对称与不对称双塔连体结构的动力特性分析

对称与不对称双塔连体结构的动力特性分析
对称与不对称双塔连体结构的动力特性分析

对称与不对称双塔连体结构的动力特性分析

发表时间:2011-04-01T16:02:06.733Z 来源:《价值工程》2011年第3月上旬作者:滕振超何金洲

[导读] 以某十八层对称双塔结构和十八-十六层不对称双塔结构为例

滕振超 Teng Zhenchao;何金洲 He Jinzhou

(东北石油大学土木建筑工程学院,大庆 163318)

(School of Civil Engineering,Northeast Petroleum University,Daqing 163318,China)

摘要:以某十八层对称双塔结构和十八-十六层不对称双塔结构为例,通过ANSYS有限元分析软件,建立了两种结构的三维有限元模型,并对比分析了两种结构的动力特性,为这两种结构的设计应用积累经验。

Abstract: Citing one 18-floor symmetrical double-tower structure and one 18-floor and 16-floor unsymmetrical double-tower structure as examples, tridimensional finite element model is built according to ANSYS finite element analysis software. On the basis of it, the contrastive analysis of dynamic characteristics of the two double-tower connected structures is carried out, and experience is accumulated for the design and exploit of the two structures.

关键词:有限元分析双塔连体结构动力特性

Key words: finite element analysis;double-tower connected structure;dynamic characteristics

中图分类号:TU311.3 文献标识码:A 文章编号:1006-4311(2011)07-0061-02

0 引言

随着我国建筑业的迅速发展,高层多塔结构的应用也逐渐增多,其中以双塔结构应用最为广泛。高层建筑结构尤其是双塔结构体系的设计要求必须分析清楚结构本身的动力特性,结构的受力特点。双塔结构一般分为对称和不对称两种形式,有时建筑师为了追求设计的效果,经常采用非对称双塔结构来实现设计意图。与对称结构相比,不对称结构的布置形式多变,使得结构设计分析也非常困难。工程实践表明,不对称双塔结构的平扭耦联振动是其地震反应的主要特性,从而导致不同结构形式下的地震作用效应差别较大,地震和风荷载作用下结构受力复杂。对不对称双塔结构的动力特性进行分析,对此类结构的概念设计非常重要。本文运用ANSYS有限元分析软件,对对称和不对称双塔结构的动力特性进行了分析比较,从而对此类结构的设计和应用奠定基础。

1 三维有限元分析模型

某双塔楼连体结构为十八层钢筋混凝土结构,总高度54m,层高为3m,对称双塔连体结构简图如图1所示,不对称双塔连体结构总高度54m,层高3m;右塔十八层,左塔十六层,不对称双塔连体结构简图如图2所示;两种结构的三维有限元模型见图3和图4。梁柱均采用BEAM188单元,该单元基于铁木辛柯梁结构理论,并考虑了剪切变形的影响,楼板采用SHELL63壳单元。构件选型及材料见表1。

