测井资料交会图法在火山岩岩性识别中的应用

测井资料交会图法在火山岩岩性识别中的应用
测井资料交会图法在火山岩岩性识别中的应用

文章编号 1004Ο5589(2003)02Ο0136Ο05

测井资料交会图法在火山岩岩性识别中的应用

赵 建 高福红

吉林大学地球科学学院,长春130026

摘 要 在火山岩储层研究中,岩性识别显得越来越重要。在评述目前常用的岩性识别方法后,重点以测井资料交会图法为例,以松辽盆地徐家围子断陷升平气田深层白垩系营城组火山岩为对象,优选出密度测井、自然伽玛测井、声波测井、电阻率、钍铀等测井项目的数据进行交会,编制出测井曲线交会图版,并以此为依据识别出该区的火山岩主要岩性有:安山岩、玄武岩、流纹岩和凝灰岩等。识别结果与实际情况相吻合。 关键词 火山岩 岩性识别 交会图 中图分类号 P588.1 文献标识码 A

收稿日期 2002Ο11Ο04;改回日期 2003Ο03Ο20

作者简介 赵 建(1976-),男,河南周口人,硕士研究生,从事含油气盆地研究.

通讯作者简介 高福红(1962-),女,辽宁朝阳人,副教授,从事沉积学和含油气盆地研究.

Application of Crossplots B ased on Well Log Data in

Identifying Volcanic Lithology

Jian Zhao ,Fuhong G ao

College of Earth Sciences ,Jili n U niversity ,Changchun ,130061Chi na

Abstract Lithologyical identification is becoming increasingly important in the study of volcanic rock reser https://www.360docs.net/doc/30239822.html,mon methods in identifying volcanic lithology are introduced briefly here.The volcanic rocks of Y ingcheng Formation in Shengping G as Field are used as examples and well log crossplots are compiled based on the following data :density log ,gamma 22ray log ,acoustic log ,resistivity log ,thorium and uranium log.By this means ,andesite ,basalt ,rhyolite and tuff are identified.The identification result is well coincident with the lithological fact in the area.

K ey w ords volcanic rock ,lithology identification ,crossplot

1 概 述

火成岩油气藏目前已成为世界油气田勘探开发的一个新领域。在美国、前苏联、古巴和墨西哥等很多国家都有这类油气藏被发现[1]。我国大多数油田也相继发现有这类储层。例如在准噶尔盆地西北缘的石炭系和二叠系中发现了一批火山岩油藏,而且探明的地质储量相当可观;二连盆地白垩系地层中、黄骅凹陷北堡地区、苏北地区等相继发现了火山岩储层油气藏。目前,在松辽盆地北部营城组火山岩地层油气勘探也取得了较好的效果。所有这些都

展示了火山岩良好的勘探前景。对这类特殊的储层

进行研究时,要进行火山岩岩性识别。识别含油气盆地中的火山岩岩性最直接有效的方法是岩心分析,但是考虑到油田上的生产效益,深层钻井取心成本很高,因此不可能在每口井中都取心,加上过去的老井在钻探过程中,遇到火山岩层时常常又不够重视,所以取心更是很少。因此利用间接的方法进行岩性识别成了必然。 在不同的地区,由于喷发方式和所处的构造不同,火山岩的岩性具有很大差异,岩石类型多样化,结构、构造复杂化。比如在我国中部的石西地区火

