第七节动能和动能定理

第七节动能和动能定理
第七节动能和动能定理

第七节动能和动能定理

一、引入新课

复习动能概念、功与速度关系来引入 二、新课教学

提问:物体的动能大小和哪些因素有关呢?你有什么方法可以证明?

引导学生分组实验。

归纳:物体能够对外做功的本领越大,物体的能量就越大,实验中钢球的质量和速度越大,对外做功的本领越大,说明动能和物体的质量和速度有关。

(一)、探究动能的表达式:

1、公式:22

1mv E k =

提问:动能的大小由什么决定?它是标量还是矢量? 2、说明:

①动能是标量,且总为正值,由物体的速率和质量决定,与运动方向无关; 提问:动能的单位? ②动能的单位:焦(J ) 1J =1N·m =1kg·m 2/s 2

学生练习: 随堂练习1:人和猎豹一起奔跑,质量100kg 、以8m/s 的速度奔跑的猎豹和质量60kg 、短时间内以10m/s 的速度奔跑的人相比,试问谁具有的动能大? 过渡:上一节课我们研究了做功和物体速度变化的关系,两者之间有什么关系? (二)、探究动能定理 学生分组协作,完成合作探究卡探究动能定理部分。 设计情景1:如图所示,某物体的质量为m ,在与运动方向相同的恒力F 的作用下发生一段位移l ,速度由v 1增加到v 2。求做功和速度变化的关系?

学生回答:物体由于运动而具有的能量叫动能。

学生根据合作探究卡的探究动能的影响因素试验的要求和步骤分组实验,

学生回答:物体的质量和速度越大,它的动能就越大

学生回答:动能的大小由物体的质量和速率决定。

学生讨论:动能是标量 学生回答:动能的单位和功的单位相同。

学生自主完成,加深对动能的理解。

学生回答:力对初速度为零的物体所做的功与物体速度的二次方成正比。

根据牛顿第二定律:ma F = ……①

根据运动学公式:

al v v 22122=-…②

开门见山,直接点题。

在初中所学内容的基础上深入探究,激发学生的学习兴趣。 学生直接参与探究过程,增加感性认识。

深化对前一节课所学内容的理解,激发学生的探究兴趣。

让学生感受理论探究的过程,在学生求解的过程中要适度巡视,加以指导。

应用学生的解答过程,肯定学生

选择学生的答案,投影学生的解答过程,归纳,总结。根据动能定义式12k k E E W -=

拓展思考:考虑摩擦时W 的意义

设计情景2:若在[情景1]中水平面是粗糙的,且摩擦因数为μ,则外力做功与动能变化的关系又如何?

二、动能定理

1、表述:力在一个过程中对物体做的功,等于物体在这个过程动能的变化。

2、公式:12k k E E W -=

引导学生完成例题1。 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为L=5.3×102m 时,达到起飞的速度 v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍,求飞机受到的牵引力。 探究运用动能定理的范围和步骤。 确定研究对象:滑块 分析研究过程:滑块加速过程 分析受力:重力、支持力、牵引力和滑动摩檫力 分析做功情况:牵引力和滑动摩檫力 做功 分析动能变化:初动能01=k E

末动能222

1mv E k =

根据动能定理列出方程,求解。 外力F 做功:Fl W = …………③

由①②③得:

21222

121mv mv W -=

学生推导讨论,W 为合力做的功。

学生回答提出的问题,自主完成例题2. 学生练习用牛顿运动定律和运动学公式分别求解 学生回答:动能定理不涉及物体运动过程中的加速度和时间,应用比较方便

的探究过程。让学生体会探究的乐趣和喜悦。

在探究的基础上进一步激发学生的科学思维能力。

通过问题的回答,了解解题的基本思路

通过问题和实际事例,增加学生对知识的感性认识和横向联系,突破教学难

通过学生的思考,和以前所学的思维方法有机结合,突破难点。

学习用理论指导实践的方法,培养细致严谨的科学态度。

12321-....k k n E E W W W W =++++

思考:如果用牛顿运动定律和运动学公式是否可以求解?

引导比较两种解法。

提问:通过两个例题,你是否可以归纳出应用动能定理解题的步骤?

