STM32学习笔记(3):系统时钟和SysTick定时器

STM32学习笔记(3):系统时钟和SysTick定时器
STM32学习笔记(3):系统时钟和SysTick定时器

STM32学习笔记(3):系统时钟和SysTick定时器

1.STM32的时钟系统

在STM32中,一共有5个时钟源,分别是HSI、HSE、LSI、LSE、PLL

(1)HSI是高速内部时钟,RC振荡器,频率为8MHz;

(2)HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围是4MHz – 16MHz;

(3)LSI是低速内部时钟,RC振荡器,频率为40KHz;

(4)LSE是低速外部时钟,接频率为32.768KHz的石英晶体;

(5)PLL为锁相环倍频输出,严格的来说并不算一个独立的时钟源,PLL 的输入可以接HSI/2、HSE或者HSE/2。倍频可选择为2 – 16倍,但

是其输出频率最大不得超过72MHz。

其中,40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。

STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为

48MHz的时钟源。该时钟源只能从PLL端获取,可以选择为1.5分频或者1分频,也就是,当需使用到USB模块时,PLL必须使能,并且时钟配置为48MHz 或72MHz。

另外STM32还可以选择一个时钟信号输出到MCO脚(PA.8)上,可以选择为PLL输出的2分频、HSI、HSE或者系统时钟。

系统时钟SYSCLK,它是提供STM32中绝大部分部件工作的时钟源。系统时钟可以选择为PLL输出、HSI、HSE。系系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各个模块使用,AHB分频器可以选择1、2、4、8、16、64、128、256、512分频,其分频器输出的时钟送给5大模块使用:

(1)送给AHB总线、内核、内存和DMA使用的HCLK时钟;

(2)通过8分频后送给Cortex的系统定时器时钟;

(3)直接送给Cortex的空闲运行时钟FCLK;

(4)送给APB1分频器。APB1分频器可以选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一

路送给定时器(Timer)2、3、4倍频器使用。该倍频器可以选择1或者

2倍频,时钟输出供定时器2、3、4使用。

(5)送给APB2分频器。APB2分频器可以选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另外

一路送给定时器(Timer)1倍频使用。该倍频器可以选择1或2倍频,

时钟输出供定时器1使用。另外APB2分频器还有一路输出供ADC

分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、

4、6、8分频。

需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。

连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz的时钟信号,但是它应该不是供USB 模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块的工作时钟应该是由APB1提供的。

连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、GPIOx(PA~PE)、第二功能IO口。

2.STM32时钟的初始化

由于我现在所用的开发板已经外接了一个8MHz的晶振,因此将采用HSE 时钟,在MDK编译平台中,程序的时钟设置参数流程如下:

(1)将RCC寄存器重新设置为默认值:RCC_DeInit;

(2)打开外部高速时钟晶振HSE:RCC_HSEConfig(RCC_HSE_ON);

(3)等待外部高速时钟晶振工作:HSEStartUpStatus =

RCC_WaitForHSEStartUp();

(4)设置AHB时钟(HCLK):RCC_HCLKConfig;

(5)设置高速AHB时钟(APB2):RCC_PCLK2Config;

(6)设置低速AHB时钟(APB1):RCC_PCLK1Config;

(7)设置PLL:RCC_PLLConfig;

(8)打开PLL:RCC_PLLCmd(ENABLE);

(9)等待PLL工作:while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)

== RESET);

(10)设置系统时钟:RCC_SYSCLKConfig;

(11)判断PLL是否是系统时钟:

while(RCC_GetSYSCLKSource() != 0x08);

(12)打开要使用的外设时钟:RCC_APB2PerphClockCmd()….

某些函数的详细的使用方法,可以参考ST公司出版的

《STM32F10xxx_Library_Manual》

3.SysTick定时器

NVIC中,捆绑着一个SysTick定时器,它是一个24位的倒数计数定时器,当计到0时,将从RELOAD寄存器中自动重装载定时初值并继续计数,同时内部的COUNTFLAG标志会置位,触发中断(如果中断使能情况下)。只要不把它在SysTick控制及状态寄存器中的使能位清除,就用不停息。Cortex-M3允许为SysTick提供2个时钟源以供选择,第一个是内核的“自由运行时钟”FCLK,“自由”表现在它不是来自系统时钟HCLK,因此在系统时钟停止时,FCLK也能继续运行。第2个是一个外部的参考时钟,但是使用外部时钟时,因为它在内部是通过FCLK来采样的,因此其周期必须至少是FCLK的两倍(采样定理)。

下面介绍一下STM32中的SysTick,它属于NVIC控制部分,一共有4个寄存器:

STK_CSR,0xE000E010:控制寄存器

STK_LOAD,0xE000E014:重载寄存器

STK_VAL,0xE000E018:当前值寄存器

STK_CALRB,0xE000E01C:校准值寄存器

首先看STK_CSR控制寄存器,有4个bit具有意义:

第0位:ENABLE,SysTick使能位(0:关闭SysTick功能,1:开启SysTick 功能);

第1位:TICKINT,SysTick中断使能位(0:关闭SysTick中断,1:开启SysTick中断);

第2位:CLKSOURCE,SysTick时钟选择(0:使用HCLK/8作为时钟源,1:使用HCLK);

第3为:COUNTFLAG,SysTick计数比较标志,如果在上次读取本寄存器后,SysTick已经数到0了,则该位为1,如果读取该位,该位自动清零。

STK_LOAD重载寄存器:

Systick是一个递减的定时器,当定时器递减至0时,重载寄存器中的值就会被重装载,继续开始递减。STK_LOAD 重载寄存器是个24位的寄存器最大计数0xFFFFFF。

STK_VAL当前值寄存器:

