天然气分布规律及页岩气藏特征

天然气分布规律及页岩气藏特征
天然气分布规律及页岩气藏特征

天然气分布规律

辽河盆地的天然气在纵向上和横向上分布都很广泛。在横向上,由于气体形成的途径多于油的形成途径,气体的分布区域远远大于油层的分布;在纵向上,自目前勘探的最深部位到浅层均有气体存在,含气层系多,自下而上发育了太古界、中生界和新生界。特别是第三系自沙四段到明化镇组各层段均有气藏存在,沉积环境和演化史的特征,造成天然气原始组分富烃,贫H:S,少CO:和N2。

辽河断陷广泛发育多期张性断裂,把二级构造带切割成复杂的断块油气田。受构造、断裂活动影响,造成多次油气聚集、重新分配而形成多套含油气层系。

通过天然气的地球化学研究,结合盆地地质背景,天然气有如下分布规律:1.自生自储的天然气垂向分布

以自生自储为主的天然气层,自下而上分布有侏罗系的煤型气、正常凝析油伴生气、正常原油伴生气、生物一热催化过渡带气和生物成因气等。其特征主要是613C,依次变轻。侏罗系煤型气主要分布在深大断裂边缘,仅处于侏罗系发育的地区,如东部凹陷三界泡地区。正常凝析油伴生气主要发育在有机质埋深达到高成熟阶段的地区,主要为各个凹陷的沉降中心部位,如整个盆地的南部地区及东部凹陷北部地区。正常原油伴生气在整个盆地均有分布,主要是与原油伴生的气顶气和溶解气。生物一热催化过渡带气主要发育在有机母质埋深浅于3000m 的未成熟和低成熟阶段,并有良好的盖层发育的地区,部分地区的局部构造亦可形成小型气藏,在盆地的大部分地区均有分布,主要在东部和大民电凹陷的有利地区。生物成因气理论上在整个盆地浅层都存在。因此,只要有良好的储盖组合,在整个盆地中都可望发现生物成因气藏。

总体来看,三个凹陷中,大民屯凹陷以成熟阶段的石油伴生气和生物一热催化过渡带气为主.有少量生物成因气。东部凹陷在不同的构造部位分布不同类型的气体,中生界发育并位于深大断裂边缘的地区,有煤型气和深源气的存在。南、北凹陷深部位置,主要是高成熟和成熟的热催化一热裂解气。而凹陷中部广泛发育生物一热催化过渡带气。在构造高部位有利地区,发育有较可观的生物成因气。西部凹陷主要发育热催化一热裂解气,特别是凹陷南部沉降中心处,热裂解形成的正常凝析油伴生气更为广泛。在有机母质埋深浅的部位发育生物一热催化过渡带气。当然,如果存在有利的储盖组合,生物成因气的存在勿需置疑。

2.断裂构造导致天然气广泛运移

广泛发育的断裂构造,使大多数天然气发生不同程度的运移,造成天然气更加广泛、更加复杂的分布格局。断裂构造或不整合面为气体运移通道,形成新生古储的古潜山油气藏。天然气的垂向和侧向运移,造成了大面积浅层气藏的形成。这部分气体的气源岩母质类型、演化程度,特别是天然气同位素组成特征均与原生气藏一致。最明显的差别是甲烷含量相对高,重烃含量低,愈向浅层,甲烷含量愈高,反映运移的地质特点是由斜坡低部位向高部位甲烷含量升高,由低台阶向高台阶甲烷含量亦升高,如兴隆台气田不同台阶的天然气组分由下到上变干。曙光一高升油气藏也有类似分布。在大民屯凹陷东部浅层及东、西部凹陷的大部分地区浅层干气也是运移形成

3.天然气藏类型分布

构造运动造成了多套油气层和多种类型的储集层,形成了多样的天然气藏类型,根据控制油气的主要因素,可以划分出四大类油气藏:(1)构造油气藏,包括背

斜油气藏、断块油气藏和断鼻油气藏;(2)地层油气藏,包括地层超覆油气藏和地层不整合油气藏;(3)基岩油气藏,包括潜伏凸起油气藏和基岩不整合面油气藏;(4)岩性油气藏,包括砂岩透镜体油气藏和岩性尖灭油气藏。它们在纵向上,自上而下构成气藏一气(油)藏一凝析气油藏一气藏的分布系列。

4.页岩气藏特性

1.1页岩气储层特征

(1)页岩既是源岩,又是储集层,所以页岩气为典型的“自生自储”式气藏

,生气层、储集层、盖层均为其本身。

(2)页岩气储层物性特征为低孔、特低渗。储层孔隙度一般小于10%,含气的有效孔隙度一般只有1%~5%。其基质渗透率极低,一般小于1×10-3m D。(3)页岩储层面积大、范围广,常呈区域性、连续性分布。其埋藏范围从200m (最浅仅为8.2m)到3000m都存在页岩气藏。

(4)页岩气以吸附态和游离态赋存方式为主,极少为溶解态,其中吸附气比例约为20%~85%之间,溶解气比例一般不超过10%。

(5)页岩气成因类型包括生物成因、热成因以及两者的混合成因,其中热成因为页岩气主要成因类型。

1.2页岩气藏的开采特征

(1)含气面积广,资源潜力巨大。据我国国土资源部发布的调查评价结果,我国页岩气资源丰富,陆域页岩气地质资源潜力为134.42万亿m3,适于规模勘探开发。

(2)低产(一般无自然产能)。页岩气藏的储层一般呈低孔、低渗透率的物性特征,气流的阻力比常规天然气大,常规天然气采收率大于60%,而页岩气仅能达到5%~60%。

(3)页岩气井开采寿命长,生产周期长。页岩气在泥页岩地层中主要以游离态和吸附态存在。游离态天然气由于其渗流速度快,所以开采初期高产,但产量下降也快;而吸附态天然气虽然产量相对较低,但其解析、扩散速度慢,所以生产周期长,为页岩气井的稳产期。

(4)采收率变化较大。页岩气采收率范围大致在5%~60%。据美国页岩气资源开发经验证实:地层压力低、埋藏较浅、吸附气含量与有机碳含量低的页岩气藏采收率较高;地层压力高、埋藏较深、吸附气含量高的页岩气藏采收率则较低。(5)勘探开发投资大。

美国页岩气井单井成本大约为300万~800万美元,而在2000—2003年间美国一般的气井单井成本65万美元,陆上油井单井成本是45万美元,页岩气井成本大约分别是二者的5倍和7倍。在中国,一口页岩气井成本,估计在8000万至1亿元人民币。

5.天然气的富集规律

(1)深凹陷周边的圈闭最有利于油气聚集。凹陷既是沉积中心,也是生烃中心,特别是成熟和高成熟的正常原油伴生气和正常凝析油伴生气的生气中心。由于层系中砂质沉积和断裂为油气运移提供了良好的通道,位于凹陷中心边缘的圈闭对油气聚积有利。