高层建筑结构设计分析王方成

高层建筑结构设计分析王方成 发表时间:2016-07-28T15:02:06.787Z 来源:《基层建设》2016年10期作者:王方成 [导读] 本文结合工程实际,对高层建筑结构设计分析。 深圳市建筑设计研究总院有限公司 摘要:随着我国科学技术的不断进步和经济的快速发展,城市中高楼耸立,高层建筑物已成为人们共同的追求。本文结合工程实际,对高层建筑结构设计分析。 关键词:高层建筑;结构设计 1 工程概况 该建筑总长46.10m,总宽35.90m,总高 111.563m,大屋面层高96.90m。地上共23层,地下 2 层。地下室层高 4.7m 与 3.75m。1~22 层层高 4.2m,23 层层高4.5m。上部均为办公室,地下部分为车库和设备用房。总建筑面积53065.79 m2,其中地上37307.59 m2,地下 15758.20 m2,建筑占地面积 10636m2。 2 自然地质情况 本工程场地地震基本烈度 7 度,设计地震分组第三组,设计基本地震加速度 0.1g,属于抗震不利地段,建筑场地类别Ⅱ类,设计特征周期取 0.45s。50 年遇基本风压 0.80kN/m2,场地地基土自上而下可划分为 7 层,从上至下依次为①层填石,层厚 2.7~19m;②层中砂,层厚 0.90~22.9m;②-A 层淤泥,层厚 1.70~1.90m;③层(含砾砂)粉质粘土,层厚 1.3~3.2m;④层残积砂质粘性土,层厚 2.6~8.0m;⑤层全风化花岗岩,层厚1.1~7.3m;⑥层强风化花岗岩:灰白、灰黄、灰褐色,饱和。⑥-1层砂土状强风化花岗岩,层厚 1.1~11.1m;⑥-2 层碎块状强风化花岗岩,层厚 0.8~11.5m;⑦层中风化花岗岩:灰、灰黄、灰白色,岩芯多呈短柱状和长柱状,局部呈块状,中粗粒花岗结构,块状构造,岩芯裂隙较发育,多呈闭合,岩芯采取率 67%~87%,RQD=38~71,岩石饱和单轴抗压试验为 64.60~70.10MPa,标准值为 66.03MPa,岩石坚硬程度为坚硬岩,岩体完整程度为破碎~较完整,岩体基本质量等级为Ⅱ~Ⅳ级。本次勘察所有钻孔均有揭示至该层,均未揭穿,揭露厚度为2.20~10.76m。 3 基础形式 由于办公楼及其周边纯地下室在基坑开挖后存在一定厚度的①层填石(厚度为 3.46~11.54m),采用预应力管桩时难以穿越填石层,另可供预应力管桩选择的桩端持力层④层残积砂质粘性土、⑤层全风化花岗岩和⑥-1 层砂土状强风化花岗岩分布不均匀,考虑到⑥-2层碎块状强风化花岗岩和⑦层中风化花岗岩分布较均匀,根据拟建场地岩土层特性、拟建物结构特点及荷载情况,采用冲(钻)孔灌注桩基础。 4 主体结构设计 4.1 结构选型 本建筑抗震设防类别为标准设防类(丙类)。由于建筑功能布局多为开敞办公区、大会议室等大空间,中间部分以及建筑外形要求美观、大方等方面因素,故本建筑主体部分采用钢筋混凝土框架———核心筒结构形式。框架———核心筒结构的周边框架与核心筒之间形成的可用空间较大,能使房屋空间布局灵活,又能使高层建筑结构满足较大刚度的要求,因此广泛用于写字楼、多功能建筑。具体做法是在建筑中部的电梯井筒及楼梯间四周布置抗震墙框筒,加大外框筒的柱距,减小梁的高度,周边形成稀柱框架。参照规范抗震设防烈度为7 度,确定抗震等级框架为二级,核心筒为二级。 4.2 主要荷载取值 高压配电房、电梯机房、通风机房活荷载为 7.0 kN/ m2,储藏间活荷载为 5.0 kN/m2,备餐间、车库活荷载为 4.0 kN/m2,商场、消防疏散楼梯活荷载为3.5 kN/ m2,办公室、卫生间、走廊、门厅、屋面花园、多功能厅大会议室活荷载为 3.0 kN/ m2,食堂活荷载为 2.5 kN/m2,上人屋面活荷载为 2.0 kN/m2,不上人屋面活荷载为 0.5 kN/m2。大型设备按实际情况考虑。 4.3 主要受力构件尺寸取值 地下室~1 层墙厚度为 400mm,2~23 层墙厚度为300mm。框架柱截面尺寸:地下室为 1200mm×1200mm,1~3层为1100mm×1100mm,4~6 层为 1000mm×1100mm,7~9 层为 1000mm×1000mm,10~12 层为 900mm×1000mm,13~15层为 800mm×900mm,16~18 层为 800mm×800mm,19~21 为700mm×700mm,22~23 层为 600mm×600mm。地下室负一层顶板的厚度为 200mm,地下室顶板除核心筒内板厚 180mm之外,其余部位板厚为 300mm,屋面层的板厚为 120mm,其它各楼层的板厚为 100mm。 4.4 主要结构材料选取 梁板混凝土强度等级为 C30,柱墙混凝土强度等级:-2~4层为C50,5~9层为C45,10~14 层为 C40,15~19 层为C35,20构架层为 C30。此外,圈梁、构造柱、挑檐、雨篷及楼梯均采用 C30 混凝土。主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用 HRB400级钢筋。 4.5 计算软件及计算依据 本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 SATWE。计算依据为建筑条件图以及《建筑结构荷载规范》GB50009-2012、《建筑抗震设计规范》GB50011-2010、《建筑地基基础设计规范》GB50007-2011、《高层建筑混凝土结构技术规程》JGJ3-2010等国家相关规范。 4.6 计算结果分析 (1)位移比。基于刚性楼板假定,考虑偶然偏心的条件下,X 方向最大层间位移与平均层间位移的比值:1.19 (第26层第1塔),Y 方向最大层间位移与平均层间位移的比值:1.28(第 26 层第 1 塔),属于平面不规则中的扭转不规则。位移比超过 1.2,需要考虑双向地震作用。 (2)层间位移。计算时不扣除整体弯曲变形,不考虑偶然偏心的影响,X 方向地震力作用下的楼层最大位移:1/1055<1/800;Y 方