三、应用动能定理解题的步骤

1、确定研究对象

2、确定研究过程

3、分析物体的受力和各力的做功情况

4、确定初末状态的动能

5、应用动能定理列方程求解

6、检验

学生完成课堂练习1、

2013年4月20日8点02分四川雅安发生7.0级地震,一住高层上的市民降落伞逃生,假设该市民质量为60kg,刚刚拉开伞时的速度为40m/s,拉开伞后受到与速度相关的空气阻力影响,下落200m后,速度变为20m/s,求该过程中空气阻力做的功。

课堂练习2:

如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R。一质量为m的物体与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C处停止,那么,物体在AB段克服摩擦力做的功为多少?

四、作业:

《问题与练习》第3、4、题练一练,做一做,想一想

学生根据所学

的知识,当堂巩

固,培养应用规

律解决问题的能

力,加强对知识

和规律的理解。

同时拓展学生的

认知空间。

加深对课堂知

识的巩固和理解

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

高三物理《动能和动能定理》教材分析

高三物理《动能和动能定理》教材分析高三物理《动能和动能定理》教材分析 考点18 动能和动能定理 考点名片 考点细研究:本考点的命题要点有:(1)动能及动能定理;(2)应用动能定理求解多过程问题;(3)应用动能 定理求解多物体的运动问题。其中考查到的如:2016年 全国卷第20题、2016年浙江高考第18题、2016年天津高考第10题、2016年四川高考第1题、2015年全国卷第17题、2015年海南高考第4题、2015年天津高考第10题、2015年山东高考第23题、2015年浙江高考第23题、2014年福建高考第21题、2014年大纲全国卷第19题、2014年北京高考第22题等。 备考正能量:本考点内容命题题型非常全面,既有 选择题、又有实验题、也有计算题,以中等试题难度为主。常以生产、科技发展为命题背景,可与动力学结合,也可以与电磁学结合考查。预计今后依然会延续这些特点。 一、基础与经典 1.NBA篮球赛非常精彩,吸引了众多观众。比赛中 经常有这样的场面:在临终场0.1s的时候,运动员把球投出且准确命中,获得比赛的胜利。若运动员投篮过程

中对篮球做功为W,出手高度为h1,篮筐的高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能为( ) A.mgh1+mgh2-WB.mgh2-mgh1-W C.W+mgh1-mgh2D.W+mgh2-mgh1 答案 C 解析根据动能定理,球获得初动能Ek0的过程有W =Ek0-0,球离开手到进筐时的过程有-mg(h2-h1)=Ek-Ek0,得篮球进筐时的动能Ek=W+mgh1-mgh2,只有选项C正确。 2.如图所示,质量为m的物块,在恒力F的作用下,沿光滑水平面运动,物块通过A点和B点的速度分别是vA和vB,物块由A运动到B点的过程中,力F对物块做的功W为( ) A.Wmv-mv B.W=mv-mv C.W=mv-mv D.由于F的方向未知,W无法求出 答案 B 解析对物块由动能定理得:W=mv-mv,故选项B 正确。 3.质量为10kg的物体,在变力F作用下沿x轴做直

高考物理易错题专题三物理动能与动能定理(含解析)及解析

高考物理易错题专题三物理动能与动能定理(含解析)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)选手放开抓手时的速度大小; (2)选手在传送带上从A运动到B的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】 试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02, v1=5m/s (2)设选手放开抓手时的水平速度为v2,v2=v1cosθ① 选手在传送带上减速过程中 a=-μg② v=v2+at1③④ 匀速运动的时间t2,s-x1=vt2⑤ 选手在传送带上的运动时间t=t1+t2⑥ 联立①②③④⑤⑥得:t=3s (3)由动能定理得W f=mv2-mv22,解得:W f=-360J 故克服摩擦力做功为360J. 考点:动能定理的应用 2.如图所示,小滑块(视为质点)的质量m= 1kg;固定在地面上的斜面AB的倾角 =37°、长s=1m,点A和斜面最低点B之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O点另一端恰好在B点。认为滑块通过点B前、后速度大小不变;最大静摩擦力等于滑动摩擦力。取g=10m/s2,sin37° =0.6,cos37° =0.8,不计空气阻力。(1)若设置μ=0,将滑块从A点由静止释放,求滑块从点A运动到点B所用的时间。(2)若滑块在A点以v0=lm/s的初速度沿斜面下滑,最终停止于B点,求μ的取值范围。