也是个24位的寄存器,读取时返回当前倒计数的值,写它则使之清零,同时还会清除在SysTick控制及状态寄存器中的COUNTFLAG标志。

STK_CALRB校准值寄存器:

其中包含着一个TENMS位段,具体信息不详。暂时用不到。

在MDK开发环境中,我们不必要非得去操作每一个寄存器,可以通过调用ST函数库中的函数来进行相关的操作,其步骤如下:

(1)调用SysTick_CounterCmd() 失能SysTick计数器

(2)调用SysTick_ITConfig() 失能SysTick中断

(3)调用SysTick_CLKSourceConfig() 设置SysTick时钟源

(4)调用SysTick_SetReload() 设置SysTick重装载值

(5)调用NVIC_SystemHandlerPriorityConfig() 设置SysTick定时器中断优先级

(6)调用SysTick_ITConfig() 使能SysTick中断

(7)在stm32f10x_it.c中SysTickHandler()下写中断服务函数。

(8)在需要的时候调用SysTick_CounterCmd() 开启SysTick计数器

4.工程实现

根据以上描述,准备利用开发板上的LED灯做一个小实验,将第一个跑马灯的实验稍微改进一下,以1s精确延时的状态来顺序点亮LED灯,采用的定时器就是SysTick。

设计思路是先配置好系统的各个参数,然后设置SysTick定时器每1ms就进入一次中断,再定义一个全局变量作为定时长短的参数,然后将从延时函数中得到的参数赋值给这个全局变量,每进入一次中断,这个全局变量就减一次,直到减为0,才跳出延时函数。

1.配置系统时钟

void RCC_cfg()

{

//定义错误状态变量

ErrorStatus HSEStartUpStatus;

//将RCC寄存器重新设置为默认值

RCC_DeInit();

//打开外部高速时钟晶振

RCC_HSEConfig(RCC_HSE_ON);

//等待外部高速时钟晶振工作

HSEStartUpStatus = RCC_WaitForHSEStartUp();

if(HSEStartUpStatus == SUCCESS)

{

//设置AHB时钟(HCLK)为系统时钟

RCC_HCLKConfig(RCC_SYSCLK_Div1);

//设置高速AHB时钟(APB2)为HCLK时钟

RCC_PCLK2Config(RCC_HCLK_Div1);

//设置低速AHB时钟(APB1)为HCLK的2分频

RCC_PCLK1Config(RCC_HCLK_Div2);

//设置FLASH代码延时

FLASH_SetLatency(FLASH_Latency_2);

//使能预取指缓存

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

//设置PLL时钟,为HSE的9倍频8MHz * 9 = 72MHz

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

//使能PLL

RCC_PLLCmd(ENABLE);

//等待PLL准备就绪

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);

//设置PLL为系统时钟源

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

//判断PLL是否是系统时钟

while(RCC_GetSYSCLKSource() != 0x08);

}

//打开PB和PD用于点亮LED灯

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB |

RCC_APB2Periph_GPIOD, ENABLE);

}

其中使用到了NVIC的函数,需要将stm32f10xR.lib加入到工程中。

2.配置SysTick定时器

void SysTick_cfg()

{

//设置失能SysTick定时器

SysTick_CounterCmd(SysTick_Counter_Disable);

//设置失能SysTick中断

SysTick_ITConfig(DISABLE);

//设置SysTick的时钟源为AHB时钟

SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK);

//设置重装载值,由于SysTick是AHB时钟,即72MHz,所以重装载值设置为72000,即每1ms重新装载一次

SysTick_SetReload(72000);

//设置SysTick定时器中断优先级

NVIC_SystemHandlerPriorityConfig(SystemHandler_SysTick, 1, 0);

//设置使能SysTick中断

SysTick_ITConfig(ENABLE);

}

3.编写延时函数

void Delay(u32 nTime)

{

TimingDelay = nTime;

//允许SysTick定时器

SysTick_CounterCmd(SysTick_Counter_Enable);

//循环等待定时时间到

while(TimingDelay != 0);

//禁止SysTick定时器

SysTick_CounterCmd(SysTick_Counter_Disable);

//清空SysTick定时器

SysTick_CounterCmd(SysTick_Counter_Clear);

}

4.设置通用IO口

void GPIO_cfg()

{

GPIO_InitTypeDef GPIO_InitStructure; //定义GPIO 宏操作结构体

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //将B5口配置为通用推挽输出

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //口线翻转速度为50MHz

GPIO_Init(GPIOB, &GPIO_InitStructure); //配置GPIOB口

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_3; //将D3和D6口配置为推挽输出

GPIO_Init(GPIOD, &GPIO_InitStructure); //配置GPIOD口

}

5.中断服务函数

void SysTickHandler(void)

{

TimingDelay--;

}

其中TimingDelay这个全局变量在使用的时候需要在stm32f10x_it.c中进行一下声明,要不然不能使用,其声明语句是:

extern vu32 TimingDelay;

在延时程序中一直检测TimingDelay这个全局变量,只有当其减为0的时候,才跳出延时函数。

6.主程序

#include "stm32f10x_lib.h"

vu32 TimingDelay;

void RCC_cfg();

void SysTick_cfg();

void Delay(u32 nTime);

void GPIO_cfg();

int main()

{

RCC_cfg(); //配置RCC时钟

SysTick_cfg(); //配置SysTick定时器

GPIO_cfg(); //配置通用IO口

while(1)

{

GPIO_ResetBits(GPIOB, GPIO_Pin_5);

GPIO_ResetBits(GPIOD, GPIO_Pin_6);

GPIO_SetBits(GPIOD, GPIO_Pin_3);

Delay(1000); //延时1s

GPIO_ResetBits(GPIOB, GPIO_Pin_5);

