电、整流、发射与接收仪器校验 正式生产前,首先对生产设备进行技术校验,待所有参数满足要求后方可投入生产。要求发电机必须运转正常,输出电压变化不得超过5%;整流器和假负载工作正常;发射机输出功率必须稳定,电流显示应高于±1个字;接收机应性能稳定,抗干扰能力强。正式观测前应进行生产仪器的一致性对比试验,满足要求后方可投入生产。 (3)测量方法 观测参数为一次场电位差(ΔV1)、视极化率(ηs),发射机直读并记录供电电流(I),通过计算装置系数(K),最后用公式ρs=K×△V1/I计算出视电阻率(ρs)。 (4)技术要求 每日开工前与收工后要对供电电极、接收电极、接收线、发射线进行检查,确保不漏电、连接完整;每日供电前或每次布极后,检测AB两极的接地电阻,一般在1000欧姆米时开始供电;遇河流、水塘处导线必须悬空架设,不得放入水中;供电电极入土深度应保证在0.5m以上,测量电极必须接地良好;供电电流、总场电位差、视极化率必须保证三位有效数字;当观测困难时,应检查设备是否正常,查明原因后再继续工作;在野外观测中发现视极化率突变点或极化不稳时应进行重复观测,以合格观测结果的算术平均值作为最终观测结果。参与平

顾桥三维可视化技术协议(排版)

淮南矿业集团顾桥矿 矿井安全生产三维可视化系统 技术协议 二零零六年七月

由顾桥矿信息管理中心牵头,矿地质测量部门、上海宝信软件股份公司及北京富力通能源软件技术有限公司参与,在顾桥矿就三维可视化与综合自动化系统集成进行了充分协商,形成如下技术协议:1.协议内容 1.地测信息系统作为三维可视化系统的有机组成部分和必需的数据 来源,三维可视化系统与地测信息系统软件通过数据库表互相共享数据库,并开放数据表格供自动化集成平台及信息系统平台使用,矿地质测量部门通过北京富力通能源软件技术有限公司的演示,认为北京富力通能源软件技术有限公司在三维可视化系统中提供的地测信息系统达不到专业化的地测信息系统的功能,建议北京富力通能源软件技术有限公司外购专业化的由北京龙软科技发展公司开发的地测信息管理系统,并负责有机的集成;北京龙软科技发展公司负责地测信息管理系统的功能实施、软件维护及系统升级,以满足顾桥矿地测部门日常地测信息管理的需求。2.上海宝信软件股份公司承包的综合自动化系统与三维可视化系统 的具体数据接口交换原则与系统调用原则:集成软件平台可以直接启动三维软件应用程序。三维显示、展示方案由三维软件负责完成,三维软件也可以独立运行;集成平台将采集的集成数据信息通过数据库的记录集(提供字段说明)共享给三维软件,三维软件负责在相应的子系统终端上显示对应的场景和数据。综合信息平台保证发送给三维软件的消息的正确性和及时性,三维软件系统保证显示和定位的准确性和时效性。三维软件需要获取的实

时监控数据,可以采用通过发送TCP/IP请求(数据包大小上限定为1024个数据)给集成平台获取数据(备选方案:三维软件需要显示实时参数时,采用分布式访问方式,直接从OPCServer中获取实时数据),数据显示和表达方式的组织工作由三维软件完成。 3.数据录入:三维可视化系统作为地测信息系统软件和集成化平台 的数据使用者,应充分有效使用地测信息系统软件和集成化平台提供的数据,测量数据库与地测数据库建立的原始数据的录入由地测信息系统软件负责,有效避免用户单一数据多次录入,具体为: ●三维可视化系统负责以下数据录入: 1)主副井、风井、巷道、硐室的数字摄像资料。 2)井巷工程造价信息。 3)各种生产与安全设备的类型、功率、工艺参数等资料。 4)安全监测系统、自动控制系统的监测点的位置、类型、报 警上下限、单位、状态、实时数据等(通过软件接口获取) ●地测信息管理系统负责以下数据录入: 1)煤层边界数据、断层数据、陷落柱、熔岩侵入、古河床冲 刷等煤层缺失数据。 2)回采工作面的资料。 3)主副井、风井、巷道、硐室的断面类型、参数等资料。 4)地质勘探的钻孔、测井资料、柱状图、各主副井、风井、 巷道、硐室的测量资料。