(2)构造发育过程控制了不同层段天然气藏的空间分布。演化过程中,断陷盆地的发育造成箕状凹陷,凹陷的西坡呈单面山状节节下掉,深部的有机母质提供了天然气的来源,断裂系统提供了运移通道,而东、西部凹陷在上第三系形成的区域性盖层为气藏的形成创造了良好的储盖条件。因此,在凹陷的不同部位,

天然气藏的储集层位有所不同,斜坡以沙四段油气藏为主,如高升、曙光及西斜坡等部分地区。斜坡下侧部位以沙三段气藏为主,而凹陷中央部位则以沙二一段、沙一段油气藏为主,并有东营组的油气藏存在。

(3)区域性盖层为生物成因气和生物一热催化过渡带气的自生自储提供了有利条件。在整个盆地中,特别是母质类型相对差的地区,大面积的沉积岩进入生物一热催化过渡带的演化阶段,该阶段形成的液态烃相对少,但对气态烃的生成十分有利,而该带亦存在区域性或局部盖层,各类圈闭发育,具备气藏形成条件,这一部分天然气在以往的勘探中常被忽视,而在盆地中这部分气体的产量相当可观,应该作为重要的勘探方向。

页岩气及其成藏条件概述

页岩气及其成藏条件概述 2010年7月,在四川川南地区中国石油集团公司第一口页岩气井(威201井)顺利完成加砂压裂施工任务,标志着中国石油集团公司进入了页岩气的实战阶段。页岩气是一种非常规天然气资源,其储量巨大,有关统计表明全球页岩气资源量约为456.24×1012m3。较早对页岩气进行研究的是美国和加拿大,这些国家在勘探和开发中都取得了丰富的成果,形成了较为完备的页岩气系统理论,进入了快速的发展阶段;而我国对页岩气的勘探开发还在初级阶段,研究相对程度相对落后,但我国页岩气资源量也十分丰富(预测为30-100×1012m3)。据有关专家介绍,随着我国经济发展对油气资源的需求,页岩气将是我国今后油气资源勘探和开发的重点。 1 页岩气及其特点 1.1 页岩气储量 从世界范围来看泥、页岩约占全部沉积岩的60%, 表1 世界较大页岩气储量地区表(×1012m3) 其资源量巨大。全球页岩气资源量为456.24×1012m3,主要分布在北美、中亚和中国、中东和北非、太平洋地区、拉美、前苏联等地区(表1) 在我国的松辽盆地白垩系、江汉盆地的第三系、渤海湾盆地、南华北、柴达木以及酒泉盆地均具有页岩气资源的分布。其中,四川盆地的古生代海相沉积环境形成的富有机碳页岩与美国东部的页岩气盆地发育相似。仅四川川南威远、泸州等地区的页岩气资源潜力(6.8-8.4×1012m3),相当于整个四川盆地的常规天然气资源的总量。 1.2 页岩气及特点 页岩是由固结的粘土级的颗粒物质组成,具有薄页状或薄片层状的一种广泛分布的沉积岩。页岩致密且含有大量的有机质故成暗色(如黑色、灰黑色等)。在大多数的含油气盆地中,页岩既是生成油气的烃原岩也是封存油气的盖层。在某些盆地中,如果在纵向上沉积较厚(几十米-几百米),横向上分布广泛(几百-几万平方公里)的页岩同时作为了烃原岩和储集岩,且在其内聚集了大量的天然气,那就是页岩气。 所谓页岩气是指富含有机质、成熟的暗色泥页岩,因热作用和生物作用而形成了大量储集在页岩裂缝、孔隙中的且以吸附和游离赋存形式为主的天然气。与常规储层天然气相比,页岩气具有独特的特点(表2)。表2 常规储层天然气与页岩气对比表 成因类型热成因、生物成因及石油裂解气热成因、生物成因

水气分离技术中排水管路真空压力分布规律

Distribution rule of vacuum pressure of drain line in water-gas separation technology ZHUGE Ai-jun 1,2,3,LI Biao 4(https://www.360docs.net/doc/3018521410.html,CC Tianjin Port Engineering Institute Co.,Ltd.,Tianjin 300222,China ;2.Key Laboratory of Port Geotechnical Engineering of Ministry of Communication,Tianjin 300222,China ;3.Key Laboratory of Geotechnical Engineering of Tianjin ,Tianjin 300222,China ;https://www.360docs.net/doc/3018521410.html,CC First Harbor Consultants Co.,Ltd.,Tianjin 300222,China ) Abstract :At present,the research on vacuum preloading negative pressure distribution mainly focuses on the attenuation of vacuum pressure in vertical drainage panels,and the transfer law of vacuum pressure in horizontal drainage channels is often ignored.Based on the monitoring of vacuum pressure transfer in blind pipes and filter pipes in vacuum preloading zone with water -gas separation process,the loss of vacuum pressure in horizontal drainage channel is studied.According to the requirements of the code,some suggestions are put forward for the layout of water-gas separation tank and horizontal drainage channel in water-gas separation vacuum preloading.In the construction process of water-gas separation vacuum preloading,the vacuum pressure decreases with the increase of the length of the blind pipe,and the vacuum pressure loss in the early stage of vacuum pumping is larger,showing a non-linear decline;the vacuum pressure loss in the later stage of vacuum pumping is slightly smaller and approximately linear decline;the change of the cross-section area of the blind pipe has little effect on the vacuum pressure loss in the filter tube;when the vacuum preloading treatment of water-gas separation type is used in soft soil foundation,the distance between the water-gas separator and the edge of the reinforcement area should not be greater than 55m.Taking a 100m伊200m reinforcement area as an example,4water-gas separator tanks should be arranged to ensure that the end pressure can meet the requirements of the code.Key words :water-gas separation technology;vacuum preloading;drainage pipeline;vacuum pressure transfer 摘要:目前对真空预压负压分布规律研究主要集中在竖向排水板内的真空压力衰减,真空压力在水平排水通道内的传递规律往往被忽视。通过对采用水气分离工艺的真空预压区内盲管和滤管中的真空压力传递规律的监测,研究了真空压力在水平排水通道内的损失情况,并结合规范要求,针对采用水气分离式真空预压中水气分离罐及水平排水通道布设方式提出了建议。采用水气分离式真空预压施工过程中,真空压力随着盲管长度的增大而降低,抽真空前期真空压力损耗较大,呈非线性递减;抽真空后期真空压力损耗略小,且大致呈线性递减;盲管截面积的改变对滤管中真空压力的损失影响不大;在采用水气分离式真空预压处理软土地基时,水气分离罐距加固区边缘的距离不宜大于55m ,以1个100m伊200m 的加固区为例,宜布置4个水气分离罐,才能保证末端压力能够满足规范的要求。关键词:水气分离技术;真空预压;排水管路;真空压力传递 中图分类号:U655.544.4;TU472.33文献标志码:A 文章编号:2095-7874(2019) 04-0027-06doi :10.7640/zggwjs201904006 水气分离技术中排水管路真空压力分布规律 诸葛爱军1,2,3,李彪4 (1.中交天津港湾工程研究院有限公司,天津300222;2.港口岩土工程技术交通行业重点实验室,天津300222;3.天津市港口岩土工程技术重点实验室,天津 300222;4.中交第一航务工程勘察设计院有限公司,天津300222)中国港湾建设第39卷第4期2019年4月Vol.39No.4 Apr.20190引言 真空预压加固地基过程中通过真空压力的传递使砂垫层和垂直排水通道内的孔隙水压力降低 并排出水和气,在总应力不增加的情况下,通过收稿日期:2019-01-27修回日期:2019-03-09基金项目:天津市自然科学基金(16JCYBJC21700) 作者简介:诸葛爱军(1980—),男,江苏东台人,高级工程师,主要 从事水运工程地基处理等方面的科研及试验检测工作。 E-mail :zhugeaj@https://www.360docs.net/doc/3018521410.html,