GPIO_ResetBits(GPIOD, GPIO_Pin_3);

GPIO_SetBits(GPIOD, GPIO_Pin_6);

Delay(1000);

GPIO_SetBits(GPIOB, GPIO_Pin_5);

GPIO_ResetBits(GPIOD, GPIO_Pin_6);

GPIO_ResetBits(GPIOD, GPIO_Pin_3);

Delay(1000);

}

}

在延时函数Delay的参数中,可以填入任意的32bits的整数,延时单位是ms。至此,SysTick定时器和系统时钟的设置就到此基本上全部讲完了。

stm32:系统时钟

实验4 系统时钟实验 上一章,我们介绍了STM32 内部系统滴答定时器,该滴答定时器产生的延时非常精确。在本章中,我们将自定义RCC系统时钟,通过改变其倍频与分频实现延时时间变化,实现LED灯闪烁效果。通过本章的学习,你将了解 RCC系统时钟的使用。本章分为以下学习目标: 1、了解 STM32 的系统构架。 2、了解 STM32 的时钟构架。 3、了解 RCC 时钟的操作步骤。 1.1 STM32 的系统构架 STM32 的时钟比较复杂,它可以选择多种时钟源,也可以选择不一样的时钟频率,而且在系统总线上面,每条系统的时钟选择都是有差异的。所以想要清楚的了解 STM32 的时钟分配,我们先来了解一下 STM32 的系统构架是什么样的。 从上图我们知道,RCC 时钟输出时钟出来,然后经过 AHB 系统总线,分别

分配给其他外设时钟,而不一样的外设,是先挂在不一样的桥上的。比如: ADC1、ADC2、 SPI1、GPIO 等都是挂在 APB2 上面,而有些是挂在 APB1上面,所以,虽然它们都是从 RCC 获取的时钟,但是它们的频率有时候是不一样的。 1.2 STM32 的时钟树 STM32 单片机上电之后,系统默认是用的时钟是单片机内部的高速晶振时钟,而这个晶振容易受到温度的影响,所以晶振跳动的时候不是有一定的影响,所以一般开发使用的时候都是使用外部晶振,而且单片机刚启动的时候,它的时钟频率是 8MHZ,而 STM32 时钟的最高频率是 72MHZ,所以单片机一般开机之后运行的程序是切换时钟来源,并设置时钟频率。大家可能有点疑惑,在第一章到第三章之中,我们并没有看到单片机开机之后设置时钟来源和时钟频率的。其实在使用库函数的时候,其实在库函数启动文件里面,是帮助我们把时钟频率设置到 72MHZ 了。大家可以打开一个库函数工程,在 system_stm32f10x.c 的第 106行,它定义了一个 SYSCLK_FREQ_72MHz: #if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL) /* #define SYSCLK_FREQ_HSE HSE_VALUE */ #define SYSCLK_FREQ_24MHz 24000000 #else #define SYSCLK_FREQ_72MHz 72000000 然后在下面的程序中,根据这个 SYSCLK_FREQ_72MHz 定义,它默认设置成 72MHZ。接下来我们来看一下具体的 RCC 时钟树:

05_STM32F4通用定时器详细讲解精编版

STM32F4系列共有14个定时器,功能很强大。14个定时器分别为: 2个高级定时器:Timer1和Timer8 10个通用定时器:Timer2~timer5 和 timer9~timer14 2个基本定时器: timer6和timer7 本篇欲以通用定时器timer3为例,详细介绍定时器的各个方面,并对其PWM 功能做彻底的探讨。 Timer3是一个16位的定时器,有四个独立通道,分别对应着PA6 PA7 PB0 PB1 主要功能是:1输入捕获——测量脉冲长度。 2 输出波形——PWM 输出和单脉冲输出。 Timer3有4个时钟源: 1:内部时钟(CK_INT ),来自RCC 的TIMxCLK 2:外部时钟模式1:外部输入TI1FP1与TI2FP2 3:外部时钟模式2:外部触发输入TIMx_ETR ,仅适用于TIM2、TIM3、TIM4,TIM3,对应 着PD2引脚 4:内部触发输入:一个定时器触发另一个定时器。 时钟源可以通过TIMx_SMCR 相关位进行设置。这里我们使用内部时钟。 定时器挂在高速外设时钟APB1或低速外设时钟APB2上,时钟不超过内部高速时钟HCLK ,故当APBx_Prescaler 不为1时,定时器时钟为其2倍,当为1时,为了不超过HCLK ,定时器时钟等于HCLK 。 例如:我们一般配置系统时钟SYSCLK 为168MHz ,内部高速时钟 AHB=168Mhz ,APB1欲分频为4,(因为APB1最高时钟为42Mhz ),那么挂在APB1总线上的timer3时钟为84Mhz 。 《STM32F4xx 中文参考手册》的424~443页列出与通用定时器相关的寄存器一共20个, 以下列出与Timer3相关的寄存器及重要寄存器的简单介绍。 1 TIM3 控制寄存器 1 (TIM3_CR1) SYSCLK(最高 AHB_Prescaler APBx_Prescaler

STM32通用定时器_15-1-6

通用定时器的相关配置 1、预装入(Preload) 预装入实际上是设置TIMx_ARR寄存器有没有缓冲,根据“The auto-reload register is preloaded。Writing to or reading from the auto-reload register accesses the preload register。”可知: 1)如果预装入允许,则对自动重装寄存器的读写是对预装入寄存器的存取,自动重装寄存器的值在更新事件后更新; 2)如果预装入不允许,则对自动重装寄存器的读写是直接修改其本身,自动重装寄存器的值立刻更新; 3)设置方式:TIMx_CR1 →ARPE(1) 2、更新事件(UEV) 1)产生条件:①定时器溢出 ②TIMx_CR1→ UDIS = 0 ③或者:软件产生,TIMx_EGR→ UG = 1 2)更新事件产生后,所有寄存器都被“清零”,注意预分频器计数 器也被清零(但是预分频系数不变)。若在中心对称模式下或DIR=0(向上计数)则计数器被清零;若DIR=1(向下计数)则计数器取TIMx_ARR的值。 3)注意URS(复位为0)位的选择,如下:

如果是软件产生更新,则URS→1,这样就不会产生更新请求 和DMA请求。 4)更新标志位(UIF)根据URS的选择置位。 5)可以通过软件来失能更新事件: 3、计数器(Counter) 计数器由预分频器的输出时钟(CK_CNT)驱动,TIMx_CR1→CEN = 1 使能,注意:真正的计数使能信号(CNT_EN)在 CEN 置位后一个周期开始有效。 4、预分频器(Prescaler) 预分频器用来对时钟进行分频,分频值由TIMx_PSC决定,计数器的时钟频率CK_CNT= fCK_PSC / (PSC[15:0] + 1)。 根据“It can be changed on the fly as this control register

stm32定时器的区别

STM32高级定时器、通用定时器(TIMx) 、基本定时器(TIM6和TIM7) 区别? 高级定时器TIM1和TIM8、通用定时器(TIM2,TIM3,TIM4,TIM5) 、基本定时器(TIM6和TIM7) 区别? TIM1和TIM8主要特性TIM1和TIM8定时器的功能包括: ● 16位向上、向下、向上/下自动装载计数器 ● 16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65535之间的任意数值 ● 多达4个独立通道:─ 输入捕获─ 输出比较─ PWM生成(边缘或中间对齐模式) ─ 单脉冲模式输出 ● 死区时间可编程的互补输出 ● 使用外部信号控制定时器和定时器互联的同步电路 ● 允许在指定数目的计数器周期之后更新定时器寄存器的重复计数器 ● 刹车输入信号可以将定时器输出信号置于复位状态或者一个已知状态 ● 如下事件发生时产生中断/DMA:─ 更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ─ 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ─ 输入捕获─ 输出比较─ 刹车信号输入 ● 支持针对定位的增量(正交)编码器和霍尔传感器电路 ● 触发输入作为外部时钟或者按周期的电流管理 TIMx主要功能通用TIMx (TIM2、TIM3、TIM4和TIM5)定时器功能包括: ● 16位向上、向下、向上/向下自动装载计数器 ● 16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65536之间的任意数值 ● 4个独立通道:─ 输入捕获─ 输出比较─ PWM生成(边缘或中间对齐模式) ─ 单脉冲模式输出 ● 使用外部信号控制定时器和定时器互连的同步电路 ● 如下事件发生时产生中断/DMA:─ 更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ─ 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ─ 输入捕获─ 输出比较 ● 支持针对定位的增量(正交)编码器和霍尔传感器电路 ● 触发输入作为外部时钟或者按周期的电流管理 TIM6和TIM7的主要特性TIM6和TIM7定时器的主要功能包括: ● 16位自动重装载累加计数器 ● 16位可编程(可实时修改)预分频器,用于对输入的时钟按系数为1~65536之间的任意数值分频 ● 触发DAC的同步电路注:此项是TIM6/7独有功能. ● 在更新事件(计数器溢出)时产生中断/DMA请求 强大,高级定时器应该是用于电机控制方面的吧

STM32CubeMX+FreeRTOS学习[3]-计数信号量(Lu)

FreeRTOS学习之三:计数信号量 前提:默认已经装好MDK V5和STM32CubeMX,并安装了STM32F1xx系列的支持包。 硬件平台:STM32F1xx系列。 目的:学习计数信号量的使用。 计数信号量的使用场景:一个二值信号量最多只可以锁存一个中断事件。在锁存的事件还未被处理之前,如果还有中断事件发生,那么后续发生的中断事件将会丢失。如果用计数信号量代替二值信号量,那么,这种丢中断的情形将可以避免。 本文例子使用STM32CubeMX配置创建两个任务,一个任务每秒钟发送多次信号量,另一个等待信号量并控制LED的闪烁。 Step1.打开STM32CubeMX,点击“New Project”,选择芯片型号,STM32F103RBTx。 Step2.配置时钟引脚。 Step3.配置PA8和PD2为Output,并把用户标签分别改为LED0,LED1。

Step4.将系统时基源改为TIM4。 Step5.使能FreeRTOS。 Step6.配置时钟树。8M输入时,通过PLL得到72M内部时钟。

Step7.配置FreeRTOS。 在Tasks and Queues选项卡,默认配置了一个名为defaultTask的任务,其优先级为普通,任务堆栈大小为128字,任务函数名为StartDefaultTask。 双击蓝色的地方,弹出对话框,将任务名修改为SemGen,将任务函数名修改为SemGenTask。 点击Add按钮,增加一个任务Handle,优先级设置为Normal,函数名为HandleTask。

在Config parameters选项卡,使能计数信号量。 在Timers and Semaphores选项卡,点击Counting Semaphores项右边的“Add”按钮,添加一个信号量,名称改为cSem01,并把最大计数值改为10。 注:其他的都使用默认参数。 Step8.生成代码。