世界地质 G lobal G eology ,2003,22(2):136~140

山岩的岩性主要为中酸性岩,而车排子地区基本上是中基性岩。即使是在同一区块,火山岩中所含的原生矿物和次生矿物也不同;同一区块不同岩性、甚至是同种岩性所含的矿物成分也会不同[2]。所以要很好地识别火山岩岩性,难度相当大。考虑到火山岩由于其自身所特有的成分、结构、构造等方面的特点,使其在重磁、地震、测井、手标本及镜下、地球化学等方面均有区别于其他岩石的特征。就目前来说,根据火山岩的这些特有的性质,归纳起来有以下几种识别岩性的方法:重磁方法、地震方法、常规测井方法、手标本及薄片方法、地球化学方法、常规测井交会图技术识别法、利用岩石强度参数交会识别岩性、利用横波信息交会识别岩性、利用成像测井识别岩性等。其中成像测井无疑是研究火山岩岩性有效的方法之一,但实际工作中,考虑到成本因素,所以这种方法在油田还无法普及。就一般而言,重磁方法适用于大范围的火山岩体的圈定,地球化学方法则更适用于点上的精确测量,这两种方法在区域上都显得有缺陷。而测井方法主要是依据测井曲线的形状来定性判别火山岩的岩性,而曲线的形状又是相对比较的产物,尺度上比较难于把握,主要是依靠工作人员的经验来判断,所以这种方法用起来具有很大的主观性。由于钻井取心有限,因此最可靠的手标本法和薄片鉴定法也不能普及。常规测井交会图技术识别法把优选的某一特定区域(如松辽盆地徐家围子断陷营城组)的测井数据在坐标系中进行定位,根据已有的可靠资料(如取心),对坐标系中数据的落点区进行评价,编制出图版。这样编制出的图版具有很强的针对性,可以反应用于该区来进行岩性识别。因此针对某一区域编制的交会图版对该区岩性的识别具有普遍意义。

2 交会图法的定义及具体应用

交会图法(crossplot )是一种测井资料的解释技术。它是把两种测井数据在平面图上交会,根据交会点的坐标定出所求参数的数值和范围的一种方法[3]。交会图法是确定岩性、孔隙度和含油气饱和度时广泛采用的一种方法,有助于解释参数的选择和趋势与问题的识别,还能把大量的数据用图示的方法反映出来。经过交会图版的正反应用,能使问题更加明朗化。在标绘有能评价相关数据的可识别的图形的图版或图称为交会图[4]。 测井数据交会图法是识别含油气盆地内火山岩岩性的简单而有效的方法。在交会图上能直观地看出各种岩性的分界和所分布的区域,能比较清晰地识别火山岩(图1)。陈建文、魏斌等[5]在研究松辽盆地徐家围子断陷营城组火山岩岩性时,应用该方法识别出了该地区深层营城组火山岩岩性有玄武岩、玄武安山岩、安山岩、英安岩、流纹岩、火山角砾岩、凝灰岩、安山玢岩和流纹斑岩等,并通过对测井曲线的主成分分析后,从所有12

条测井曲线中优选出对于岩性识别灵敏度高的6条曲线,即自然伽玛(GR )、深侧向电阻率(LLD )、密度(DEN )、声波时差(D T )、铀(U )和钍(Th )为识别岩性的主成分曲线,利用其中相关程度低的两组曲线组合,可以较准确地识别岩性,使得交会图方法趋于完善。余家仁、祝玉衡等[6]在对二连盆地低渗透储集层研究时,对测井曲线首先进行标准化后,利用阿100井、阿110井和阿7215井的取心资料和测井曲线的平均值编制出单井的各测井曲线的校正图版来识别解释火山岩的岩性与电性之间的对应关系,结合岩心观察,建立了岩性与电性之间的关系,编制了电阻率—声波时

图1 夏盐地区石炭系火山岩岩性识别图[2]

Fig 11 The lithology identif ication of volcanics in Xiayan region [2]

7

31第2期 赵 建等:测井资料交会图法在火山岩岩性识别中的应用

图2 二连盆地火山岩岩性识别交会图[6]

Fig12 The lithology identif ication of volcanics in E rlian B asin[6]

差、自然伽玛—中子孔隙度、密度—声波时差交会图

版(图2)。利用图版并结合其他相关指标对本区59

口井进行了岩性解释,将统计的单井各岩类厚度及

岩性资料同图版解释结果作了对比,表明其岩心统

计结果与解释结果成正相关。相差小者如阿110

井,仅差1%,几乎接近;相差大者也只有913%(表

1)。因此,从宏观上看,解释岩性基本上能代表不同

岩性组合特征,可以作为火山岩岩相分析的基础。

表1 二连盆地火山岩岩心统计与解释岩性厚度对比[6]