页岩气特点及成藏机理

页岩气特点及成藏机理 ---陈栋、王杰页岩气作为一种重要的非常规油气资源,随着能源资源的日益匮乏,作为传统天然气的有益补充,其重要性已经日益突出。随着国家新一轮页岩气勘探开发部署的大规模展开,正确认识和掌握页岩气的成因、成藏条件等知识,对于今后从事页岩气现场录井的工作人员提高录井质量具有较好的指导意义。 1.概况 页岩气(shale gas)是赋存于富有机质泥页岩及其夹层中,以吸附和游离状态为主要存在方式的非常规天然气,成分以甲烷为主,与“煤层气”、“致密气”同属一类。其形成和富集有着自身独特的特点,往往分布在盆地内厚度较大、分布较广的页岩烃源岩地层中。 2.特点 2.1 页岩气是主体上以吸附或游离状态存在于暗色泥页岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段天然气主体上以游离相态(大约50%)存在于裂缝、孔隙及其它储集空间;以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩地层中为天然气生成之后,在源岩层内的就近聚集表现为典型的原地

的有利目标。页岩气的资源量较大但单井产量较小,美国页岩气井的单井采气量为2800-28000m3/d。 2.5 在成藏机理上具有递变过渡的特点,盆地内构造较深部位是页岩气成藏的有利区,页岩气成藏和分布的最大范围与有效气源岩的面积相当。 2.6 原生页岩气藏以高异常压力为特征,当发生构造升降运动时,其异常压力相应升高或降低,因此页岩气藏的地层压力多变。 2.7 页岩气开发具有开采寿命长和生产周期长的优点—-大部分产气页岩分布范围广、厚度大,且普遍含气,使得页岩气井能够长期地稳定产气。但页岩气储集层渗透率低,开采难度较大。 3.成因 通过对页岩气组分特征、成熟度特征分析,页岩气是连续生成的生物化学成因气、热成因气或两者的混合。生物成因气是有机物在低温下经厌氧微生物分解作用形成的天然气;热成因气是有机质在较高温度及持续加热期间经热降解和裂解作用形成的天然气。相对于热成因气,生物成因的页岩气分布极限,主要分布盆地边缘的泥页岩中,在美国研究比较深入的五个盆地的五套页岩中,密执安盆地和伊利诺斯盆地发现了生物成因的页岩气藏,并且是勘探目标中的主要构成(Schoell,1980;Malter 等,2000)。 3.1 生物成因

北美典型页岩气藏岩石学特征_沉积环境和沉积模式及启示

第29卷 第6期2010年 11月 地质科技情报 Geolog ical Science and Technolog y Information Vol.29 No.6Nov. 2010 北美典型页岩气藏岩石学特征、沉积环境和 收稿日期:2010 04 27 编辑:杨 勇 基金项目:国家自然科学重点基金(石油化工联合基金)项目(40839910);中国石油化工股份有限公司科研项目(J 1407 09 KK 0157)作者简介:杨振恒(1979 ),男,工程师,主要从事石油地质综合研究工作。E mail:yan gzhen hen g2010@https://www.360docs.net/doc/3018521410.html, 沉积模式及启示 杨振恒,李志明,王果寿,腾格尔,申宝剑 (中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡214151) 摘 要:北美典型页岩气藏赋存的泥页岩主要为细颗粒沉积,呈暗色或黑色薄层状或块状产出。页岩气储层无机矿物成分中硅 质含量较高,含有黄铁矿、磷酸盐矿物(磷灰石)、钙质和黏土矿物。具有相对高有机质质量分数,代表了富有机质的缺氧的沉积环境。不含或者含较少的陆源碎屑输入。有机质类型以 和!型干酪根较为常见。生物化石碎片在页岩层中比较常见,化石碎屑的类型多样化。重点剖析了福特沃斯盆地Barnett 页岩的沉积发育模式,福特沃斯盆地是一狭长的前陆盆地,主要沉积区离物源区较远,Barnett 页岩沉积于较深的静水缺氧环境,沉积速度缓慢(饥饿性沉积),最终形成富含有机质的Barnett 页岩。常见生物化石碎片,但缺少生物扰动遗迹,推测盆地中大部分的生物化石为外部输入的结果。上升流作用致使磷酸盐矿物(磷灰石)发育。北美典型页岩气藏的岩石学特征、沉积环境和福特沃斯盆地Barnett 页岩沉积发育模式可以用来指导我国页岩气勘探,黔南坳陷下寒武统黑色高碳质页岩系、二叠系吴家坪组和四川广元 绵竹地区下寒武统泥页岩具有和北美典型页岩气藏可类比的岩石学特征、沉积环境和沉积模式,可作为页岩气勘探的优选区域。 关键词:页岩气;岩石学特征;有机碳含量;沉积环境;沉积模式 中图分类号:T E122.115 文献标志码:A 文章编号:1000 7849(2010)06 0059 07 近年来,页岩气在北美特别是美国得以成功地勘探和开发,引起了广泛的关注。国内外学者从页岩气系统出发,对页岩气成藏的有机碳质量分数、成熟度、裂缝系统、温度、压力、抬升与沉降史以及吸附 机理等进行了深入的研究[1 7] ,但是,对页岩气藏发育的泥页岩的岩石学特征、沉积环境和沉积模式研究还较少涉及。页岩气藏发育的泥页岩具有独特的岩石学特征,识别不同的岩石学特征是评价页岩气成藏条件、原地含气量和资源量的关键。在页岩气开发阶段,识别不同的岩相是实施开发方案的基础。在福特沃斯盆地,识别Barnett 页岩岩性是页岩气评价中关键的步骤[8]。笔者根据北美页岩气研究的最新成果,就页岩气藏发育的泥页岩的岩石学特征、沉积环境及福特沃斯盆地Barnett 页岩沉积模式进行讨论。北美典型页岩气藏岩石学特征、沉积环境和福特沃斯盆地Barnett 页岩沉积模式对我国页岩气研究和勘探同样具有指导意义。 1 典型页岩气藏岩石学特征 页岩气作为非常规天然气资源,其勘探、开发思 路和方式与常规油气资源有明显的不同之处。研究 表明,沉积物的岩石学特征是页岩气成藏的重要控 制因素[8 10] ,主要包括泥页岩的构造和粒度特征、有机碳质量分数、岩石矿物组成、生物化石特征等。1.1岩石构造和粒度特征 页岩气藏发育的泥页岩主要为暗色或黑色的细颗粒沉积层,呈薄层状或块状。德克萨斯州福特沃斯盆地Bar nett 页岩及其上下相邻地层由不同的岩相组成,Barnett 页岩及上下相邻地层可识别出3种 岩性[9] ,分别为薄层状硅质泥岩、薄层状含黏土的灰质泥岩(泥灰)和块状灰质泥粒灰岩。但是,主力产气层位上Barnett 页岩和下Barnett 页岩以层状硅质泥岩为主,主要由细微颗粒(黏土质至泥质大小)的物质组成(图1)。Barnett 页岩缺少粗粒的陆源碎屑物质,表明地质历史沉积时期这一地区离陆相物源区较远,属饥饿性沉积,最终形成了层状的Bar nett 页岩沉积充填样式。富页岩气前景的英属哥伦比亚西北部Baldo nnel 层Ducette 组地层被称之为暗色的以石英为主的细粒页岩,主要由多样的放射性的、碳质的含黏土的灰岩和细粒粉砂岩组成。1.2岩石矿物质量分数 页岩气储层无机矿物成分中硅质质量分数较高,另外还含有方解石和长石等矿物。所含硅质主