设置stm32系统各部分时钟

设置stm32系统各部分时钟 函数如下: /******************************************************************** ****** * 函数名: RccInitialisation* 函数描述: 设置系统各部分时钟* 输入参数: 无* 输出结果: 无* 返回值: 无 ******************************************************************** ******/void RccInitialisation(void){/* 定义枚举类型变量HSEStartUpStatus */ErrorStatus HSEStartUpStatus;/* 复位系统时钟设置*/RCC_DeInit();/* 开启HSE*/RCC_HSEConfig(RCC_HSE_ON);/* 等待HSE 起振并稳定*/HSEStartUpStatus = RCC_WaitForHSEStartUp();/* 判断HSE 起是否振成功,是则进入if()内部*/if(HSEStartUpStatus == SUCCESS){/* 选择HCLK(AHB)时钟源为SYSCLK 1 分频*/RCC_HCLKConfig(RCC_SYSCLK_Div1);/* 选择PCLK2 时钟源为HCLK(AHB) 1 分频 */RCC_PCLK2Config(RCC_HCLK_Div1);/* 选择PCLK1 时钟源为HCLK(AHB) 2 分频*/RCC_PCLK1Config(RCC_HCLK_Div2);/* 设置FLASH 延时周期数为2 */FLASH_SetLatency(FLASH_Latency_2);/* 使能FLASH 预取缓存*/FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); /* 选择锁相环(PLL)时钟源为HSE 1 分频,倍频数为9,则PLL 输出频率为 8MHz * 9 = 72MHz*/RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);/* 使能PLL */RCC_PLLCmd(ENABLE);/* 等待PLL 输出稳 定*/while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);/* 选择

STM32学习笔记通用定时器PWM输出

STM32学习笔记(5):通用定时器PWM输出 2011年3月30日TIMER输出PWM 1.TIMER输出PWM基本概念 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单一点,就是对脉冲宽度的控制。一般用来控制步进电机的速度等等。 STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。 1.1PWM输出模式 STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。模式1和模式2的区别如下: 110:PWM模式1-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。 111:PWM模式2-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为有效电平,否则为无效电平。 由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。 而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。 1.2PWM输出管脚 PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7 定时器复用功能重映射”一节。在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。但是这些重映像的管脚也是由参考手册给出的。比如

stm32系统时钟配置问题

stm32系统时钟配置问题 系统从上电复位到72mz 配置好之前,提供时钟的是内如高速rc 振荡器提 供8MZ 的频率,这个由下面void SystemInit (void)函数的前面的一部分代码来 完成的和保证的:RCC->CR |= (uint32_t)0x00000001; #ifndef STM32F10X_CLRCC->CFGR &= (uint32_t)0xF8FF0000;#elseRCC- >CFGR &= (uint32_t)0xF0FF0000;#endif RCC->CR &= (uint32_t)0xFEF6FFFF; RCC->CR &= (uint32_t)0xFFFBFFFF; RCC->CFGR &= (uint32_t)0xFF80FFFF; #ifdef STM32F10X_CLRCC->CR &= (uint32_t)0xEBFFFFFF; RCC->CIR = 0x00FF0000; RCC->CFGR2 = 0x00000000;#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)RCC->CIR = 0x009F0000; RCC->CFGR2 = 0x00000000;#elseRCC->CIR = 0x009F0000;#endif#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)#ifdef DATA_IN_ExtSRAMSystemInit_ExtMemCtl();#endif#endif 接着void SystemInit (void)调用SetSysClock();函数,将系统时钟配置到 72m,将AHB,APB1,APB2 等外设之前的时钟都配置好,然后切换到72mz 下 运行。所以在使用哪个外设的时候,只需要使能相应的外设时钟就可以了 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

STM32学习笔记(3):系统时钟和SysTick定时器

STM32学习笔记(3):系统时钟和SysTick定时器 1.STM32的时钟系统 在STM32中,一共有5个时钟源,分别是HSI、HSE、LSI、LSE、PLL (1)HSI是高速内部时钟,RC振荡器,频率为8MHz; (2)HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围是4MHz – 16MHz; (3)LSI是低速内部时钟,RC振荡器,频率为40KHz; (4)LSE是低速外部时钟,接频率为32.768KHz的石英晶体; (5)PLL为锁相环倍频输出,严格的来说并不算一个独立的时钟源,PLL 的输入可以接HSI/2、HSE或者HSE/2。倍频可选择为2 – 16倍,但 是其输出频率最大不得超过72MHz。 其中,40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。 STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为 48MHz的时钟源。该时钟源只能从PLL端获取,可以选择为1.5分频或者1分频,也就是,当需使用到USB模块时,PLL必须使能,并且时钟配置为48MHz 或72MHz。 另外STM32还可以选择一个时钟信号输出到MCO脚(PA.8)上,可以选择为PLL输出的2分频、HSI、HSE或者系统时钟。 系统时钟SYSCLK,它是提供STM32中绝大部分部件工作的时钟源。系统时钟可以选择为PLL输出、HSI、HSE。系系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各个模块使用,AHB分频器可以选择1、2、4、8、16、64、128、256、512分频,其分频器输出的时钟送给5大模块使用: (1)送给AHB总线、内核、内存和DMA使用的HCLK时钟; (2)通过8分频后送给Cortex的系统定时器时钟; (3)直接送给Cortex的空闲运行时钟FCLK; (4)送给APB1分频器。APB1分频器可以选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一

Finder自学stm32笔记之电源时钟

电源 STM32的工作电压(VDD)为2.0~3.6V。通过内置的电压调节器提供所需的1.8V电源。当主电源VDD掉电后,通过VBA T脚为实时时钟(RTC)和备份寄存器提供电源。 由上图可知VDDA.VSSA分别是独立给ADC的电源盒电源地。ADC需要准确的精度因此需要独立的电源供电。 使用电池或其他电源连接到VBAT脚上,当VDD断电时,可以保存备份寄存器的内容和维持RTC的功能。以便于RTC、后备区域、一些寄存器工作当然也需要外部振荡器提供时钟,所以也为LSE振荡器供电。 stm32中有上电复位掉电复位电路,可以设置通过设置PVDE位设置PVD阀值,当VDD 电压异常的时候就会复位,可以设置中断。 低功耗模式 三种低功耗模式 睡眠模式(Cortex?-M3内核停止,所有外设包括Cortex-M3核心的外设,如NVIC、系统时钟(SysTick)等仍在运行) 停止模式(所有的时钟都已停止而电压还在供给) :是深睡眠模式基础上结合了外设的时钟控制机制,在停止模式下电压调节器可运行在正常或低功耗模式。此时在1.8V供电区域的的所有时钟都被停止,PLL、HSI和HSE RC振荡器的功能被禁止,SRAM和寄存器内