高中物理人教版必修2教案:第七章第7节 动能和动能定理1

7.动能和动能定理 三维目标 知识与技能 1.知道动能的定义式,能用动能的定义式计算物体的动能; 2.理解动能定理反映了力对物体做功与物体动能的变化之间的关系; 3.能够理解动能定理的推导过程,知道动能定理的适用条件; 4.能够应用动能定理解决简单的实际问题。 过程与方法 1.运用归纳推导方式推导动能定理的表达式; 2.通过动能定理的推导理解理论探究的方法及其科学思维的重要意义; 3.通过对实际问题的分析,对比牛顿运动定律,掌握运用动能定理分析解决问题的方法及其特点。 情感、态度与价值观 1.通过动能定理的归纳推导培养学生对科学研究的兴趣; 2.通过对动能定理的应用感悟量变(过程的积累)与质变(状态的改变)的哲学关系。 教学重点 1.动能的概念; 2.动能定理的推导和理解。 教学难点 动能定理的理解和应用。 教学过程 [新课导入] 在本章第一节《追寻守恒量》中,已经知道物体由于运动而具有的能叫动能。通过上节的探究我们已经了解力所做的功与物体所获得的速度的关系。那么,物体的动能的表达式究竟是什么?进一步探究外力对物体做的功与物体动能变化的定量关系。 [新课教学] 一、动能的表达式 1.动能 物体由于运动而具有的能叫动能。 2.与动能有关的因素 你能通过实验粗略验证一下物体的动能与哪皯因素有关吗? 方案:让滑块从光滑的导轨上滑下与静止的木块相碰,推动木块做功。 实验:(1)让同一滑块从不同的高度滑下;(2)让质量不同的滑块从同一高度滑下。

现象:(1)高度大时滑块把木块推得远,对木块做的功多;(2)质量大的滑块把木块推得远,对木块做的功多。 结果:(1)高度越大,滑块滑到底端时速度越大,在质量相同的情况下,速度越大,对外做功的本领越强,说明滑块由于运动而具有的能量越多。(2)滑块从相同的高度滑下,具有的末速度是相同的,之所以对外做功的本领不同,是因为滑块的质量不同,在速度相同的情况下,质量越大,滑块对外做功的能力越强,也就是说滑块由于运动而具有的能量越多。 物体的质量越大、速度越大,物体的动能越大。 3.表达式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功的多少来定量地确定动能。外力对物体做功使物体运动而具有动能,下面我们就通过这个途径研究一个运动物体的动能是多少。 如图所示,一个物体的质量为m ,初速度为v 1,在与运动方向相同 的恒力F 的作用下发生一段位移l ,速度增大到v 2,则: ①力F 对物体所做的功多大? ②物体的加速度多大? ③物体的初速、末速、位移之间有什么关系? ④结合上述三式你能综合推导得到什么样的式子? 解析:力对物体做的功为:W =Fl 。 根据牛顿第二定律有:F =ma 。 根据运动学公式有:2 2 22212 1 22v v v v al l a --=?=。 把F 、l 的表达式代入W =Fl ,可得F 做的功:22 212v v W Fl ma a -==?,也就是 22 211122 W mv mv =- 从这个式子可以看出,“21 2 mv ”很可能是一个具有特定意义的物理量。因为这个量在过程终了时和 过程开始时的差,正好等于力对物体的功,所以“212 mv ”应该就是我们寻找的动能表达式。上节的探究已经表明,力对初速度为零的物体所做的功与物体速度的二次方成正比,这也印证了我们的想法。于是,我们说质量为m 的物体,以速度v 运动时的动能是 21 2 K E mv = (1) 物体的动能等于物体质量与物体速度的二次方的乘积的一半。 4.单位 从动能的表达式可以看出,动能的单位由质量和速度的单位来确定,在SI 制中,它的单位与功的单 m m F v 1 a a F v 2 l