天然气分布规律及页岩气藏特征

天然气分布规律 辽河盆地的天然气在纵向上和横向上分布都很广泛。在横向上,由于气体形成的途径多于油的形成途径,气体的分布区域远远大于油层的分布;在纵向上,自目前勘探的最深部位到浅层均有气体存在,含气层系多,自下而上发育了太古界、中生界和新生界。特别是第三系自沙四段到明化镇组各层段均有气藏存在,沉积环境和演化史的特征,造成天然气原始组分富烃,贫H:S,少CO:和N2。 辽河断陷广泛发育多期张性断裂,把二级构造带切割成复杂的断块油气田。受构造、断裂活动影响,造成多次油气聚集、重新分配而形成多套含油气层系。 通过天然气的地球化学研究,结合盆地地质背景,天然气有如下分布规律:1.自生自储的天然气垂向分布 以自生自储为主的天然气层,自下而上分布有侏罗系的煤型气、正常凝析油伴生气、正常原油伴生气、生物一热催化过渡带气和生物成因气等。其特征主要是613C,依次变轻。侏罗系煤型气主要分布在深大断裂边缘,仅处于侏罗系发育的地区,如东部凹陷三界泡地区。正常凝析油伴生气主要发育在有机质埋深达到高成熟阶段的地区,主要为各个凹陷的沉降中心部位,如整个盆地的南部地区及东部凹陷北部地区。正常原油伴生气在整个盆地均有分布,主要是与原油伴生的气顶气和溶解气。生物一热催化过渡带气主要发育在有机母质埋深浅于3000m 的未成熟和低成熟阶段,并有良好的盖层发育的地区,部分地区的局部构造亦可形成小型气藏,在盆地的大部分地区均有分布,主要在东部和大民电凹陷的有利地区。生物成因气理论上在整个盆地浅层都存在。因此,只要有良好的储盖组合,在整个盆地中都可望发现生物成因气藏。 总体来看,三个凹陷中,大民屯凹陷以成熟阶段的石油伴生气和生物一热催化过渡带气为主.有少量生物成因气。东部凹陷在不同的构造部位分布不同类型的气体,中生界发育并位于深大断裂边缘的地区,有煤型气和深源气的存在。南、北凹陷深部位置,主要是高成熟和成熟的热催化一热裂解气。而凹陷中部广泛发育生物一热催化过渡带气。在构造高部位有利地区,发育有较可观的生物成因气。西部凹陷主要发育热催化一热裂解气,特别是凹陷南部沉降中心处,热裂解形成的正常凝析油伴生气更为广泛。在有机母质埋深浅的部位发育生物一热催化过渡带气。当然,如果存在有利的储盖组合,生物成因气的存在勿需置疑。 2.断裂构造导致天然气广泛运移 广泛发育的断裂构造,使大多数天然气发生不同程度的运移,造成天然气更加广泛、更加复杂的分布格局。断裂构造或不整合面为气体运移通道,形成新生古储的古潜山油气藏。天然气的垂向和侧向运移,造成了大面积浅层气藏的形成。这部分气体的气源岩母质类型、演化程度,特别是天然气同位素组成特征均与原生气藏一致。最明显的差别是甲烷含量相对高,重烃含量低,愈向浅层,甲烷含量愈高,反映运移的地质特点是由斜坡低部位向高部位甲烷含量升高,由低台阶向高台阶甲烷含量亦升高,如兴隆台气田不同台阶的天然气组分由下到上变干。曙光一高升油气藏也有类似分布。在大民屯凹陷东部浅层及东、西部凹陷的大部分地区浅层干气也是运移形成 3.天然气藏类型分布 构造运动造成了多套油气层和多种类型的储集层,形成了多样的天然气藏类型,根据控制油气的主要因素,可以划分出四大类油气藏:(1)构造油气藏,包括背

北美地区典型页岩气盆地成藏条件解剖要点

北美地区典型页岩气盆地成藏条件解剖 1、阿巴拉契亚盆地俄亥俄页岩系统 (1)概况 阿巴拉契亚盆地(Appalachian)位于美国的东部,面积280000平方公里,包括New York西部、Pennsylvania、West Virginia、Ohio、Kentucky和Tennessee 州等,是美国发现页岩气最早的地方。俄亥俄(Ohio)页岩发育在阿巴拉契压盆地西部,分布在肯塔州东北部和俄亥俄州,是该盆地的主要页岩区(图2)。该区古生代沉积岩是个巨大的楔形体,总体上是富含有机质页岩、碎屑岩和碳酸盐岩构成的旋回沉积体。 图1 美国含页岩气盆地分布图 1953年,Hunter和Young对Ohio页岩气3400口井统计,只有6%的井具有较高自然产能(平均无阻流量为2.98万m2/d),主要原因是这些井的页岩中天然裂缝网络比较。其余94%的井平均产量为1726m3/d,经爆破或压裂改造后产量达8063m3/d,提高产量4倍多。1988年前,美国页岩气主要来自Ohio页岩气系统。截止1999年末,该盆地钻了多达21000口页岩井。年产量将近34亿m3。天然气资源量58332—566337亿m3,技术性可采收资源量4106~7787亿m3。每口井的成本$200000-$300000,完井成本$25~$50。 (2)构造及沉积特征 阿巴拉契亚盆地东临Appalachian山脉,西濒中部平原,构造上属于北美地台和阿巴拉契亚褶皱带间的山前坳陷。伴随Laurentian古陆经历了由被动边缘型