容被保留下来。在停止模式下,所有的I/O引脚都保持它们在运行模式时的状态。 待机模式(1.8V电源关闭):待机模式可实现系统的最低功耗。该模式是在Cortex-M3深睡眠模式时关闭电压调节器。整个1.8V供电区域被断电。PLL、HSI和HSE振荡器也被断电。SRAM和寄存器内容丢失。只有备份的寄存器和待机电路维持供电。 前面是三者的详细介绍,初一看看不出有什么区别,我当时都看的晕呼呼地,做笔记时候才发现他们真正的不同。现在讲解一下。 睡眠模式只是关掉了CM3的内核,外设都在运行包过内部外部时钟、IO口、中断NVIC 等等。停止模式是进一步的睡眠模式它是关掉了所有的外设时钟,但是仍旧在供电。待机模式是最低功耗的模式,它连时钟供电全部禁止除了备份的寄存器和待机电路维持供电。(有待进一步的深入研究并修正) Stm32降低功耗的三种方法: 1.低功耗模式 2.降低系统时钟 3.关掉外设 如题降低系统时钟通过对预分频寄存器进行编程,可以降低任意一个系统时钟(SYSCLK、HCLK、PCLK1、PCLK2)的速度。从而降低功耗。 但是我有疑问就是:如何在系统运行的情况下切换系统时钟的时钟源?是否可以随时改变预分频系数? RCC_SYSCLKConfig 设置系统时钟(SYSCLK) RCC_SYSCLKConfig(RCC_SYSCLKSource_HSI);/* Wait till HSI is used as system clock source */ while(RCC_GetSYSCLKSource() != 0x00) 这个函数只是配置好系统时钟不是随时改变系统时钟的函数。所以有待做实验研究此处 关闭外设:在运行模式下,任何时候都可以通过停止为外设和内存提供时钟(HCLK和PCLKx)来减少功耗。通过设置AHB外设时钟使能寄存器(RCC_AHBENR)、APB2外设时钟使能寄存器 (RCC_APB2ENR)和APB1外设时钟使能寄存器(RCC_APB1ENR)来开关各个外设模块的时钟。

STM32定时时间的计算

STM32 定时器定时时间的计算 假设系统时钟是72Mhz,TIM1 是由PCLK2 (72MHz)得到,TIM2-7是由 PCLK1 得到关键是设定时钟预分频数,自动重装载寄存器周期的值/*每1秒发生一次更新事件(进入中断服务程序)。RCC_Configuration()的SystemInit()的 RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2表明TIM3CLK为72MHz。因此,每次进入中断服务程序间隔时间为: ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+7199)/72M)*(1+9999)=1秒。定时器的基本设置如下: 1、TIM_TimeBaseStructure.TIM_Prescaler = 7199;//时钟预分频数例如:时钟频率=72/(时钟预分频+1)。 2、TIM_TimeBaseStructure.TIM_Period = 9999; // 自动重装载寄存器周期的值(定时时间)累计 0xFFFF个频率后产生个更新或者中断(也是说定时时间到)。 3、TIM_TimeBaseStructure.TIM_CounterMode=TIM1_CounterMode_Up; //定时器模式向上计数。 4、 TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //时间分割值。 5、 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);//初始化定时器2。 6、 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); //打开中断溢出中断。 7、 TIM_Cmd(TIM2, ENABLE);//打开定时器或者: TIM_TimeBaseStructure.TIM_Prescaler = 35999;//分频35999,72M/ (35999+1)/2=1Hz 1秒中断溢出一次。 8、 TIM_TimeBaseStructure.TIM_Period = 2000; //计数值2000 ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+35999)/72M)*(1+2000)=1秒。 9、注意使用不同定时器时,要注意对应的时钟频率。例如TIM2对应的是APB1,而TIM1对应的是APB2 通用定时器实现简单定时功能 以TIME3为例作为说明,简单定时器的配置如下: void TIM3_Config(void) { TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure; TIM_DeInit(TIM3); //复位TIM2定时器 /* TIM2 clock enable [TIM2定时器允许]*/ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); /* TIM2 configuration */ TIM_TimeBaseStructure.TIM_Period = 49; // 0.05s定时 TIM_TimeBaseStructure.TIM_Prescaler = 35999; // 分频36000 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 时钟分割TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数方向向上计数 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); /* Clear TIM2 update pending flag[清除TIM2溢出中断标志] */

stm32学习之系统时钟

stm32学习之系统时钟 STM32入门学习心得 — 系统时钟 STM32的时钟与单片机相比要复杂的多,它能够对每一个外设以及IO口进行时钟的设置,这是单片机是无法和它比拟的,所以正确的理解和灵活的运用stm32的时 钟是很重要的。 STM32有3个不同的时钟源可以用于驱动系统时钟(SYSCLK),分别为: HSI振荡器时钟(内部高速时钟)。 HSE振荡器时钟(外部高速时钟)。 PLL时钟。 STM32还有两个二级时钟用来驱动独立的看门狗和选择性的驱动RTC。分别为:32KHZ低速内部RC振荡器(LSI RC)用来驱动独立的开门狗和选择性的驱动用于从停止/ 待机模式自动唤醒的RTC。 32.768kHz低速外部晶体振荡器(LSE 晶体振荡器)用来选择性的驱动实时时钟。 注:每个时钟源在使用时都可以独立的打开/关掉,以节省功耗。 在这里我们可以通过框图来直观的理解STM32的系统时钟。系统时钟框图如图1所示。 图一系统框图