我某高层双塔结构连廊设计实例

我某高层双塔结构连廊设计实例 摘要:结合工程实例,对某高层双塔混合结构体系的设计进行了研究,对双塔高层连廊设计中存在的问题进行了分析,并采取了相应的处理措施,对类似工程的设计具有一定的参考价值。 关键词:双塔;混合结构;连廊 Abstract: combined with engineering example, a high-rise towers of mixed structure the design of the system was studied, the twin towers LianLang top the problems existing in the design are analyzed, and take the corresponding measure to the similar engineering design to have the certain reference value. Keywords: twin towers; Mixed structure; LianLang 0 引言 随着经济的发展,高层建筑的结构形式越来越复杂,为了追求建筑的美观,大底盘高层多塔楼结构成为一种实际工程中广泛应用的复杂高层结构[1]。魏清等[2]对高层双塔结构的地震反应进行了研究;苏捷[3]基于静力弹塑性Pushover 方法分析了高层大底盘双塔结构的地震反应特性。郭涛等[4]对非对称大底盘双塔连体结构的动力特性和地震响应进行了研究。本文结合工程实例,对某高层双塔混合结构体系的设计进行了研究,对双塔高层连廊设计中存在的问题进行了分析,并采取了相应的处理措施。 1 工程概况 本工程位于浙江宁波,总建筑面积81354m2,其中地上58176 m2。地下2层,地上3层裙房,高15.6米,裙房上设有两栋高层连体建筑,1号楼23层,高99.6m;2号楼17层,高74.4m;两个塔楼在66.0m~70.2m(第16、17层)楼面通过连廊相连,连廊跨度27m。如图1所示。 图1 某高层双塔混合结构 2 结构设计