向前陆盆地的演化过程。盆地以前寒武纪结晶岩为基底,古生代沉积岩呈巨大的楔形体(最大厚度12 000 m)埋藏于不对称的、向东变深的前陆盆地中。寒武系和志留一密西西比系为碎屑岩夹碳酸盐岩,奥陶系为碳酸盐岩夹页岩,宾夕法尼亚系为碎屑岩夹石灰岩及煤层。总体上由富有机质泥页岩(主要为碳质页岩)、粉砂质页岩、粉砂岩、砂岩和碳酸盐岩等形成3~4个沉积旋回构成,每个旋回底部通常为富有机质页岩,上部为碳酸盐岩。泥盆系黑色页岩处于第3个旋回之中,分布于泥盆纪Acadian 造山运动下形成的碎屑岩楔形体内(James,2000)。该页岩层可再分成由碳质页岩和较粗粒碎屑岩互层组成的五个次级旋迥(Ettensohn ,1985)。它们是在阿卡德造山运动的动力作用下和Catskill 三角洲的向西进积中沉积下来的。 (3)页岩气成烃条件分析 ①页岩分布特征 阿巴拉契亚盆地中南部最老的泥盆纪 页岩层系属于晚泥盆世。Antrim 页岩和New Albany 大致为Chattanooga 页岩和Ohio 页 岩的横向同位层系(Matthews,1993)。在俄 亥俄东边和南边,Huron 段分岔。有的地区已 经被插入的灰色页岩和粉砂岩分成两个层。 俄亥俄页岩系统,覆盖于Java 组之上 (图3)。由三个岩性段组成:下部 Huron 段 为放射性黑色页岩,中部Three Lick 层为 灰色与黑色互层的薄单元,上部Cleveland 段为放射性黑色页岩。俄亥俄页岩矿物组成 包括:石英、粘土、白云岩、重金属矿(黄 铁矿)、有机物。 图2是西弗吉尼亚中部和西部产气区泥 盆纪页岩层的地层剖面。中上泥盆统的分布 面积约128,000mi 2(331,520km 2),它们沿 盆地边缘出露地表。页岩埋藏深度为610~ 1520m ,页岩厚度一般在100-400ft(30— 120m),泥盆系黑色页岩最大厚度在宾夕尼亚州的中北部(图3)(deWitt 等,1993)。 ②页岩地球化学特征 图4表示Ohio 页岩下Huron 段烃源岩有机碳等值线图。从镜质体反射率特征来图2 阿巴拉契亚盆地西部中泥盆统-下密西西比系剖面 (据Moody 等,1987)

页岩气及其成藏机理

页岩气及其成藏机理 页岩气及其成藏机理 摘要:本文介绍了页岩气的特征、形成条件和富集机理等,认为不同阶段、不同成因类型的天然气都可能会在泥页岩中滞留形成页岩气;页岩气生气量的主要因素是有机质的成熟度、干酪根的类型和有机碳含量;吸附态的赋存状态是页岩气聚集的重要特征。我国页岩地质结构特殊复杂,需要根据我国具体的地质环境进行分析以便更加合理的进行开采。 关键词:页岩气富集资源 天然气作为一种高效、优质的清洁能源和化工原料,已成为实现低碳消费的最佳选择。全球非常规天然气资源量非常巨大,是常规油气资源的1.65倍。其中页岩气占非常规天然气量的49%约456 1012m3,巨大的储量和其优质、高效、清洁的特点,使得页岩气这一非常规油气资源成为世界能源研究的热点之一。我国页岩气可采储量丰富,约31 1012m3,与美国页岩气技术可采储量相当。通过对页岩气资源的勘探和试采开发,发现其储集机理、生产机制与常规气藏有较大的差别。 一、页岩气及其特征 页岩是一种具有纹层与页理构造由粒径小于0.004mm的细粒碎屑、黏土矿物、有机质等组成。黑色页岩及含有机质高的碳质页岩是形成页岩气的主要岩石类型。页岩气是从黑色页岩或者碳质泥岩地层中开采出来的天然气。页岩气藏的形成是天然气在烃原岩中大规模滞留的结果,由于特殊的储集条件,天然气以多种相态存在,除了少数溶解状态的天然气以外,大部分在有机质和黏土颗粒表面上吸附存在和在天然裂缝和孔隙中以游离方式存在。吸附状态的天然气的赋存与有机质含量有关,从美国的开发情况来看,吸附气在85~20%之间,范围很宽,对应的游离气在15~80%,其中部分页岩气含少量溶解气。 页岩气主体上是以吸附态和游离态同时赋存与泥页岩地层且以 自生自储为成藏特征的天然气聚集。复杂的生成机理、聚集机理、赋

降水成因与分布规律

亲爱的学子: Great hopes make great man 1 【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。谢谢使用!!!】【加油!!!】 自然地理(五大要素) 人文地理(五大要素) 区域地理 气候 人口 具体问题具体分析:具体详细的去分析各地的(自然地理与人文地理)实际 情况 地形 城市 水文 农业 土壤 工业 植被 交通 课前复习 气温的变化规律: 1.纬度(纬度越高,气温越低;纬度越低,气温越高) 2.地形(海拔越高,气温越低;海拔越低,气温越高) 3.海陆位置(沿海与内陆、暖流与寒流对气温的影响) 高考二轮复习专题:降水成因与分布规律 1.降水形成的基本条件: (1)空气饱和时气温继续降低(有降温过程)——降水形成的最重要必要条件; (2)有凝结核(灰尘、杂质); (3)水汽充足:水滴增大到能够下降到地面(重力下沉)。 空气运动方向 空气性质及降水状况 空气上升 (有降温过程) 湿润、易产生降水 空气下沉 (无降温过程) 干燥,不易降水 由低纬吹向高纬 (有降温过程) 暖湿,易产生降水 由高纬吹向低纬 (无降温过程) 干燥,不易降水 2.降水的主要类型