通过图一不妨来详细分析下系统各个部分的时钟。 HSI时钟 HSI时钟通过一个8MHz的内部RC振荡器产生,并且可以被直接用作系统时钟,或者经过2倍频后作为PLL的输出作为SYSCLKS时钟。在系统复位时,HSI振荡器被选择默认的系统SYSCLKS时钟。内部时钟的缺点是频率的精确度没有外部晶体振荡器的高。 程序实现(所有程序都是基于固件库): 直接作为SYSCLKS时钟:RCC_DeInit();系统默认 经过PLL输出作为SYSCLKS时钟: RCC_DeInit(); SystemInit (); 可以在固件库中的stm32f10x_rcc.c文件中通过开放宏定义来选择系统时 钟经过倍频后的频率,固件库默认为72MHZ。如图2所示: 如图2所示 HSE时钟 高速外部时钟信号可以通过2个可能的时钟源产生。分别为: HSE 外部晶体/陶瓷共振器。 HSE 外部时钟。 外部时钟源 在该种模式下,必须提高外部时钟源,外部时钟源可以达到25MHz,用户可以通过设置时钟控制寄存器(RCC_CR)中的HSEBYP和HSEON 位选择该模式。占空必50%的外部时钟信号(方波,正弦波,三角波)必须用来驱动OSC_IN引脚,同时OSC_OUT引脚置于高 阻态。 外部晶体振荡器/陶瓷共振器(HSE晶体) 4~16MHz的外部振荡器具有能够在主时钟上产生一个非常精确地速率的优 点。 时钟控制寄存器(RCC_CR)中的HSERDY标志指示了高速外部振荡器是否是稳定的,在启动时,时钟直到硬件设置了该标志位才释放,如果在时钟中断寄存器(RCC_CR)中打开了, 就会产生一个中断。 HSE晶体振荡器可以通过时钟控制寄存器(RCC_CR)中的HSEON位来打开或 禁止。 程序实现(所有程序都是基于固件库): 1.直接作为SYSCLKS时钟: RCC_DeInit(); /*************************外部时钟设置 *****************************/

STM32入门篇之通用定时器彻底研究

STM32入门篇之通用定时器彻底研究 STM32的定时器功能很强大,学习起来也很费劲儿,本人在这卡了5天才算看明白。写下下面的文字送给后来者,希望能带给你点启发。在此声明,本人也是刚入门,接触STM32不足10天,所以有失误的地方请以手册为准,欢迎大家拍砖。 其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册…}才搞明白的!所以接下来我以手册的顺序为主线,增加一些自己的理解,并通过11个例程对TIMER 做个剖析。实验环境是STM103V100的实验板,MDK3.2 +Library2.东西都不怎么新,凑合用…… TIMER主要是由三部分组成: 1、时基单元。 2、输入捕获。 3、输出比较。 还有两种模式控制功能:从模式控制和主模式控制。 一、框图 让我们看下手册,一开始是定时器的框图,这里面几乎包含了所有定时器的信息,您要是能看明白,那么接下来就不用再看别的了… 为了方便的看图,我对里面出现的名词和符号做个注解: TIMx_ETR:TIMER外部触发引脚ETR:外部触发输入 ETRP:分频后的外部触发输入ETRF:滤波后的外部触发输入 ITRx:内部触发x(由另外的定时器触发) TI1F_ED:TI1的边沿检测器。 TI1FP1/2:滤波后定时器1/2的输入 TRGI:触发输入TRGO:触发输出 CK_PSC:应该叫分频器时钟输入 CK_CNT:定时器时钟。(定时周期的计算就靠它) TIMx_CHx:TIMER的输入脚TIx:应该叫做定时器输入信号x

ICx:输入比较x ICxPS:分频后的ICx OCx:输出捕获x OCxREF:输出参考信号 关于框图还有以下几点要注意: 1、影子寄存器。 有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装 载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存 器,称为shadow register(影子寄存器);(详细请参考版主博客 https://www.360docs.net/doc/301410464.html,/STM32/401461/message.aspx) 2、输入滤波机制 在ETR何TIx输入端有个输入滤波器,它的作用是以采样频率 Fdts来采样N次进行滤波的。(具体也请参考版主博客 https://www.360docs.net/doc/301410464.html,/STM32/263170/message.aspx ) 3、输入引脚和输出引脚是相同的。 二、时基单元 时基单元有三个部分:CNT、PSC、ARR。CNT的计数方式分三种:向上、向下、中央对齐。通俗的说就是0—ARR、ARR—0、0—(ARR-1)—ARR—1. 三、时钟源的选择 这个是难点之一。从手册上我们看到共有三种时钟源: 1、内部时钟。 也就是选择CK_INT做时钟,这个简单,但是有一点要注意,定 时器的时钟不是直接来自APB1或APB2,而是来自于输入为

stm32时钟树分析

void RCC_Configuration(void) { /* RCC system reset(for debug purpose) */ RCC_DeInit(); /* Enable HSE */ RCC_HSEConfig(RCC_HSE_ON);