高层建筑结构设计资料

名词解释: 高层建筑:10层及10层以上或房屋高度大于28m的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力 P效应的主要参数。 10. 抗推刚度(D):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。填空:1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002) 规定:把10层及10层以上或房屋高度大于28m的建筑物 称为高层建筑,此处房屋高度是指室外地面到房屋主要屋 面的高度。2.高层建筑设计时应该遵循的原则是安全适用, 技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高 层结构,错层结构,多塔楼结构。 4.8度、9度抗震烈度 设计时,高层建筑中的大跨和长悬臂结构应考虑竖向地震 作用。 5.高层建筑结构的竖向承重体系有框架结构体系,剪力墙 结构体系,框架—剪力墙结构体系,筒体结构体系,板柱 —剪力墙结构体系;水平向承重体系有现浇楼盖体系,叠 合楼盖体系,预制板楼盖体系,组合楼盖体系。 6.高层结构平面布置时,应使其平面的质量中心和刚度中 心尽可能靠近,以减少扭转效应。 7.《高层建筑混凝土结 构技术规程》JGJ3-2002适用于10层及10层以上或房屋高 度超过28m的非抗震设计和抗震设防烈度为6至9度抗震 设计的高层民用建筑结构。 9 三种常用的钢筋混凝土高层结构体系是指框架结构、剪 力墙结构、框架—剪力墙结构。 1.地基是指支承基础的土体,天然地基是指基础直接建造 在未经处理的天然土层上的地基。 2.当埋置深度小于基础底面宽度或小于5m,且可用普通开 挖基坑排水方法建造的基础,一般称为浅基础。 3,为了增强基础的整体性,常在垂直于条形基础的另一个 方向每隔一定距离设置拉梁,将条形基础联系起来。 4.基础的埋置深度一般不宜小于0.5m,且基础顶面应低于 设计地面100mm以上,以免基础外露。 5.在抗震设防区,除岩石地基外,天然地基上的箱形和筏 形基础,其埋置深度不宜小于建筑物高度的1/15;桩箱或 桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的 1/18—1/20。 6.当高层建筑与相连的裙房之间设置沉降缝时,高层建筑 的基础埋深应大于裙房基础的埋深至少2m。 7.当高层建筑与相连的裙房之间不设置沉降缝时,宜在裙 房一侧设置后浇带,其位置宜设在距主楼边柱的第二跨内。 8.当高层建筑与相连的裙房之间不设置沉降缝和后浇带 时,应进行地基变形验算。 9.基床系数即地基在任一点发生单位沉降时,在该处单位 面积上所需施加压力值。 10.偏心受压基础的基底压应力应满足maxpaf2.1 、af 和2 min maxppp 的要求,同时还应防止基础转动过 大。 11.在比较均匀的地基上,上部结构刚度较好,荷载分布 较均匀,且条形基础梁的高度不小于1/6柱距时,地基反 力可按直线分布,条形基础梁的内力可按连续梁计算。当 不满足上述要求时,宜按弹性地基梁计算。 12.十字交叉条形基础在设计时,忽略地基梁扭转变形和 相邻节点集中荷载的影响,根据静力平衡条件和变形协调 条件,进行各类节点竖向荷载的分配计算。 13.在高层建筑中利用较深的基础做地下室,可充分利用 地下空间,也有基础补偿概念。如果每㎡基础面积上墙体 长度≮400mm,且墙体水平截面总面积不小于基础面积的 1/10,且基础高度不小于3m,就可形成箱形基础。 1.高层建筑结构主要承受竖向荷载,风荷载和地震作用等。 2.目前,我国钢筋混凝土高层建筑框架、框架—剪力墙结 构体系单位面积的重量(恒载与活荷载)大约为12~14kN /m2 ;剪力墙、筒体结构体系为14~16kN/m2 。 3.在框架设计中,一般将竖向活荷载按满载考虑,不再一 一考虑活荷载的不利布置。如果活荷载较大,可按满载布 置荷载所得的框架梁跨中弯矩乘以1.1~1.2的系数加以放 大,以考虑活荷载不利分布所产生的影响。 4.抗震设计时高层建筑按其使用功能的重要性可分为甲类 建筑、乙类建筑、丙类建筑等三类。 5.高层建筑应按不同情况分别采用相应的地震作用计算方 法:①高度不超过40m,以剪切变形为主,刚度与质量沿高 度分布比较均匀的建筑物,可采用底部剪力法;②高度超 过40m的高层建筑物一般采用振型分解反应谱方法;③刚 度与质量分布特别不均匀的建筑物、甲类建筑物等,宜采 用时程分析法进行补充计算。, 6.在计算地震作用时,建筑物重力荷载代表值为永久荷载 和有关可变荷载的组合值之和。 7.在地震区进行高层建筑结构设计时,要实现延性设计, 这一要求是通过抗震构造措施来实现的;对框架结构而言, 就是要实现强柱弱梁、强剪弱弯、强节点和强锚固。 8.A级高度钢筋混凝土高层建筑结构平面布置时,平面宜 简单、规则、对称、减少偏心。 9.高层建筑结构通常要考虑承载力、侧移变形、稳定、倾 复等方面的验算 问答: 1.我国对高层建筑结构是如何定义的? 答:我国《高层建筑混凝土结构技术规程》 (JGJ3—2002)规定:10层及10层以上或房屋高度大 于28m的建筑物称为高层建筑,此处房屋高度是指室 外地面到房屋主要屋面的高度。 2.高层建筑结构有何受力特点? 答:高层建筑受到较大的侧向力(水平风力或水平地 震力),在建筑结构底部竖向力也很大。在高层建筑 中,可以认为柱的轴向力与层数为线性关系,水平力 近似为倒三角形分布,在水平力作用卞,结构底部弯 矩与高度平方成正比,顶点侧移与高度四次方成正 比。上述弯矩和侧移值,往往成为控制因素。另外, 高层建筑各构件受力复杂,对截面承载力和配筋要求 较高。