降水类 型 空气上升原因降水特征主要分布地区 对流雨湿热空气强烈受热上升强度大,历时短,范围小, 常有风暴、雷电赤道附近地区,夏季的中纬度大陆地区 地形雨暖湿空气前进时受地形 阻挡上升 降水强度较大,历时较长山地迎风坡 锋面雨冷暖空气相遇,暖湿空 气被抬升持续时间长、范围广、强 度小 中纬度地区 台风雨暖湿空气围绕台风中心 旋转上升强度大、多暴雨,伴有狂 风、雷电 低纬度大陆东部 3.降水的分布规律 影响降水分布的主要因素 (1)纬度---决定了受什么大气环流影响(三圈环流注:大陆东岸受季风环流影响)(2)地形---地形效应:迎风坡多雨,背风坡少雨 (3)海陆位置---沿海与内陆差异、暖流与寒流影响差异 举例分析 赤道低压带盛行上升气流(有降 温过程) 降水多,高温多雨,如热带雨林气候 信风带风由高纬吹向低纬 (无降温过程)降水少,高温少雨,如热带草原气候的干季(注:信风从海洋吹向陆地并遇地形阻挡抬升就会多雨,如马达加斯加东海岸) 副热带高气压带以下沉气流为主(无 降温过程,反而增温) 降水少,高温干旱,多为干旱、半干旱地区, 世界上的沙漠主要分布在这里 西风带风由低纬吹向高纬 (有降温过程) 降水较多,温和湿润,如温带海洋性气候 迎风坡气流被迫抬升(有降 温过程) 降水多,如世界雨极-乞拉朋齐背风坡气流下沉增温降水少,如南美洲南部巴塔哥尼亚高原【核心考点归纳】影响气候的主要因素 亲爱的学子:Great hopes make great man 2

建筑遗产3期 朱国庆 赵海滨 戚树林 页岩气的成藏机理及勘探开发技术

页岩气的成藏机理及勘探开发技术 朱国庆赵海滨戚树林 (山东省第一地质矿产勘查院山东 250014) 摘要:页岩气,是从页岩层中开采出来的天然气,是一种重要的非常规天然气资源。页岩气的形成和富集有着自身独特的特点,往往分布在盆地内厚度较大、分布广的页岩烃源岩地层中。较常规天然气相比,页岩气开发具有开采寿命长和生产周期长的优点,大部分产气页岩分布范围广、厚度大,且普遍含气,这使得页岩气井能够长期地以稳定的速率产气。 关键词:页岩;天然气;烃源岩; 中图分类号:文献标识码:A “美国1821年钻探第一口页岩气生产井,到2010年年产量达到1378亿立方米,占总产量23%,页岩气使得美国天然气储量增加了40%。美国已从最大天然气进口国达到自给并将出口”。美国页岩气开发的巨大成效引起全球油气、能源界的强烈关注,中国油气业闻风而动, 已从信息调研迅速进入选区勘探,开始形成“页岩气热”。国土资源部2009年10月份在重庆市綦江县启动了中国首个页岩气资源勘查项目。我单位领导也责成有关实体专门成立油页岩层气研究项目组,圈定区域,申报探矿权。根据手中收集的资料,对页岩气的分布特点、成藏机理及勘探开发技术分析如下: 1页岩气概况 页岩气是从页岩层中开采出来的天然气,主体位于暗色泥页岩或高碳泥页岩中,页岩气是主体上以吸附或游离状态存在于泥岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段天然气主体上以游离相态(大约50%)存在于裂缝、孔隙及其它储集空间,以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩地层中为天然气生成之后,在源岩层内的就近聚集表现为典型的原地成藏模式,与油页岩、油砂、地沥青等差别较大。与常规储层气藏不同,页岩既是天然气生成的源岩,也是聚集和保存天然气的储层和盖层。因此,有机质含量高的黑色页岩、高碳泥岩等常是最好的页岩气发育条件。 页岩气发育具有广泛的地质意义,存在于几乎所有的盆地中,只是由于埋藏深度、含气饱和度等差别较大分别具有不同的工业价值。中国传统意义上的泥页岩裂隙气、泥页岩油气藏、泥岩裂缝油气藏、裂缝性油气藏等大致与此相当,但其中没有考虑吸附作用机理也不考虑其中天然气的原生属性,并在主体上理解为聚集于泥页岩裂缝中的游离相油气。因此属于不完整意义上的页岩气。因此,中国的泥页岩裂缝性油气藏概念与美国现今的页岩气内涵并不完全相同,分别在 作者简介:朱国庆(1979—),男,山东博兴人,工程师,主要从事水工环地质工作

排水管系中水气流动规律

第4章建筑内部排水系统 4.3排水管系中的水、气流动规律

4.3排水管系中的水、气流动规律 4.3.1 建筑内部排水的流动特点 建筑内部排水管道系统的设计流态和流动介质与室外排水管道系统相同,都是按重力非满流设计的,污水中都含有固体杂物,都是水、气、固三种介质的复杂运动。 其中,固体物较少,可以简化为水、气两相流。 但建筑内部排水的流动特点与室外排水有所不同:1.水量、气压变化幅度大 2.流速变化剧烈 3.事故危害大

1. 水量、气压变化幅度大 与室外排水相比,建筑内部排水管网接纳的排水量少,且不均匀,排水历时短,高峰流量时可能充满整个管道断面,而大部分时间管道内可能没有水。 管内自由水面和气压不稳定,水气容易掺合。 2.流速变化剧烈 建筑外部排水管绝大多数为水平横管,只有少量跌水,且跌水深度不大,管内水流速度沿水流方向递增,但变化很小,水气不易掺合,管内气压稳定。

污水排放顺序:卫生器具 横支管 排水立管排水横干管室 外 建筑内部横管与立管交替连接,当水流由横管进入立管时,流速急骤增大,水气混合;当水流由立管进入横管时,流速急骤减小,水气分离。

4.3排水管系中的水、气流动规律 4.3.1 建筑内部排水的流动特点 3.事故危害大 室外排水不畅时,污废水溢出检查井,有毒有害气体进入大气,影响环境卫生,因其发生在室外,对人体直接危害小。 建筑内部排水不畅,污水外溢到室内地面,或管内气压波动,有毒有害气体进入房间,将直接危害人体健康,影响室内环境卫生,事故危害性大。 为合理设计建筑内部排水系统,既要使排水安全畅通,又要做到管线短、管径小、造价低,需专门研究建筑内部排水管系中的水气流动规律。