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

第七节 动能和动能定理解析版

第七节动能和动能定理 【基础题】 1.人在距地面h高处抛出一个质量为m的小球,落地时小球的速度为v,不计空气阻力,人对小球做功是() A.mv2 B.mgh+mv2 C.mgh﹣mv2 D.mv2﹣mgh 【答案】D 【解析】对全过程运用动能定理得:mgh+W= ﹣0 解得:W= 故D正确,A、B、C错误.故选D. 【考点精析】本题主要考查了动能定理的综合应用的相关知识点,需要掌握应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷才能正确解答此题. 2. 如图甲所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x 轴方向运动,拉力F随物块所在位置坐标的变化关系如图乙所示,图线为半圆。则小物块运动到处时的动能为() A. B. C. D. 【答案】C 【解析】本题考查了动能定理的含义及其理解,通过F-x图像得到总功的表达式。根 动能改变据F-x图像的面积的含义代表其做功,且因为动能定理,合外力做功等于其 量,即末状态的动能大小等于合外力做功即面积大小故选:C

3.质量为60kg的体操运动员,做“单臂大回环”,用一只手抓住单杠,伸展身体,以单杠为轴做圆周运动.如图所示,此过程中,运动员到达最低点时手臂受的拉力至少应为多少?(忽略空气阻力,g=10m/s2)() A.600 N B.2400 N C.3 000 N D.3 600 N 【答案】C 【解析】设人的长度为l,人的重心在人体的中间.最高点的最小速度为零,根据动能定理得:.解得最低点人的速度 v= . 根据牛顿第二定律得,,解得F=5mg=3000N.故C正确,A、B、D错误.故选C. 【考点精析】根据题目的已知条件,利用向心力和动能定理的综合应用的相关知识可以得到问题的答案,需要掌握向心力总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小;向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力;应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷. 4.如图所示,质量相同的物体分别自斜面AC和BC的顶端由静止开始下滑,物体与斜面间的动摩擦因数都相同,物体滑到斜面底部C点时的动能分别为E k1和E k2,下滑过程中克服摩擦力所做的功分别为W1和W2,则()

二项式定理公开课教案

二项式定理公开课教案 1、重点:二项式定理的发现、理解和初步应用。 2、难点:二项式定理的发现。 三、教学过程 1、情景设置 问题1:若今天是星期一,再过30天后是星期几?怎么算? 预期回答:星期三,将问题转化为求“30被7除后算余数”是多少。 问题2:若今天是星期一,再过)(8* ∈N n n 天后是星期几?怎么算? 预期回答:将问题转化为求“n n )17(8+=被7除后算余数”是多少,也就是研究)()(*∈+N n b a n 的展开式是什么?这就是本节课要学的内容,学完本课后,此题就不难求解了。2、新授 第一步:让学生展开 b a b a +=+1)( 2222)(b ab a b a ++=+; 32232333)()()(b ab b a a b a b a b a +++=++=+; 43223434464)()()(b ab b a b a a b a b a b a ++++=++=+ 5432234555510105)()()(b ab b a b a b a a b a b a b a +++++=++=+ 教师将以上各展开式的系数整理成如下模型 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 问题1:请你找出以上数据上下行之间的规律。 预期回答:下一行中间的各个数分别等于上一行对应位置的相邻两数之和。 问题2:以5 )(b a +的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。