高层连体建筑结构的施工技术探讨

高层连体建筑结构的施工技术探讨 摘要:随着我国经济的不断发展和城市化进程的逐渐加速,一栋栋高楼平地而起,高层连体建筑,已成为了人们眼中毫不陌生的普通建筑物。本文简单地介绍了高层连体建筑结构的施工测量技术、混凝土浇注技术和转换层施工技术。 关键词: 高层连体建筑;结构;施工技术 一、引言 随着我国经济的不断发展和城市化进程的逐渐加速,一栋栋高楼平地而起,高层连体建筑,已成为了人们眼中毫不陌生的普通建筑物。而与从前大量施工的7层以下的建筑相比较,高层连体建筑对于施工技术的要求则要高得多。本文简单地介绍了高层连体建筑结构的施工测量技术、混凝土浇注技术和转换层施工技术。 二、高层连体建筑结构的施工测量技术 首先根据建筑的形状设置内控点,比如对于矩形的建筑在靠近四个角的位置设置四个内控点即可,内控点位置应避开各楼层的梁,保证从底层到顶层的通视。而上部楼层结构在每层相同的部位均预留200mm×200mm的放线洞口,以便进行竖向投测。预留洞不得偏位,且不能被掩盖,保证上下通视。另外,底层的轴线网须认真校核,经复核验收方可向上投测。且底层的内控点钢板上不得堆放料具,顶板排架避开钢板,确保可以架设仪器。 施工测量过程:1)在底层的内控点钢板上架设垂准仪,在需要投点的楼层放线洞口上平放一块画有十字丝的有机玻璃板,再将内控点位置通过激光引测到有机玻璃板上,并用有机玻璃板上的十字交叉点对准激光点,然后根据有机玻璃板上的十字丝将内控点位置引至放线洞口四周的楼板混凝土上,并做好标记,最后撤除有机玻璃板,在放线洞口上钉一块小模板,重新将内控点位置引测回放线洞口上的模板上,并用墨斗弹好线。2)将该内控点位置引测至放线楼层后,先用全站仪校核,闭合后再细部放线。以放线洞口处模板上的内控点位置标记为准,用全站仪放出该楼层的轴线控制网及墙、柱边线,用墨斗在楼板混凝土上弹好线,作为该层墙、柱模板安装以及上一层楼板梁、板模板安装的依据。3)每层楼板放线完毕并经复核无误后,即可把该层放线洞口上钉好的模板拆掉,以保证上一层测量放线时的通视;不进行竖向测量投点时,各楼层放线洞口均须盖好防护盖

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

高层建筑结构设计复习总结

2元 高层建筑结构设计复习总结 一、1.高层建筑:将10层及10层以上或高度超过28m的混 凝土结构为高层民用建筑;高层建筑结构是高层建筑中的主要承重骨架。2.高层建筑优点:占地面积小,节约建筑用地; 缩短城市道路和各种管线,节约基础设施费用;改造城市面貌。3.高层建筑结构功能:安全性、实用、耐久、稳定4.高层建筑结构中:轴力和结构高度成线性关系;弯矩和结构高度成二次方关系;位移和结构高度成四次方关系。4.高层建筑结构形式:a按材料分:砌体结构、钢筋砼、钢结构、钢和钢筋砼材料混合结构b.按结构体系:框架结构、剪力墙结构、框架-剪力墙结构、筒体结构(框筒结构、筒中筒、多筒、成束筒)、悬挂结构及巨型框架结构5.(1)砌体结构:造价低; 强度低,特别是抗拉、抗剪强度低、延性差;抗震性不好(2). 钢筋砼结构:优(强度高,能组成多种结构体系,抗震性能较好,跟钢结构相比刚度大,造价低,材料来源丰富,耐火性好)缺(自重大,结构截面尺寸大,建筑面积小,造价增加施工周期较长)(3)钢结构:优(较理想材料,强度高,自重轻,延性好,抗震性能好,施工速度快,易于加工,施工方便)缺(造价高,耐火性差,维护费用高)6.(1)框架结构体系:优(建筑平面布置灵活,可形成大空间,立面也可变化;延性好;造价低。)缺(侧向刚度小;水平位移大,一般不超过60米;在高烈度地区,高度严格控制;非结构