页岩气成藏地质条件分析

页岩气是指主体位于暗色泥页岩或高碳泥页岩中,以吸附或游离状态为主要存在方式的天然气聚集为典型的“原地”成藏模式,页岩气大部分吸附在有机质和粘土矿物表面,与煤层气相似,另一部分以游离状态储集在基质孔隙和裂缝孔隙中,与常规储层相似。页岩气藏按其天然气成因可分为两种主要类型:热成因型和生物成因型,此外还有上述两种类型的混合成因型。北美地区是全球唯一实现页岩气商业开发的地区。目前北美地区已发现页岩气盆地近30个,发现Barnett等6套高产页岩。2008年,北美地区的页岩气产量约占北美地区天然气总产量的13%。至2008年底,美国页岩气井超过4.2万口;页岩气年产量600亿方以上,约占美国当年天然气总产量的10%。目前,美国已发现页岩气可采储量约7.47万亿方。FortWorth盆地密西西比系Barnett页岩气藏的成功开采掀起了全球开采页岩气的热潮。美国涉足页岩气的油气公司已从2005年23家增至2008年60多家;欧洲石油公司纷纷介入美国的页岩气勘探开发。页岩气作为一种非常规油气藏在国内也逐步受到关注。页岩气藏形成的主体是富有机质页岩,它主要形成于盆地相、大陆斜坡、台地凹陷等水体相对稳定的海洋环境和深湖相、较深湖相以及部分浅湖相带的陆相湖盆沉积体系,如FortWorth盆地Barnett组沉积于深水(120 ̄215m)前陆盆地,具有低于风暴浪基面和低氧带(OMZ)的缺氧厌氧特征,沉积营力基本上通过浊流、泥石流、密度流等悬浮机制完成,属于静水深斜坡盆地相。生物成因气的富集环境不同于热成因型页岩气。富含有机质的浅海地带,寒冷气候下盐度较低、水深较大的极地海域,以及大陆干旱-半干旱的咸水湖泊都是生物成因气形成的有利沉积环境;而缺氧和少硫酸盐是生物气大量生成的生化环境。在陆相环境中,由于淡水湖相盐度低,缺乏硫酸盐类矿物,甲烷在靠近地表不深的地带即可形成。但由于埋得太浅,大部分散失或被氧化,不易形成气藏。只有在半咸水湖和咸水湖,特别是碱性咸水湖中,可以抑制甲烷菌过早地大量繁殖,同时也有利于有机质的保存。埋藏到一定深度后,有机质分解,使PH值降低到6.5 ̄7.5范围时,产甲烷的细菌才能大量繁殖。这时形成的甲烷就比较容易保存,并能在一个条件下聚集成气藏。(1)热成熟度(Ro)。美国五大页岩气系统的页岩气的类型较多,既有生物气、未熟-低熟气、热解气,又有原油、沥青裂解气据(Curtis,2002),这些类型的天然气形成的成熟度范围较宽,可以从0.400%变化到2.0%,页岩气的生成贯穿于有机质生烃的整个过程。不同类型的有机质在不同演化阶段生气量不同,页岩中只要有烃类气体生成(R>0.4%),就有可能在页岩中聚集起来形成气藏。 生物成因气一般形成于成熟度较差的岩层中。密执安盆地Antrim生物成因型页岩的R仅为0.4% ̄0.6%,未进入生气窗,页岩Ro越高,TOC越低,越不利于生物气的形成。而福特沃斯盆地Barnett页岩热成因型气藏的页岩处于成熟度大于1.1%的气窗内,Ro值越高越有利于天然气的生成。所以热成熟度不是判断页岩生烃能力的唯一标准。 (2)有机碳含量(TOC)。有机碳含量是评价页岩气藏的一个重要指标,多数盆地研究发现页岩中有机碳的含量与页岩产气率之间有良好的线性关系,原因有两方面:①是因为有机碳是页岩生气的 物质基础,决定页岩的生烃能力,②是因为它决定了页岩的吸附气大小,并且是页岩孔隙空间增加的重要因素之一,决定页岩新增游离气的能力。如Antrim黑色页岩页岩气以吸附气为主(70%以上),含气量1.415 ̄2.83m/t,高低与有机碳含量呈现良好的正相关性。Ross等的实验结果表明,有机碳与甲烷吸附能力具有一定关系,但相关系数较低(R2=0.39)。他认为在这个地区有机碳与吸附气量关系还可能受其他多种因素的影响,如粘土成分及含量、有机质热成熟度等。(1)矿物成分。页岩中的矿物成分主要是粘土矿物、陆源碎屑(石英、长石等)以及其他矿物(碳酸盐岩、黄铁矿和硫酸盐等),由于矿物结构、力学性质的不同,所以矿物的相对含量会直接影响页岩的岩石力学性质、物性、对气体的吸附能力以及页岩气的产能。粘土矿物为层状硅酸盐,由于Si-O四面体排列方式,决定了它电荷丰富、表面积大,因此对天然气有较强的吸附能力,并且不同的粘土矿物对天然气的吸附能力也不同,蒙皂石吸附能力最强,高岭石、绿泥石次之,伊利石最弱。石英则增强了岩石的脆性,增强了岩石的造缝能力,也是水力压裂成功的保证。Nelson认为除石英之外,长石和白云石也是黑色页岩段中的易脆组分。但石英和碳酸盐矿物含量的增加,将降低页岩的孔隙,使游离气的储集空间减少,特别是方解石的胶结作用,将进一步减少孔隙,因此在判断矿物成分对页岩气藏的影响时,应综合考虑各种成分对储层的影响。 (2)储集空间。页岩气除吸附气吸附在有机质和粘土矿物表面外,游离气则主要储集在页岩基质孔隙和裂缝等空间中。虽然页岩为超致密储层,孔隙度和渗透率极低,但是在孔隙度相对较高的区带,页岩气资源潜力仍然很大,经济可采性高,特别是吸附气含量非常低的情况下。页岩中孔隙包括原生孔隙和次生孔隙。原生孔隙系统由微孔隙组成,内表面积较大。在微孔隙中拥有许多潜在的吸附地方,可储存大量气体。裂缝则沟通页岩中的孔隙,页岩层中游离态天然气体积的增加和吸附态天然气的解析,增强岩层渗透能力,扩大泄油面积,提高采收率。一般来说,裂缝较发育的气藏,其品质也较好。美国东部地区产气量高的井,都处在裂缝发育带内,而裂缝不发育地区的井,则产量低或不产气,说明天然气生产与裂缝密切相关。实际上,裂缝一方面可以为页岩中天然气的运移提供通道和储集空间,增加储层的渗透性;另一方面裂缝也可以导致天然气的散失和水窜。 (3)储集物性。页岩的物性对产量有重要影响。在常规储层研究中,孔隙度和渗透率是储层特征研究中最重要的两个参数,这对于页岩气藏同样适用。据美国含气页岩统计,页岩岩心孔隙度小于4% ̄6.5%(测井孔隙度4% ̄12%),平均5.2%;渗透率一般为 (0.001 ̄2)×10μm,平均40.9×10μm。页岩中也可以有很大的孔隙度,并且有大量的油气储存在这些孔隙中,如阿巴拉契亚盆地的Ohio页岩和密歇根盆地的Antrim页岩,孔隙度平均为5% ̄6%,局部可高达15%,游离气可以充满孔隙中的50%。页岩的基质渗透率很低,但在裂缝发育带,渗透率大幅度增加,如在断裂带或裂缝发育带,页岩储层的孔隙度可达11%,渗透率达2×10μm。页岩气藏是自生自储型气藏,从某种意义来说,页气藏的形成是天然气在源岩中大规模滞留的结果,烃源岩中天然气向常规储层初次运移的通道为裂缝、断层等,所以连通烃源岩和常规[1][2][3] [4][5] [6][7]3-32 -62-321 沉积环境 2 生烃条件 3 储集条件 4 保存条件 oo岩(转129页) 页岩气成藏地质条件分析 黄菲 王保全 ① ② (中法渤海地质服务有限公司 ②中海石油<中国>有限公司天津分公司渤海油田勘探开发研究院) ①摘要关键词页岩气藏为自生自储型气藏,它的生烃条件、储集条件、保存条件相互影响,息息相关,热成熟度和有机碳含量控制页岩的生气能力,而有机碳含量还影响页岩的储集性,是增加页岩孔隙空间的重要因素;页岩气藏储层致密,孔隙度和渗透率极低,裂缝的存在会提高储层的渗透率,矿物成分影响其储集性能,其中粘土矿物有利于增加微孔隙,并且增加岩石对天然气的吸附能力,而石英和白云石脆性较大,则有利于增加储层中的裂缝,并且对水力压裂造缝有利;页岩气藏对保存条件的要求较低。 页岩气有机碳含量热成熟度储集条件保存条件