T able1 The correlation of w ells core and statistics lithology

explanation in E rlian B asin[6]

岩 类致密块状

安山岩

气孔杏仁

安山岩

角砾状

安山岩

凝灰岩

阿100井岩心统计45101917 3311 212解释岩性4314171239110

阿110井

岩心统计37181019 215 2318

解释岩性351914165162319阿7-15

岩心统计50132912 1816 119

解释岩性461538*********

注:表内数据为岩性厚度百分比

另外,袁明生等在低渗透裂缝性油藏勘探一书中着重讲述了这种方法的应用[7];单玄龙等①在对松辽盆地北部徐家围子断陷火山岩储层进行评价时也提到利用测井数据图版的方法来识别火山岩岩性类型,并把这种方法和其他识别岩性的方法作了详细的对比说明。

3 应用实例

在这里作者以松辽盆地徐家围子断陷升平地区白垩系营城组地层为研究对象,在该区选取了升深201、101井等,利用上述相关测井数据的交会图,对升平气田深层火山岩岩性进行了识别研究。

升平气田位于松辽盆地北部徐家围子断陷北翼的升平构造上,含气层位多,储层类型复杂,有砾岩、砂砾岩、火山岩等各种岩性。其中火山岩在白垩系营城组地层比较发育。升深201井位于升平气田西南的构造高点上,钻井打穿到基底,测井项目齐全。为了较准确的识别出深层火山岩的岩性,从镜下薄片观察结果和岩心直接观察分析着手,针对目的层段,分别读取了密度测井、自然伽玛测井、声波测井、电阻率、电阻率钍、铀等各测井项目数据,求出各测井曲线的平均值作为校正值,利用两组参数相互交会,编制出如下图版:密度—自然伽玛交会图版、密度—声波交会图版、自然伽玛—电阻率交会图版、钍—铀交会图版和密度—电阻率交会图版(图3)。从图版可以看出,该区岩石主要成分应是中酸性岩类。火山岩岩石类型主要是安山岩、玄武岩、流纹岩、凝灰岩等。根据资料点在各图版的分布情况,总结出各岩性具体测井项目范围标准(表2)。

根据统计结果,本区各类岩性的火山岩具有如下特征:安山岩自然伽玛值波动较大,高阻、低铀、低钍的特征;玄武岩具有低自然伽玛值、低阻、低铀、低钍、高密度的特点。这与实际情况吻合较好,凝灰岩高自然伽玛值,低电阻率,密度较高、中铀含量、高钍含量;流纹岩高自然伽玛值,中电阻率、低密度和高铀、高钍含量。从图版上各岩性火山岩的落点分布

831 世 界 地 质 2003年

①单玄龙等,20021松辽盆地北部徐家围子断陷火山岩

储层评价(科研报告)1吉林大学地球科学学院

图3 升平气田火山岩岩性识别交会图

Fig13 The lithology identif ication of volcanics in Shengping G as Field

表2 升平气田火山岩测井响应标准表

T able2 The logging response extent of volcanics in Shengping

G as Field

岩 性自然伽玛

(API)

密度

(g/cm3)

电阻率

(Ωm)

声波差

(ppm)

(ppm)

安山岩38~1122130~2170220~52045~601~32~3

玄武岩20~541190~214026~2462~900~12~3

流纹岩80~2102140~21553~253~79~28凝灰岩70~1802155~217010~3001~57~30

情况看,玄武岩和安山岩之间差异明显,利用任何一个图版就能很容易的识别出来,而且以密度—自然伽玛交会图和密度—声波时差交会图更加明显;而对于岩性相近的流纹岩与凝灰岩,在图3中均有落点交叉现象,因此单独应用其中的某一个图版不容易区分。这时根据其测井响应特征的不同,通过两类或多类图版也可将它们准确地识别出来。在钍—铀交会图版中,随着火山岩由基性到中、酸性,两者的变化均由低值到高值变化,并且各岩类在钍—铀交会图版上都有其确定的数值和分布范围。利用所编图版进行岩性识别的结果和其他学者的研究成果对比表明基本吻合。