构件破坏严重,维护费用高;缺少二道防线)设计要点:a 根据使用要求,建筑要求来布置框架层高;b梁柱节点必须刚接;c梁的跨度受梁、断面尺寸限制d柱断面尺寸根据轴力大小确定,在震区有轴压比限制(2)剪力墙结构体系:利用钢筋砼墙体组成的承受全部竖向和水平作用的。优(整体性好;侧移刚度大;变形小;非结构构件损坏小;结构次生内力P-Δ效应不显著;弹塑性稳定问题不突出;承载力易满足要求;抗震性能好;具有多道防线)缺(剪力墙间距较小;平面布置不灵活;大房间受到限制;自重大;刚度大,周期短)(3)框架-剪力墙结构体系:在框架结构中布置一定数量的剪力墙组成由框架和剪力墙共同承受竖向和水瓶座用的高层建筑结构。优(侧向位移小;减轻节点负担;增加了超静定次梁;保证了塑性的发展;屈间侧移屈干均匀;框架部分各层剪力趋于均匀;具有多道防线)缺(水平方向刚度不均匀)(4)筒体结构体系:由竖向筒体为主组成的承受竖向和水平作用的高层建筑结构。7.高层建筑结构发展原因:经济的发展;建筑用地减少;城市人口增多;地价上涨;建筑科技进步;钢筋及水泥的应用8.高层建筑发展:建筑功能和用途越来越好,建筑城市化;向亚洲发展,高度将有新突破;在结构设计方法方面着重技术深化;采用新结构形式。二1.在高层建筑结构设计中,水平荷载与作用占据主导和控制作用2.高层建筑中活荷载的不利布置一般怎样考虑:高层

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

双塔连体结构的工程实例

双塔连体结构的工程实例 马来西亚双塔为对称双塔楼(图1),建成于1996年,位于马来西亚吉隆坡,88层,总高度达450米,是目前世界上最高的连体结构。其抗侧力体系由中央核心筒、周边柱列和环形梁在内的钢筋混凝土结构组成,在两塔楼的中部有连廊相连。 图1 马来西亚双塔 巴黎凯旋门(图2),建于1989 年,是世界上第一座大型连体结构。它与香榭舍大街上的老巴黎凯旋门位于同一城市的中轴线上,相互辉映,构成巴黎新老城区的主要景点。新凯旋门在100m 的正方形内切出约60m 的大洞构成。建筑结构对称均匀,两侧塔楼结构各约20m 进深,主要用做办公楼,顶部连体净跨约60m,高约20m,由双重并式通高桁架构成,桁架采用预应力混凝土箱型大梁。

图2 巴黎凯旋门 上海交银大厦(图3)位于浦东陆家嘴金融开发区内,为不对称连体结构。北塔楼55 层,高230.35m,南塔楼48 层,高197.55m。两幢塔楼整体外形呈H 型,在第13、26、39 层分别一层楼高(4.1m),净跨12.4m 的两个空间桁架将两幢塔楼连接在一起,两空间桁架又通过交叉斜撑连成整体,以增强塔楼间的连接。连体与塔楼采用刚性连接。上海交银金融大厦,为双塔弱连结构,由于两塔楼的高度不同,动力特性有较大差异,塔楼间的析架结构协调结构的变形,对整体结构的受力性能产生影响。 为了研究结构的抗震性能,同济大学进行了振动台试验,试验模型缩比为模型包括两个高层塔楼和塔楼间析架,模型总高米,总质量为吨。试验分析认为,七度多遇地震作用下,结构处于弹性工作阶段七度地震作用下,结构出现微裂缝,析架无变形,结构满足规范设计要求罕遇七度地震作用下,结构底部柱和剪力墙出现水平裂缝,析架部分屈服,结构不会倒塌,满足设计规范要求八度罕遇地震作用下,结构出现严重开裂,变形增大,析架屈曲,甚 至拉断。