三维可视化建模技术在地质勘查中的应用

三维可视化建模技术在地质勘查中的应用 摘要:根据地质勘查的数据特点,利用三维可视化建模技术。实现了以真三维模型来恢复地表以下地质体的结构、形态特征以及空间展布,能对其进行旋转、漫游、切片分析、虚拟钻探等操作,动态地研究其内部细节,了解目标对象与周围地质环境之间的关系,为地质信息的进一步定量分析、探索与利用提供了强有力的支持。 关键字:地质勘查三维可视化建模技术虚拟钻探 引言 在地质勘查工作中,地质工作者越来越迫切地希望建立一套完善的地质体三维可视化与分析系统,实现对地质体信息的三维可视化仿真,丰富地质勘查成果的表现形式,为地质信息的进一步定量分析、探索与利用提供强有力的支持。随着计算机软件和硬件的飞速发展,针对地质体的三维建模与可视化,综合运用三维仿真、数学地质、计算机图形学、虚拟现实、科学计算可视化、计算机软件开发等成熟的理论方法与技术,实现复杂地质条件下的三维地质建模。 二.三维地质建模数据来源与特点分析 在三维地质建模中,用来反映地质体特征的数据来源多种多样,包括地质勘探数据、地球物理勘探数据、地球化学勘探数据、工程地质数据等等。 由于地质原始数据的多源性、离散性和定性特征在很大程度上阻碍了三维地质建模研究的发展。因此,在三维地质建模工作中需要耦合多源信息,对场区地质构造进行分析、解译,将定性描述的数据定量化,尽量以数值型数据和图形数据来进行表达,将离散不确定的数据通过各种插值拟合的手段转化为连续确定的数据,为三维地质建模提供合适的数据源。 三.三维地质建模的难点与关键技术问题分析 通过对三维地质建模数据来源与特点的分析可知,建立一个客观准确的三维地质模型必须满足三个条件:足够多的原始地质采样数据、能够真实反映复杂地下空间关系的地质解译分析、合适的数据结构。就目前复杂地质体的三维建模主要面临的困难可归纳为以下3点: (1)原始地质数据获取艰难。地质体通常位于地表以下,人们无法直接全面地观察到地质体的各种特征,往往只能通过物探、化探等手段获得地质体的部分特征信息,并通过对这些信息的分析、解释、推断来获得地质体的基本信息。 (2)地下地质体及其空间关系极其复杂。地质条件和地质作用复杂多变,在其影响下,地层被切割成不连续的空间分布,岩体内复杂的岩性变化,以及地

高密度电阻率法物探技术及其应用

龙源期刊网 https://www.360docs.net/doc/2f746642.html, 高密度电阻率法物探技术及其应用 作者:邱信强 来源:《地球》2014年第01期 [摘要]高密度电阻率法作为物探方法中的一种应用最为广泛的勘探方法,在特殊地质的勘探和工程勘查中起着不可替代的作用,为我国地勘队伍在解决相应地质问题时带来许多便利之处。本文主要通过对高密度电阻率法工作原理的研究,结合二维成像技术和正反演技术在工程中的运用,提出了一些针对不同环境下勘测时的注意事项。 [关键词]高密度电阻率法二维成像技术正反演技术 [中图分类号] P631.3 [文献码] B [文章编号] 1000-405X(2014)-1-90-2 0引言 高密度电阻率法基本工作原理与传统的电法勘探是相同的,主要是根据岩石、矿石以及不同地层、不同地质体等导电性的差异,通过地面的测定,研究人工或天然电场的分布特点和变化规律来推断地下电阻率分布,从而准确的推断出不同地质体的分布状况。高密度电阻率法凭借其测试简便、效果好、成本低、效率高等优点在勘探工程中具有较高的使用价值。高密度电阻率法是一种快捷的地质勘探方法,其工作的范畴属于直流电阻率,其采用高密度的布点进行二维电断面测量,采集的数据量大、全面、准确、观测的精度高,在我国的工程地质与水文勘探中运用非常的广泛。但是也存在许多的不足之处,例如在进行野外勘探时数据处理不够精准、正反演成像技术在进行图像分析时存在误差、二维成像技术的反演问题等等,这些问题都需要勘测人员在理论与实际工程相结合的基础上进行研究,找出相应的解决办法,将高密度电阻率法应用更加的广泛。 1高密度电阻率法的工作原理 高密度电阻率法的工作范畴包括数据的采集与数据的处理,与常规的电阻率法工作原理相同,主要是以地下介质之间的导电性的差异为基础,通过A、B两个电极向地下传递电流,然后在M、N电极之间测得电位差△V,从而求得该记录点的视电阻率值Qs=K△V/I。在进行现场的勘测时,只需要将全部的电极合理的安放在一定距离的测点上,然后将多芯电缆连接到由单片机控制多路电极自动转换开关,这样机器就能够根据自身的需求进行电极与测点之间的自动转换。测量的数据通过电极转换开关传输到微机工程电测仪,根据实测的电阻率剖面数据,通过专业的计算机软件进行反演数据处理,就可以获得地层电阻率的分布状况,从而推断出地层结构的分布状况[1]。 2高密度电阻率法的工作方法与数据处理 2.1高密度电阻率法的工作方法