4 结束语

利用测井资料的多种图版是识别含油气盆地覆盖区内火山岩岩性的简单而有效的方法。将这些测井资料进行优选,并将它们相互组合在坐标系中,以直观的数据形式表示出来,再结合岩心和薄片的观察,编制出各种类型的测井曲线交会图版,根据资料反馈信息(岩心和薄片的观察)进行校正后的图版,可较为准确地识别多种类型的火山岩岩性。应当指出的是,由于在不同的地区,火山岩最初的喷发方式和所处的区块不同,火山岩的岩性具有很大差异,要很好地识别火山岩岩性,单一的一种交会图有时是做不到的。这时最好是利用多种图版,多投点,在图版上找出各岩性的主要差别。另外在岩性识别前要

931

第2期 赵 建等:测井资料交会图法在火山岩岩性识别中的应用

进行火山机构分析,因为同一岩性在不同的火山机构内其测井响应有差异。因此,在实际解决问题时,要根据不同地区不同的实际情况,编制出适合于各地区的岩性交会图版来解决该地区的实际问题。参考文献

1 赵澄林,刘孟慧,胡爱梅等,1997.特殊油气储层.北京:

石油工业出版社,122

2 范宜仁,黄隆基,代诗华,1999.

交会图技术在火山岩岩

性与裂缝识别中的应用.测井技术,23(1):53256

3 地质部地质词典办公室,1981.地质词典(五).北京:地

质出版社,1382139

4 车卓吾,1995.测井资料分析手册.北京:石油工业出版

社,3152319

5 陈建文,魏斌,李长山,郑浚茂,王德发,1997.火山岩岩

性的测井识别.测井技术,4582459

6 余家仁,祝玉衡,高珉等,2001.二连盆地低渗透储集层

研究.北京:石油工业出版社,4:682109

7 袁明生,潘懋,童亨茂等,2000.低渗透裂缝性油藏勘探.

北京:石油工业出版社,1792187

41 世 界 地 质 2003年

测井曲线代码大全

测井曲线代码 RD、RS—深、浅侧向电阻率 RDC、RSC—环境校正后的深、浅侧向电阻率VRD、VRS—垂直校正后的深、浅侧向电阻率DEN—密度 DENC—环境校正后的密度 VDEN—垂直校正后的密度 CNL—补偿中子 CNC—环境校正后的补偿中子 VCNL—垂直校正后的补偿中子 GR—自然伽马 GRC—环境校正后的自然伽马 VGR—垂直校正后的自然伽马 AC—声波 V AC—垂直校正后声波 PE—有效光电吸收截面指数 VPE—垂直校正后的有效光电吸收截面指数SP—自然电位 VSP—垂直校正后的自然电位 CAL—井径 VCAL—垂直校正后井径 KTh—无铀伽马 GRSL—能谱自然伽马 U—铀 Th—钍 K—钾 WCCL—磁性定位 TGCN—套管中子 TGGR—套管伽马 R25—2.5米底部梯度电阻率 VR25—环境校正后的2.5米底部梯度电阻率DEV—井斜角 AZIM—井斜方位角 TEM—井温 RM—井筒钻井液电阻率 POR2—次生孔隙度 POR—孔隙度 PORW—含水孔隙度 PORF—冲洗带含水孔隙度 PORT—总孔隙度 PERM—渗透率 SW-含水饱和度 SXO—冲洗带含水饱和度