谈某高层建筑连体结构设计

摘要:根据某建筑工程项目的结构设计,对某带连体的设计做了详细的分析,探讨了其结构设计及连体部分的计算与设计,确保建筑结构的抗震要求,以供以后同类建筑结构设计的参考。 关键词:连体高层;结构设计;分析 中图分类号:TU97 文献标识码:A 文章编号: 1 工程概况 A楼与B楼由一主楼组成,主楼都是14层,在10层以下相互独立,在11 层与14 层之间设置一连体结构,将两主楼连通,连体部分中,仅11 层为可用建筑空间,其余均为构架部分,只为满足建筑造型。两主楼设置一层连通的地下室。本工程不属于超限结构,但是须对连体部分进行详细计算。 2 结构设计 2.1 荷载取值 本项目为丙类建筑,安全等级二级,抗震设防烈度6 度,场地类别为Ⅱ类,设计分组为第一组,场地特征周期0.35 s。地面粗糙度类别B 类,基本风压按100 年一遇的风压取值:0.35kN/m2。 2.2 基础及地下部分基础采用桩基础,桩径800mm,中柱下一般布置5桩承台,承台厚度1.3 m,边柱下一般布置4 桩承台,承台厚度1.4m,均采用C35 混凝土。两栋办公楼地下连为一体,地下室结构层高4.95m,地下室底板兼做防水板,厚度400mm,地下室下土层多为填土,设计时不考虑承台间土的承载力。 2.3 上部结构 本工程采用框架—剪力墙结构体系,柱截面主要尺寸700 ×900,700 × 600,主要柱网8 m×9.5 m,8 m × 8 m。框架柱1 层,2 层为加强层,柱墙采用C50 混凝土,梁板采用C35 混凝土,9层~12 层采用C40 混凝土,梁板采用C35 混凝土。8 m 左右跨度的框架梁截面一般为400×600,9.5 m 跨度的梁截面一般为400 × 750。 连体结构是复杂高层建筑中较为典型的类型,可分为弱连接和强连接结构,弱连接一般有铰接,滑动连接,强连接结构大多通过连接体将两栋或多栋楼进行刚性连接。从平面图上看A楼与B楼垂直布置,由于两办公楼结构形式相同,质量与刚度接近,如果独立分开,则自振周期类似,在地震作用下,两栋办公楼不能够做到协同振动,如果采用强连接,则两栋办公楼会因不同的振动模态而产生较大的相互作用。因此本项目连体采用弱连接。 3 连体部分计算与设计 3.1 计算模型及计算参数 结构整体计算分析采用Satwe,Midas /Building 两种程序。周期折减系数0.8,考虑5%的偶然偏心及双向地震力,进行小震计算,连体部分及其以下1层按中震不屈服进行设计配筋。楼板假定,计算周期和位移时采用刚性楼板假定; 计算杆件内力和截面设计时采用真实反映楼板完全弹性有限壳单元。 3.2 巨型悬臂梁与牛腿设计 本工程中连接体的弱连接方式采用平板式橡胶支座,在11层标高处,在与连接体相邻边梁上设计3个牛腿,用来支承连接体一端,连接体另一端与B楼刚接,3个牛腿的间距分别为8m,4 m,其中4m为外伸悬挑部分,牛腿高1m,宽1 m,见图1。