/* Wait till HSE is ready */ HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(HSEStartUpStatus == SUCCESS) { /* Enable Prefetch Buffer */ FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); /* Flash 2 wait state */ FLASH_SetLatency(FLASH_Latency_2); /* HCLK = SYSCLK */ RCC_HCLKConfig(RCC_SYSCLK_Div1); /* PCLK2 = HCLK */ RCC_PCLK2Config(RCC_HCLK_Div1); /* PCLK1 = HCLK/2 */ RCC_PCLK1Config(RCC_HCLK_Div2); /* PLLCLK = 8MHz * 9 = 72 MHz */ RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); /* Enable PLL */ RCC_PLLCmd(ENABLE); /* Wait till PLL is ready */ while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) { } /* Select PLL as system clock source */ RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /* Wait till PLL is used as system clock source */ while(RCC_GetSYSCLKSource() != 0x08) { } } }

基于STM32-RTC实时时钟

1 课程设计内容 本文将利用ALIENTEK 2.8寸TFTLCD模块来显示日期时间,实现一个简单的时钟。 2 STM32芯片简介 2006年ARM公司推出了基于ARMv7架构的Cortex系列的标准体系结构,以满足各种技术的不同性能要求,包含A、R、M三个分工明确的系列[1]。其中,A系列面向复杂的尖端应用程序,用于运行开放式的复杂操作系统;R系列适合实时系统;M系列则专门针对低成本的微控制领域。Cortex-M3是首款基于ARMv7-M体系结构的32位标准处理器,具有低功耗、少门数、短中断延迟、低调试成本等众多优点。它是专门为在微控制系统、汽车车身系统、工业控制系统和无线网络等对功耗和成本敏感的嵌入式应用领域实现高系统性能而设计的,它大大简化了编程的复杂性,集高性能、低功耗、低成本于一体[2]。半导体制造厂商意法半导体ST公司是ARM公司Cortex-M3内核开发项目一个主要合作方,2007年6月11日ST公司率先推出了基于Cortex-M3内核的STM32系列MCU。本章将简要介绍STM32系列处理器的分类、内部结构及特点,并对本设计中重点应用的通用定时器做进一步分析。 2.1 STM32 RTC时钟简介 STM32 的实时时钟(RTC)是一个独立的定时器。STM32 的 RTC 模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。 RTC 模块和时钟配置系统(RCC_BDCR 寄存器)是在后备区域,即在系统复位或从待机模式唤醒后 RTC 的设置和时间维持不变。但是在系统复位后,会自动禁止访问后备寄存器和 RTC,以防止对后备区域(BKP)的意外写操作。所以在要设置时间之前,先要取消备份区域(BKP)写保护。 RTC 的简化框图,如图 20.1.1 所示:

STM32通用定时器

STM32通用定时器 一、定时器的基础知识 三种STM32定时器区别 通用定时器功能特点描述: STM3 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能特点包括: 位于低速的APB1总线上(APB1) 16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。 16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。 4 个独立通道(TIMx_CH1~4),这些通道可以用来作为: ①输入捕获 ②输出比较 ③ PWM 生成(边缘或中间对齐模式) ④单脉冲模式输出 可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。 如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器): ①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ③输入捕获 ④输出比较 ⑤支持针对定位的增量(正交)编码器和霍尔传感器电路 ⑥触发输入作为外部时钟或者按周期的电流管理 STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。 STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。 定时器框图:

倍频得到),外部时钟引脚,可以通过查看数据手册。也可以是TIMx_CHn,此时主要是实现捕获功能; 框图中间的时基单元 框图下面左右两部分分别是捕获输入模式和比较输出模式的框图,两者用的是同一引脚,不能同时使用。

stm32时钟详解

在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。 其实是四个时钟源,如下图所示(灰蓝色),PLL是由锁相环电路倍频得到PLL时钟。 ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。 ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。 ③、LSI是低速内部时钟,RC振荡器,频率为40kHz。 ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。 ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。 STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。 另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。 系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用: ①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。 ②、通过8分频后送给Cortex的系统定时器时钟。 ③、直接送给Cortex的空闲运行时钟FCLK。 ④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。 ⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。 在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。 需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。

STM32时钟简述教学文稿

在STM32F4中,有5个重要的时钟源,为 HSI、 HSE、 LSI、 LSE、 PLL。其中 PLL 实际是分为两个时钟源,分别为主 PLL 和专用 PLL。从时钟频率来分可以分为高速时钟源和低速时钟源,在这 5 个中 HSI, HSE 以及 PLL 是高速时钟, LSI 和 LSE 是低速时钟。从来源可分为外部时钟源和内部时钟源,外部时钟源就是从外部通过接晶振的方式获取时钟源,其中 HSE 和LSE 是外部时钟源,其他的是内部时钟源。下面我们看看 STM32F4 的这 5 个时钟源,我们讲解顺序是按图中红圈标示的顺序: ①、LSI 是低速内部时钟,RC 振荡器,频率为32kHz 左右。供独立看门狗和自动唤醒单元使用。 ②、LSE 是低速外部时钟,接频率为32.768kHz 的石英晶体。这个主要是RTC 的时钟源。 ③、HSE 是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~26MHz。核心板接的是8M 的晶振。HSE 也可以直接做为系统时钟或者PLL 输入。 ④、HSI 是高速内部时钟,RC 振荡器,频率为16MHz。可以直接作为系统时钟或者用作PLL输入。 ⑤、PLL 为锁相环倍频输出。STM32F4 有两个PLL:

1)主PLL(PLL)由HSE 或者HSI 提供时钟信号,并具有两个不同的输出时钟。第一个输出PLLP 用于生成高速的系统时钟(最高168MHz) 第二个输出PLLQ 用于生成USB OTG FS 的时钟(48MHz),随机数发生器的时钟和SDIO时钟。 2)专用PLL(PLLI2S)用于生成精确时钟,从而在I2S 接口实现高品质音频性能。

相关文档
最新文档