SH—泥质含量 CAL0—井径差值 HF—累计烃米数 PF—累计孔隙米数 DGA—视颗粒密度 SAND,LIME,DOLM,OTHR—分别为砂岩,石灰岩,白云岩,硬石膏含量 VPO2—垂直校正次生孔隙度 VPOR—垂直校正孔隙度 VPOW—垂直校正含水孔隙度 VPOF—垂直校正冲洗带含水孔隙度 VPOT—垂直校正总孔隙度 VPEM—垂直校正渗透率 VSW-垂直校正含水饱和度 VSXO—垂直校正冲洗带含水饱和度 VSH—垂直校正泥质含量 VCAO—垂直校正井径差值 VDGA—垂直校正视颗粒密度 VSAN,VLIM,VDOL,VOTH—分别为垂直校正砂岩,石灰岩,白云岩,硬石膏含量岩石力学参数 PFD1—破裂压力梯度 POFG—上覆压力梯度 PORG—地层压力梯度 POIS—泊松比 TOUR—固有剪切强度 UR—单轴抗压强度 YMOD—杨氏模量 SMOD—切变模量 BMOD—体积弹性模量 CB—体积压缩系数 BULK—出砂指数 MAC MAC—偶极子阵列声波 XMAC-Ⅱ—交叉偶极子阵列声波 DTC1—纵波时差 DTS1—横波时差 DTST1—斯通利波时差 DTSDTC-纵横波速度比 TFWV10-单极子全波列波形 TXXWV10-XX偶极子波形 TXYWV10- XY偶极子波形 TYXWV10- YX偶极子波形 TYYWV10- YY偶极子波形 WDST-计算各向异性开窗时间 WEND-计算各向异性关窗时间

测井资料交会图法在火山岩岩性识别中的应用

文章编号 1004Ο5589(2003)02Ο0136Ο05 测井资料交会图法在火山岩岩性识别中的应用 赵 建 高福红 吉林大学地球科学学院,长春130026 摘 要 在火山岩储层研究中,岩性识别显得越来越重要。在评述目前常用的岩性识别方法后,重点以测井资料交会图法为例,以松辽盆地徐家围子断陷升平气田深层白垩系营城组火山岩为对象,优选出密度测井、自然伽玛测井、声波测井、电阻率、钍铀等测井项目的数据进行交会,编制出测井曲线交会图版,并以此为依据识别出该区的火山岩主要岩性有:安山岩、玄武岩、流纹岩和凝灰岩等。识别结果与实际情况相吻合。 关键词 火山岩 岩性识别 交会图 中图分类号 P588.1 文献标识码 A 收稿日期 2002Ο11Ο04;改回日期 2003Ο03Ο20 作者简介 赵 建(1976-),男,河南周口人,硕士研究生,从事含油气盆地研究. 通讯作者简介 高福红(1962-),女,辽宁朝阳人,副教授,从事沉积学和含油气盆地研究. Application of Crossplots B ased on Well Log Data in Identifying Volcanic Lithology Jian Zhao ,Fuhong G ao College of Earth Sciences ,Jili n U niversity ,Changchun ,130061Chi na Abstract Lithologyical identification is becoming increasingly important in the study of volcanic rock reser https://www.360docs.net/doc/30239822.html,mon methods in identifying volcanic lithology are introduced briefly here.The volcanic rocks of Y ingcheng Formation in Shengping G as Field are used as examples and well log crossplots are compiled based on the following data :density log ,gamma 22ray log ,acoustic log ,resistivity log ,thorium and uranium log.By this means ,andesite ,basalt ,rhyolite and tuff are identified.The identification result is well coincident with the lithological fact in the area. K ey w ords volcanic rock ,lithology identification ,crossplot 1 概 述 火成岩油气藏目前已成为世界油气田勘探开发的一个新领域。在美国、前苏联、古巴和墨西哥等很多国家都有这类油气藏被发现[1]。我国大多数油田也相继发现有这类储层。例如在准噶尔盆地西北缘的石炭系和二叠系中发现了一批火山岩油藏,而且探明的地质储量相当可观;二连盆地白垩系地层中、黄骅凹陷北堡地区、苏北地区等相继发现了火山岩储层油气藏。目前,在松辽盆地北部营城组火山岩地层油气勘探也取得了较好的效果。所有这些都 展示了火山岩良好的勘探前景。对这类特殊的储层 进行研究时,要进行火山岩岩性识别。识别含油气盆地中的火山岩岩性最直接有效的方法是岩心分析,但是考虑到油田上的生产效益,深层钻井取心成本很高,因此不可能在每口井中都取心,加上过去的老井在钻探过程中,遇到火山岩层时常常又不够重视,所以取心更是很少。因此利用间接的方法进行岩性识别成了必然。 在不同的地区,由于喷发方式和所处的构造不同,火山岩的岩性具有很大差异,岩石类型多样化,结构、构造复杂化。比如在我国中部的石西地区火 世界地质 G lobal G eology ,2003,22(2):136~140