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

30-高层大跨度偏心连体结构研究-李安

高层大跨度偏心连体结构研究 李安,曹伟良,张良平 (深圳华森建筑与工程设计顾问有限公司,深圳 518052) 摘 要:深圳某连体项目,两栋塔楼高度约87米,连接体在75米高处将两栋塔楼连接,连接形式为强连接, 连接体以上还有4层住宅。连接体采用钢桁架结构,高度7米,跨度56米,且在平面上偏置,属于 大跨度的偏心连体结构。从结构特性、荷载考虑、施工顺序优化、罕遇地震弹塑性时程分析等方面进 行了深入分析,提出了具体的抗震加强措施。其分析及设计思路可为类似的连体项目提供参考。 关键词:连体结构,强连接,大跨度,偏心,高层建筑 1引言及项目概况 两个或两个以上高层建筑通过连接体连接起来的结构形式,称为高层连体建筑,是一种体型复杂的高层建筑。连体结构因其独特的几何形态,受到不少建筑师的青睐,成为建筑师们喜爱的创作手段,在建筑设计中的使用也逐渐增多。 然而现行的建筑结构规范对连体结构缺乏明确、具体的规定。对于大跨度的偏心连体结构,在国内外更是缺少理论研究和可供参考的工程案例。本文结合实际项目,深入研究了大跨度偏心连体结构的受力特点,提出具体的抗震加强措施,完成结构设计,为连体结构项目的分析设计积累工程经验。 本项目位于深圳,抗震设防烈度为7度(0.10g ),场地类别Ⅱ类,基本风压值0.75KN/m 2,地面粗糙度类别C 类。项目主要功能为住宅,有一层地下室,地上共28层,其中1层裙房,27层住宅。其中地上部分由南、北两栋塔楼组成,两栋塔楼均为剪力墙结构,高度87.4米,属于A 级高度。 两栋塔楼在23~25层经两榀桁架组成的连接体连接,连接形式为强连接[1]。连接体为纯钢结构,桁架跨度56.000米,属于特大跨度的高层建筑。桁架高度7.000米,桁架层以上有四层复式住宅。 由于建筑方案的限制,在平面上连接体为偏心设置,如图 3所示。 图1结构的组成 图2结构计算模型 图3桁架下弦层(23)及上弦层(25)平面 作者简介:李安(1987-),男,硕士,结构工程师

高层建筑结构设计复习试题(含答案)

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。

对称与不对称双塔连体结构的动力特性分析

对称与不对称双塔连体结构的动力特性分析 发表时间:2011-04-01T16:02:06.733Z 来源:《价值工程》2011年第3月上旬作者:滕振超何金洲 [导读] 以某十八层对称双塔结构和十八-十六层不对称双塔结构为例 滕振超 Teng Zhenchao;何金洲 He Jinzhou (东北石油大学土木建筑工程学院,大庆 163318) (School of Civil Engineering,Northeast Petroleum University,Daqing 163318,China) 摘要:以某十八层对称双塔结构和十八-十六层不对称双塔结构为例,通过ANSYS有限元分析软件,建立了两种结构的三维有限元模型,并对比分析了两种结构的动力特性,为这两种结构的设计应用积累经验。 Abstract: Citing one 18-floor symmetrical double-tower structure and one 18-floor and 16-floor unsymmetrical double-tower structure as examples, tridimensional finite element model is built according to ANSYS finite element analysis software. On the basis of it, the contrastive analysis of dynamic characteristics of the two double-tower connected structures is carried out, and experience is accumulated for the design and exploit of the two structures. 关键词:有限元分析双塔连体结构动力特性 Key words: finite element analysis;double-tower connected structure;dynamic characteristics 中图分类号:TU311.3 文献标识码:A 文章编号:1006-4311(2011)07-0061-02 0 引言 随着我国建筑业的迅速发展,高层多塔结构的应用也逐渐增多,其中以双塔结构应用最为广泛。高层建筑结构尤其是双塔结构体系的设计要求必须分析清楚结构本身的动力特性,结构的受力特点。双塔结构一般分为对称和不对称两种形式,有时建筑师为了追求设计的效果,经常采用非对称双塔结构来实现设计意图。与对称结构相比,不对称结构的布置形式多变,使得结构设计分析也非常困难。工程实践表明,不对称双塔结构的平扭耦联振动是其地震反应的主要特性,从而导致不同结构形式下的地震作用效应差别较大,地震和风荷载作用下结构受力复杂。对不对称双塔结构的动力特性进行分析,对此类结构的概念设计非常重要。本文运用ANSYS有限元分析软件,对对称和不对称双塔结构的动力特性进行了分析比较,从而对此类结构的设计和应用奠定基础。 1 三维有限元分析模型 某双塔楼连体结构为十八层钢筋混凝土结构,总高度54m,层高为3m,对称双塔连体结构简图如图1所示,不对称双塔连体结构总高度54m,层高3m;右塔十八层,左塔十六层,不对称双塔连体结构简图如图2所示;两种结构的三维有限元模型见图3和图4。梁柱均采用BEAM188单元,该单元基于铁木辛柯梁结构理论,并考虑了剪切变形的影响,楼板采用SHELL63壳单元。构件选型及材料见表1。

相关文档
最新文档