岩土工程勘察的意义及其新技术运用

岩土工程勘察的意义及其新技术运用 发表时间:2016-11-17T11:27:28.733Z 来源:《基层建设》2015年12期作者:杨俊岭 [导读] 摘要:我国是一个地质灾害频发的国家,特殊岩土类型众多,岩土工程问题复杂,施工前必须对岩土工程进行勘察。本文分析了岩土工程勘察的意义,并探讨物探技术的发展趋势与勘察的数字化技术。 中冶沈勘工程技术有限公司辽宁沈阳 110016 摘要:我国是一个地质灾害频发的国家,特殊岩土类型众多,岩土工程问题复杂,施工前必须对岩土工程进行勘察。本文分析了岩土工程勘察的意义,并探讨物探技术的发展趋势与勘察的数字化技术。 关键词:岩土勘察;数字化;物理探测 一、岩土工程勘察的意义 岩土工程勘察的主要目的是运用工程地质学等相关理论,应用科学的勘察方法,利用先进的测试技术及仪器,依照一定的程序对建筑项目场地进行调研。调查、分析、研究与工程建设相关的工程地质条件、施工建设对所在地及周边自然地质环境造成的影响等内容,并对勘察成果及技术参数进行评价和设计,以便为工程建设的基础设计及施工提供科学、详实、准确的工程地质资料及技术参数。伴随着经济的快速发展,我国建筑行业也迅速扩张。工程项目的不断增多使工程施工中遇到越来越多的问题,施工的地质条件也变得越发的复杂。在目前我国的各项工程项目中,岩土工程勘察是保证各项工程顺利进行的基础,我国岩土工程相关技术的不断更新和发展,岩土工程勘察技术的手段和方法也在不断的提高。在国内很多建筑企业已经能够独立完成复杂工程的勘察和施工,这些施工项目主要含有超高层建筑处理复杂地基、围海造陆等。 二、工程地球物理勘察 工程物探在我国已有40 多年历史,早期主要引用传统的物探方法,如地面直流电法、电测井等,方法单一,多解性强,误差很大,效果不理想。近年来,开发了适应工程需要的新技术、新方法、新领域,并与岩土工程测试密切结合,逐步显示出它的生命力。工程物探既有勘察的功能,又有测试的功能,全称是否可改为“工程地球物理探测”。工程物探的技术含量很高,是一种非破损探测技术,随着相关的物理技术与计算机技术的迅猛发展,在今后15 年内可能有更大的飞跃。 由于工程物探具有探测深度较浅,范围较小,精度要求较高,成本要求低等特点,传统的物探方法不能照搬,有的可以移植,有的可以改造和借鉴,更多的是要创新。应密切结合工程需要,例如探测基岩面、地下洞穴、孤石、管线、古墓、防空洞、桩身缺陷、破碎带、漏水点等目的物,使工程物探成为岩土工程勘察不可缺少的手段。 不同的探测目的,不同的地质条件和工程条件,要用不同的适用的物理方法。因此,工程物探的方法肯定是多种多样的,再加上“多解性”,有时需采用“综合物探”。但并非所有工程物探都要用综合方法。近年来,国内外应用各种物探原理(弹性波、声波、电压磁波、应力波等)开发了一批性能很强的专用仪器,如波速仪、探地雷达、管线探测仪、打桩分析仪等,这些仪器的特点除了精度高、抗干扰能力强等一般优点外,还有两个重要特点:一是目的性强,非常明确用于工程上的某种目的,如测定岩土介质的波速,探测具有介面的目的物,探测金属或非金属管线,探测桩身缺陷和测定桩的承载力等等;二是充分应用计算机技术,配有功能很强的软件,使仪器智能化,包括数据处理、数学运算、信息传输、数据库、层析技术、分析判别、图形处理等等,既便于用户掌握,又提高了分析能力。这类仪器的研制和应用,应当是今后的重要方向。 三、岩土工程勘察数字化 传统的岩土工程勘察技术勘察测试得到的浩瀚的地质和岩土信息,需用数理统计、模糊数学等不确定性理论进行数据处理,分析计算的数学模型不够成熟,计算参数的不确定性非常突出,初始条件和边界条件常常并不确切,在进行理论分析和数学力学计算时往往需要岩土工程师根据经验判断和修正,不能离开人的干预和决策:传统的岩土工程资料分析和解释一般都局限于二维、静态的表达,这种表达描述空间构造起伏变化的直观性差,往往不能充分揭示它们空间变化的规律,难以使人们直接、完整、准确地理解,也就越来越不能满足工程的空间分析要求。随着现代信息技术的发展,未来岩土工程勘察的发展趋势就是将岩土工程勘察与勘察技术的数字化相结合,利用地理信息系统强大的数据采集、管理能力和空间查询、分析能力,解决传统岩土工程勘察由于勘察数据内容上的复杂性和形式上的多样性。对岩土工程勘察方法实旅改进,逐步过渡到数字化勘察技术,并推广使其广泛应用,这是勘察工程发展的必然趋势。 要实现岩土工程勘察数字化,具体如下: 分析岩土工程勘察对象的基本特征。岩土工程勘察对象构造的规模、起因、结构、形态差别较大,但所有复杂的地质构造都能抽象为点、线、面、体四种元素的集合。任何地质对象在空间上都占有一定的范围及位置,有一定的形态和性质特征,且与其他地质对象间存在一定的空间联系。因此,地质对象的基本特征可归结为空间特征、属性特征和空间关系特征三个方面。 分析岩土工程勘察建模的依据。岩土工程地质模型是人们对客观事物认识的精炼和图示化。建模最基本的依据是观点及理论基础。这里推崇岩体岩土工程力学,其核心观点就是岩体,结构面起主导作用,软弱岩层(软岩)起着起始变形与突破的作用。结构面类型较多,性状复杂,不仅有软硬之分,还有大小之分和分布上的随机性。 明确岩土工程勘察建模的过程。一是工程变量预测。岩土工程地质建模的主要目的之一就是预测一个或多个工程地质变量的空间变化。在工程地质中,变量则是地层、构造、断层等的空间分布特征及其物理力学性质;在污染评价中,变量是土壤或地下水的污染程度;在矿产评价中,变量是矿石品位;在地下水研究中,变量是水动力参数,如水流速度。对某些研究区域的相关地质变量由于不可能进行连续的量测,往往取一些有代表性的点,然后再利用各种不同的预测技术,来推测出整个研究区域的该地质变量的空间变化规律。二是岩土工程地质特征解释。一般包含条件化及离散化两方面,即以岩性或岩土类型等控制特征为条件,将工程地质信息进行离散化,从而确定工程地质边界和相关特征描述。 基于GIS的岩土工程勘察数字化技术的实现。我们以GIS为基础的岩土工程勘察的相关数据信息分为地理信息数据,其主要分为:空间数据和非空间数据。这些数据主要来源于:基础的地理数据,如地形、地貌各项数据图以及自然区划数据图;岩土工程勘察数据,主要包括施工区域内地质勘察的资料,包括了该区域内勘察的全部内容,如周围环境、岩石性质及特种、地理条件等,也有一些地表信息,如沉积相、液化等级、年代等等。而实施岩土勘察工程数据可系统的一般程序为:首先、概念模型设计。该数据库应用属于集中处理各项数据