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

测井基础知识

测井基础知识 1. 名词解释: 孔隙度:岩石孔隙体积与岩石总体积之比。反映地层储集流体的能力。 有效孔隙度:流体能够在其中自由流动的孔隙体积与岩石体积百分比。 原生孔隙度:原生孔隙体积与地层体积之比。 次生孔隙度:次生孔隙体积与地层体积之比。 热中子寿命:指热中子从产生的瞬时起到被俘获的时刻止所经过的平均时间。 放射性核素:会自发的改变结构,衰变成其他核素并放射出射线的不稳定核素。 地层密度:即岩石的体积密度,是每立方厘米体积岩石的质量。 地层压力:地层孔隙流体(油、气、水)的压力。也称为地层孔隙压力。地层压力高于正常值的地层称为异常高压地层。地层压力低于正常值的地层称为异常低压地层。 水泥胶结指数:目的井段声幅衰减率与完全胶结井段声幅衰减率之比。 周波跳跃:在声波时差曲线上出现“忽大忽小”的幅度急剧变化的现象。 一界面:套管与水泥之间的胶结面。 二界面:地层与水泥之间的胶结面。 声波时差:声速的倒数。 电阻率:描述介质导电能力强弱的物理量。 含油气饱和度(含烃饱和度Sh):孔隙中油气所占孔隙的相对体积。 含水饱和度Sw:孔隙中水所占孔隙的相对体积。含油气饱和度与含水饱和度之和为1. 测井中饱和度的概念:1.原状地层的含烃饱和度Sh=1-Sw。2.冲洗带残余烃饱和度:Shr =1-Sxo (Sxo表示冲洗带含水饱和度)。3.可动油(烃)饱和度Smo=Sxo-Sw或Smo =Sh-Shr。4.束缚水饱和度Swi与残余水饱和度Swr成正比。 泥质含量:泥质体积与地层体积的百分比。 矿化度:溶液含盐的浓度。溶质重量与溶液重量之比。 2. 各测井曲线的介绍: SP 曲线特征: 1.泥岩基线:均质、巨厚的泥岩地层对应的自然电位曲线。 2.最大静自然电位SSP:均质巨厚的完全含水的纯砂层的自然电位读数与泥岩基线读数差。 3.比例尺:SP曲线的图头上标有的线性比例,用于计算非泥岩层与泥岩基线间的自然电位差。 4.异常:指相对泥岩基线而言,渗透性地层的SP曲线位置。(1)负异常:在砂泥岩剖面井中,当井内为淡水泥浆时(Cw>Cmf),渗透性地层的SP曲线位于泥岩基线的左侧(Rmf>Rw); (2)正异常:在砂泥岩剖面井中,当井内为盐水泥浆时(Cmf>Cw),渗透性地层的SP曲线位于泥岩基线的右侧(Rmf4d)的自然电位曲线幅度值近似等于静自然电位,且曲线的半幅点深度正对地层的界面。(3)随地层变薄曲线读数受围岩影响,幅度变低,半幅点向围岩方向移动。 SP 曲线的应用: 1.划分渗透性岩层:在淡水泥浆中负异常围渗透性岩层,在盐水泥浆中正异常围渗透性岩层。