预期回答:①展开式每一项的次数按某一字母降幂排列、另一字母升幂排列,且两个字母的和等于乘方指数;②展开式的项数比乘方指数多1项;③展开式中第二项的系数等于乘方指数。 初步归纳出下式: ()()()()()n n n n n n b b a b a b a a b a +++++=+--- 33221)( (※) (设计意图:以上呈现给学生的由系数排成的“三角形”,起到了“先行组织者”的作用,虽然,教师将此“三角形”模型以定论的形式呈现给学生,但是,它毕竟不是最后的结果,而是一种寻找系数规律的有效工具,便于学生将新的学习材料同自己原有的认知结构联系起来,并纳入到原有认知结构中而出现意义。这样的学习是有意义的而不是机械的,是主动建构的而不是被动死记的心理过程。)练习:展开7 )(b a + 教师作阶段性评价,告诉学生以上的系数表是我国宋代数学家杨辉的杰作,称为杨辉三角形,这项发明比欧洲人帕斯卡三角早400多年。你们今天做了与杨辉同样的探索,以鼓励学生探究的热情,并激发作为一名文明古国的后代的民族自豪感和爱国热情。第二步:继续设疑 如何展开100) (b a +以及)()(*∈+N n b a n 呢? (设计意图:让学生感到仅掌握杨辉三角形是不够的,激发学生继续学习新的更简捷 的方法的欲望。) 继续新授 师:为了寻找规律,我们将))()()(()(4b a b a b a b a b a ++++=+中第一个括号中的字母分别记成11,b a ;第二个括号中的字母分别记成22,b a ;依次类推。请再次用多项式乘法运算法则计算:))()()(()(443322114b a b a b a b a b a ++++=+

第7节 动能和动能定理

动能和动能定理 [知识精讲] 知识点1 动能 物体由于运动而具有的能叫动能。动能的大小:E K=mv2/2。动能是标量。 注意:(1)动能是状态量,也是相对量。因为v是瞬时速度,且与参照系的选择有关。 (2)动能是标量,动能和速度的方向无关,如在匀速圆周运动中,瞬时速度虽然是变化的,但是其动能是不变的。 (3)动能有相对性,由于物体的速度是与参照物的选择有关,故可知动能也与参照物的选取有关,即具有相对性。小鸟能在空中把飞机撞坏,充分 说明了这一点。 [例1]以初速度v0竖直上抛一个小球,若不计空气阻力,在上升的过程中,从抛出小球到小球动能减小一半所经历的时间是() A.v0/g B.v0/2g C v0/g D.(/2)v0/g [总结]动能与速度的方向无关.因此该题中,从抛出小球到小球动能减小一半时的速度可能有两个。若在该题中只是问:从抛出小球到小球动能减小一半所经历的时间为多少?则答案应该是两个,即在上升和落回时各有一个。 [变式训练1]关于动能,下列说法中正确的是() ①公式E K=mv2/2中的速度v是物体相对于地面的速度②动能的大小由物体的质量和速率决定,与物体运动的方向无关③物体以相同的速率向东和向西运动,动能的大小相等但方向不同④物体以相同的速率做匀速直线运动和曲线运动,其动能不同 A.①② B.②③ C.③④ D.①④ 知识点2 动能定理 (1)内容:合力所做的功等于物体动能的变化 (2)表达式:W合=E K2-E K1=ΔE或W合= mv22/2- mv12/2 。其中E K2表示一个过程的末动能mv22/2, E K1表示这个过程的初动能mv12/2。 (3)物理意义:动能地理实际上是一个质点的功能关系,即合外力对物体所做的功是物体动能变化的量度,动能变化的大小由外力对物体做的总功多少来决定。动能定理是力学的一条重要规律,它贯穿整个物理教材,是物理课中的学习重点。 说明:1.动能定理的理解及应用要点 (1)动能定理的计算式为标量式,v为相对与同一参考系的速度。 (2)动能定理的研究对象是单一物体,或者可以看成单一物体的物体系. (3)动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作 用。只要求出在作用的过程中各力做功的多少和正负即可。这些正是动能定 理解题的优越性所在。 (4)若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考虑,

高中物理《动能和动能定理(3)》优质课教案、教学设计

7.动能和动能定理 教学目标】 1、知识与技能 ①.知道动能的定义式,会用动能的定义式进行计算; ②.理解动能定理及其推导过程,知道动能定理的适用范围。 2 、过程与方法 ①.运用归纳推导方式推导动能定理的表达式;②.对比分析动力学知识 与动能定理的应用。 3、情感态度与价值观 通过动能定理的归纳推导,培养学生对科学研究的兴趣。教学重难点】 1 、重点:动能的概念和表达式。 2、难点:动能定理的理解和应用。 授课类型】新授课 主要教学方法】讲授法 直观教具与教学媒体】多媒体投影、ppt 课件、黑板、粉笔课时安排】 1 课时【教学过程】