分布规律

黄汝昌李景明谢增业李剑《中国凝析气藏的形成与分布》,1996 2凝析气藏的分布 2.1区域分布 我国凝析气藏主要分布在渤海湾、塔里木、吐哈等盆地及东、南沿海陆架地区(图1)。 图1 中国凝析气藏分布图 凝析气藏的区域分布受控于盆地演化过程中区域古地温场和气候带。塔里木盆地海相碳酸盐岩烃源岩在热衰退型的地温背景下,隆起及斜坡区大部分碳酸盐岩地层处于高成熟阶段,形成了海相腐泥型凝析气藏,我国西北侏罗纪前陆型盆地在热衰退型的地温背景下,煤系地层正处于成熟阶段,形成丰富的煤系凝析气藏;东部裂谷盆地属热盆、高热盆,在高热流背景下,年代较新的第三系煤系烃源岩、陆源有机质烃源岩、盆地深层腐泥质烃源岩处于成熟、高成熟阶段,形成了煤系凝析气藏、陆源凝析气藏和高熟腐泥型凝析气藏。东南沿海大陆架盆地,属热带、亚热带潮湿气候这,有利于高等植物发育,形成了第三系煤系烃源岩,渤海湾盆地北部及伊兰一伊通地区属温带潮湿气候,高等植物发育,形成陆源有机质烃源岩,为凝析油气体系的形成,提供了丰富的物质基础。 2.2垂向分布 2.2.1层位分布

据不完全统计,凝析气主要聚集在下第三系,占总储量的二分之一,其次是上第三系,占总储量的四分之一,另外奥陶系碳酸盐岩中亦是凝析气富集层位,占总储量的五分之一。显然,中国含油气盆地凝析气藏主要聚集在第三系,主要是因为东部及东南沿海大陆架盆地处于近海湿温气候带和高地温场,煤及陆源有机质在成熟和中高成熟阶段大量形成凝析油、天然气的结果。 2.2.2深度分布 渤海湾盆地和塔里木盆地是中国含油气盆地中凝析气藏最丰富,各具特色的盆地。盆地的地温演化模式不同,凝析气藏起始富集的深度亦不同。 塔里木盆地凝析气藏分布深度在3000m以下,主要富集在3000一4soom深度范围内(图2)。 图2 塔里木盆地凝析气藏储量分布图 渤海湾盆地凝析气藏分布深度在2O00m以下,主要富集在2000~3000m深度范围内,深层凝析气藏3200~4500m亦有一定的储量(图3)。

气温的分布规律

气温的分布规律 下图为某山地气象站一年中每天的日出、日落时间及逐时气温(℃) 变化图。读图,回答1—2题 1. 气温日较差大的月份是 A. 1月 B. 4月 C. 7月 D. 10月 2.该山地 A.冬季受副热带高压带控制 B.因台风暴雨引发的滑坡多 C.基带的景观为热带雨林 D.山顶海拔低于1000米 气温的日变化一般表现为最高值出现在14时左右,最低值出现在日出 前后。右图示意某区域某日某时刻的等温线分布,该日丙地的正午太 阳高度达到一年中最大值。读图回答第3题 3.下列时刻中,最有可能出现该等温线分布状况的是 A.6时 B 9时 C 12时 D. 14时 4.右下图为北京、南京、哈尔滨和海口四城市气温年变化曲线图。根据图中信息判断,北京、南京、哈尔滨和海口四城市对应的气温年变化曲线分别是 A.甲、丁、丙、乙 B.甲、乙、丙、丁 C.丙、乙、丁、甲 D.丙、丁、甲、乙 下图为“大陆和海洋气温年较差、日较差的纬度分布图”。读图回答5—6题。 5.图中反映大陆气温年较差和海洋气温日较差的曲线分别是 A.甲和乙 B.乙和丙 C.丙和丁 D.甲和丁 6.曲线丙在南、北纬30°附近达最大值的原因是 A.纬度低,太阳辐射量大 B.地势高,空气稀薄 C.多为副热带高气压控制,天气晴朗 D.距海洋远,大陆性强,昼夜温差大

气温垂直递减率是指空气温度在垂直方向上随高度升高而降低的数值,读某地春季某日气温垂直递减率(℃/100米)时空变化图,回答7—9题 7.当天该地几乎没有对流运动发生的时段是 A.9~1 7时B.18~次日7时 C.17~次日9时D.19~次日6时 8.发生大气逆温现象的最大高度约为 A.100米B.200米C.400米D.500米 9.如果该地位于华北地区,这天 A.大气环境质量好B.不容易有沙尘暴形成 C.较有可能阴雨天气D.能见度高,行车方便 右图是“某地某日垂直温度变化(℃/100米)时空分布图”。读图,完成10—12题。 10.该日此地发生大气逆温现象的时段是 A.8∶00~16∶30 B.17∶00~23∶00 C.16∶30~7∶00 D.23∶00~5∶00 11.发生大气逆温现象的最大高度约为 A.500米B.100米C.350米D.150米 12.当某地大气发生逆温现象时 A.空气对流更加显著B.抑制污染物向上扩散 C.有利于成云致雨D.减少大气中臭氧的含量 焚风效应是由山地引发的一种局地范围内的空气运动形式。一般发生在背风坡地区,使气温比迎风坡异常变高。其成因是湿绝热垂直递减率和干绝热垂直递减率的不同。(湿绝热垂直递减率是有水汽凝结时的空气垂直递减率;干绝热垂直递减率是无水汽凝结时的空气垂直递减率)读下图回答14—15题

相关文档
最新文档