第8章 密度测井和岩性密度测井

第八章 密度测井和岩性密度测井 此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。 §1 密度测井、岩性密度测井的地质物理基础 一、岩石的体积密度b ρ(即真密度): V G b =ρ (单位体积岩石的质量) 对含水纯岩石: φρφρρρρφ ?+-=?+?=+=f ma f ma ma f ma b V V V V G G )1( 单位:(g/cm 3) 其中:V V V ma =+φ (1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。 (2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。 且(盐水泥浆)(淡水泥浆)1.10 .1=f ρ 二、康普顿散射吸收系数∑ 中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A e ρσ??=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P 138),常见的砂岩、石灰岩、白云

岩的A z 的平均值也近似为0.5(见表8-2), 所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。 密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。 三、岩石的光电吸收截面 1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。 n A Z λρτ1.40089 .0= 2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。而它与原子序数关系为: Pe=aZ 3.6 a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。 3、体积光电吸收截面 体积光电吸收截面也是描述发生光电效应时物质对伽马光子吸收能力的一个参数,它是指每立方米物质的光电吸收截面,以U 来表示,单位b/cm 3。地层岩性不同,其体积光电吸收截面不同(表8-2,139页)。U 对岩性敏感,也是岩性密度测井所要确定的一个参数。岩石的体积光电吸收截面为: ∑==n i i i V U U 1 Ui 、Vi 分别为组成岩石各部分的光电吸收截面和相对体积。如孔隙度为φ的纯砂岩的光电吸收截面为: f ma U U U ??+-=)1( 体积光电吸收截面U 与光电吸收截面指数Pe 有近似关系: b U Pe ρ/≈ 故可由Pe 求得U 。 §2 地层密度测井

测井复杂岩性CRA解释参数说明

CRA解释参数说明 PORX:由XFG所确定的测井曲线的流体孔隙度数值隐含值=100(CNL)或=189(AC)PORY:由YFG所确定的曲线的流体孔隙度数值,隐含值1(DEN) C1X:由XFG确定测井曲线的C1矿物的测井值 C1Y:由YFG确定测井曲线的C1矿物的测井值 C2X:由XFG确定测井曲线的C2矿物的测井值 C2Y:由YFG确定测井曲线的C2矿物的测井值 C3X:由XFG确定测井曲线的C3矿物的测井值 C3Y:由YFG确定测井曲线的C3矿物的测井值 C4X:由XFG确定测井曲线的C4矿物的测井值 C4Y:由YFG确定测井曲线的C4矿物的测井值 SHFG:求泥质含量使用量法的选择标志 如果SHFG=1 使用GR和GMN1,GMX1 如果SHFG=2 使用CNL和GMN2,GMX2 如果SHFG=3 使用SP和GMN3,GMX3 如果SHFG=4 使用NLL和GMN4,GMX4 如果SHFG=5 使用RT和GMN5,GMX5 如果SHFG=6 使用SH=(PORA—PORD)/PORA SHFG的隐含值为1 GMN1,GMX1:为纯砂岩(灰岩)纯泥岩的GR测井值。隐含值为0,100 GMN2,GMX2:为对应纯砂岩(纯灰岩)和纯泥岩的CNL测井值。隐含值0,100 GMN3,GMX3:为SP曲线上纯砂岩(灰岩)与纯泥岩的相应值,隐含值为0,100 GMN4,GMX4:为NLL曲线上纯砂岩(灰岩)与纯泥岩的相应值,隐含值为0,100 GMN5,GMX5:为RT曲线上纯砂岩(或灰岩)与泥岩的相应值,隐含数为0,100 XFG,YFG:为岩性交绘图轴坐标的选择标志 如果XFG=1 使用CNL 如果XFG=2 使用AC 如果YFG=1 使用DEN 如果YFG=2 使用AC 如果XFG,YFG参数不填则隐含值为1,1 DSH,NSH,TSH:为泥岩的密度、中子和声波的响应数值,隐含值为2.5,35,100 SIRR:为迪门(TIMUR)渗透率公式中的束缚水饱和度,隐含值为50 RW,RMF,RSH:为地层水,泥浆滤液和泥岩的电阻率。隐含值=1,0.06,5 A,M:计算地层因素公式中的系数隐含值=1,2 N:含水饱和度指数,隐含值为2 GCUR:自然伽玛校正公式的标志。对第三系岩层用GCUR=1,对于较老地层GCUR=2。隐含值=2 BITS:钻头直径 SWOP:选用含水饱和度方程式的标志 SWOP=1使用SIMENDEAUX公式 SWOP=2 使用壳牌的坚硬岩石的方程式 SWOP=3 使用阿尔奇方程式 当SWOP不赋值时,隐含数为3 DG颗粒密度,隐含=2.65 DF流体密度,隐含值=1 TM,TF,CP:骨架、流体的声波值,CP是岩石的压实校正系数。它们的隐含值是55.5,189,1 使用RT的标志