三维可视化应急预案系统

三维可视化应急预案系统 三维可视化应急预案系统是针对传统文本式预案的不足而研发的一款可视化的应急预案系统。传统文本式预案,注重的是各部门职责范围的描述,以及应急资源的信息,缺少一种有效的手段可以描述事故发生时,各部门如何履行各自的职责。三维可视化预案系统就是针对这种问题,对预案的执行过程进行可视化制作,既可以对预案相关人员进行培训,也可以更好的检验预案的可行性。 传统文本预案的缺陷 ?预案中信息量小、无法包含明确的应急处置环境信息。 ?预案中缺乏事件、时间、角色间关系的明确逻辑定义。 ?应急处置过程某些细节环节可行性无法验证。 ?预案内容不容易传递和推广。 ?由于环境条件限制、很难开展有效的模拟演练。 三维可视化应急预案的优势 ?预案中包含了明确的二、三维应急处置空间环境及场景信息。 ?清晰的组织结构、岗位责任逻辑关系及时间事件演变关系。 ?直观的处置细节可视化描述。 ?可以推演、容易传播、方便理解,可以直接用于模拟演练。 系统功能 文本预案智能提取

系统可以从原有标准化文本式预案中自动提取应急资源、装备工具、组织机构等信息,作为预案的辅助查询内容。 预案流程编制 通过以事件为驱动的各种环节配置,以流程图的方式把预案进行细部分解,制定有针对性的预案应急响应逻辑结构。 预案细节可视化编辑 提供可视化预案细节编辑工具,以时间轴为基础,添加各种元素,形成可视化的预案展现。推演评估 制作完成的预案,可以随时进行可行性推演与播放,并支持对每个环节的执行情况进行评估和总结。 三维可视化应急预案系统是大连伟岸纵横为安监、消防、公安、危化企业应急部门提供的可靠有效的三维可视化预案系统。

相关文档
最新文档