一、复习引入 通过本章第一节伽利略理想斜面实验复习重力势能的表达式和动能的定义。 重力势能:E P mgh 动能:物体由于运动而具有的能量。例如:跑动的人、下落的重物。 二、新课教学 思考:物体的动能与哪些量有关? 情景1 :让滑块A 从光滑的导轨上滑下,与木块B 相碰,推动木块做功。A 滑下时所处的高度越高,碰撞后B 运动的越远。 情景2 :质量不同的滑块从光滑的导轨上同一高度滑下,与木块B 相碰,推动木块做功。滑块质量越大,碰撞后木块运动的越远。 师:根据以上两个情景,说明物体动能的大小与物体的速度和质量有关,且随着速度和质量的增大而增大。所以动能的表达式应该满足这样的特征。

另外,物体能量的变化一定伴随着力对物体做功,所以我们还是从 力对物体做功来探究物体动能的表达式。 (一)动能的表达式首先我们来看这样一个问题。设物体的质量为m ,在与运动方向 相同的恒定外力 F 的作用下发生一段位移所 示。试用牛顿运动定律和运动学公式,推导出力 F 对物体做功的表达式(用m 、v1、v2 表示)。 分析:根据牛顿第二定律有 F ma 又根据运动学规律v22v122al 得 v2 2 2a 则力F 对物体所做的功为: 从这个式子可以看出,“12mv2”是一个具有特定意义的物理量,它的特殊意义在于:①与力对物体做的功密切相关;②随着物体质量的增大、 1 2 速度的增大而增大。这满足物体动能的特征,所以“21 mv2” 就是我们要寻 找的动能的表达式,动能用E k 来表示,则 E 1 mv 2 k2 1、定义:物体由于运动而具有的能量; 1 2 2 、表达式:E k 2mv; 3、单位:焦耳,简称焦,有符号J 表示; 2 2 1kg m2/ s21N m 1J w Fl 2 2 2 2 v v m(v v ) 2 1 ma 2 1 2a 2 1 2 1 2 mv2 mv1 2 2 2 1 1) l ,速度由v1 增加到v2,如图

高中物理动能与动能定理解析版汇编

高中物理动能与动能定理解析版汇编 一、高中物理精讲专题测试动能与动能定理 1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2. (1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥ 【解析】 【分析】 【详解】 (1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律 由B 到最高点2211 222 B mv mgR mv =+ 由A 到B : 解得A 点的速度为 (2)若小滑块刚好停在C 处,则: 解得A 点的速度为 若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有2 12 h gt = c s v t = 解得

所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥ 2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求: (1)剪断细绳前弹簧的弹性势能E p (2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E (3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。 【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】 (1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有: 0=m 1v 1-m 2v 2 解得 v 1=10m/s 剪断细绳前弹簧的弹性势能为: 22112211 22 p E m v m v = + 解得 E p =19.5J (2)设m 2向右减速运动的最大距离为x ,由动能定理得: -μm 2gx =0-1 2 m 2v 22 解得 x =3m <L =4m 则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。 设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。取向左为正方向。 根据动量定理得: μm 2gt =m 2v 0-(-m 2v 2)

高中物理人教版必修2第七章第7节动能和动能定理同步练习

高中物理人教版必修2第七章 第7节动能和动能定理同步练习 一、选择题 1.下列关于运动物体所受的合力、合力做功和动能变化的关系,正确的是() A. 如果物体所受的合力为零,那么合力对物体做的功一定为零 B. 如果合力对物体做的功为零,则合力一定为零 C. 物体在合力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零 D. 如果物体的动能不发生变化,则物体所受合力一定是零 【答案】A 【解析】【解答】A、功是力与物体在力的方向上发生的位移的乘积,如果物体所受的合力为零,那么合力对物体做的功一定为零,A符合题意; B、如果合力对物体做的功为零,可能是合力不为零,而是物体在力的方向上的位移为零,B不符合题意; C、竖直上抛运动是一种匀变速直线运动,在上升和下降阶段经过同一位置时动能相等,动能在这段过程中变化量为零,C不符合题意; D、动能不变化,只能说明速度大小不变,但速度方向有可能变化,因此合力不一定为零,D不符合题意.故答案为:A。【分析】力对物体做功必须保证物体在力的方向上发生位移,在一段过程中,总功不为零那物体的动能变化量也不为零,此题比较简单,考查对做功和动能定理的理解和运用。 2.关于公式W=E k2-E k1=ΔE k,下述正确的是() A. 功就是动能,动能就是功 B. 功可以变为能,能可以变为功 C. 动能变化的多少可以用功来量度 D. 功是物体能量的量度 【答案】C 【解析】【解答】功和能(动能)是两个不同的概念,也不可以相互转化,动能定理只是反映了合外力做的功与物体动能变化的关系,即反映了动能变化多少可以由合外力做的功来量度. 故答案为:C。【分析】功是能量转换的量度,而功和能量是完全不同的两个概念,合外力所做的总功等于物体动能的变化量,此题是对动能定理公式的理解。

动能及动能定理典型例题剖析

动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。开始时让连着A 的细线与水平杆的夹角α。现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求: (1)当细线与水平杆的夹角为β(90αβ<

2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离 【答案】(1)160N (2)2 【解析】 【详解】 (1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB = 1 2 mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得: 2B v N mg m R -= 联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N 由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即: 2D v mg m R = 可得:v D =2m/s 设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t , 2R = 12 gt 2 解得:x =0.8m 则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x = = 3.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为 Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与 B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.

物理动能与动能定理模拟试题含解析

物理动能与动能定理模拟试题含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

高考物理动能与动能定理专题训练答案及解析

高考物理动能与动能定理专题训练答案及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高中物理人教版必修2习题:第七章第7节 动能和动能定理

7.7 动能和动能定理 1.关于做功和物体动能变化的关系,不正确的是() A.只有动力对物体做功时,物体的动能增加 B.只有物体克服阻力做功时,它的功能减少 C.外力对物体做功的代数和等于物体的末动能和初动能之差 D.动力和阻力都对物体做功,物体的动能一定变化 2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是(). A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零 B.如果合外力对物体所做的功为零,则合外力一定为零 C.物体在合外力作用下作变速运动,动能一定变化 D.物体的动能不变,所受的合外力必定为零 3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是(). A.乙大B.甲大C.一样大D.无法比较 4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是(). A.动力做的功为零B.动力做的功不为零 C.动力做功与阻力做功的代数和为零 D.合力做的功为零 5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是(). A.物体的动能可能减少B.物体的动能可能增加 C.没有撤去的这个力一定不再做功 D.没有撤去的这个力一定还做功 6.如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是(). A、FR/4 B、3FR/4 C、5FR/2 D、零 7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为() A. 0 B. 8J C. 16J D. 32J 8.质量为 5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s 增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.

高中物理动能与动能定理技巧(很有用)及练习题及解析

高中物理动能与动能定理技巧(很有用)及练习题及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数 μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶ (1)物块通过P 点的速度大小; (2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离; 【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】 (1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则 22y v gh = o sin 60y v v = 整理可得,物块通过P 点的速度 8m/s v = (2)从P 到M 点的过程中,机械能守恒 22 11=(1cos60)+22 o M mv mgR mv + 在最高点时根据牛顿第二定律 2 M N mv F mg R += 整理得 4.8N N F = 根据牛顿第三定律可知,物块对轨道的压力大小为4.8N

(3)从D 到P 物块做平抛运动,因此 o cos 604m/s D v v == 从C 到D 的过程中,根据能量守恒定律 2 12 p D E mgx mv μ=+ C 、 D 两点间的距离 2m x = 2.某小型设备工厂采用如图所示的传送带传送工件。传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=?。工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为7 8 μ= ,所运送的每个工件完全相同且质量2kg m =。传送带长度为6m =L ,不计空气阻力。(工件可视为质点, sin370.6?=,cos370.8?=,210m /s g =)求: (1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能? (2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少? 【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件 cos sin mg mg ma μθθ-= 22v ax = 1v at = 12s t = 得 2m x = 12x vt x ==带 2m x x x =-=相带 由能量守恒定律

相关文档
最新文档