测井曲线解释

测井曲线基本原理及其应用 一.国产测井系列 1、标准测井曲线 2.5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0.5m电位曲线。测量地层的侵入带电阻率。0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性和铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2.5米底部梯度曲线。以其极大值和极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2.5粘梯度和自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

滴西地区火山岩岩性_岩相分布特征研究

第12卷第35期2012年12月1671—1815(2012)35-9657-05 科学技术与工程 Science Technology and Engineering Vol.12No.35Dec.2012 2012Sci.Tech.Engrg. 滴西地区火山岩岩性、岩相分布特征研究 赵建芝 柴绪兵* 刘景山 别慧秋 (大庆钻探工程公司地球物理勘探一公司研究院,大庆163000) 摘要滴西地区是准噶尔盆地石炭系火山岩十分发育的地区。多个井区的石炭系气藏已探明。通过区域地质条件的分 析,基于地震资料、钻井、测井资料,在单井、联井相分析的基础上,应用波形聚类、分频属性、相位属性分析等手段,对火山岩岩性、岩相分析研究。预测有利火山岩储层发育区,指导下步勘探部署方向。关键词 火山岩岩性 岩相 单井相 地震相 地震属性 波形聚类 有利火山岩储层 中图法分类号 TE122.22; 文献标志码 B 2012年8月15日收到 * 通信作者简介:柴绪兵。E-mail :chaixubing19861216@https://www.360docs.net/doc/30239822.html, 。 滴西地区位于陆梁隆起区东部的滴南凸起之上,受滴水泉南北断裂夹持的向西倾没的大型复式鼻状构造。目前研究区已发现千亿立方米储量规模的克拉美丽气田。随着对火山岩的勘探开发不断深入,进一步证明石炭系火山岩是滴西地区油气储集的有利层系。但火山岩储层是一种复杂而特殊的储集层,识别火山岩储层,首先要了解储层各方面的特征如岩性、岩相等[1]。因此,火山岩岩性、岩相的研究是火山岩有利储层预测的重中之重。本文旨在以滴西地区火山岩岩性、岩相研究为例,在井震结合的基础上,探讨利用波形聚类、分频属性、 相位属性、地震属性分析等手段,对火山岩岩性、岩相进行刻画分析,进一步预测有利火山岩储层有利区,指导井位部署。 1石炭系区域地质特征 研究区石炭系主要为海西中期沉积的一套浅 变质火山碎屑岩建造和局部岩浆侵入岩建造以及海陆过渡相、陆相沉积的碎屑岩建造,区域上,石炭系发育有上、下两个统3个组。自下而上为下统塔木岗组(C 1t )、滴水泉组(C 1d )、(C 2b )。下石炭统火山活动较弱,上统巴塔玛依内山组为火山岩夹沉 积岩,火山活动强烈。赖世新等(2009)对三南一滴水泉地区巴塔玛依内山组的划分成三段,分别为上序列火山岩组合、沉积岩层和下序列火山岩组合[2]。 从各井钻揭情况上看,DX1001、滴西10、滴西21等井为流纹质、火山角砾质、凝灰质的酸性岩,而滴西17井以沉积岩夹层为界将火山岩分为上下两个岩性段。从沉积学角度分析,该套沉积岩夹层是火山活动间歇期的沉积产物,因此该套沉积岩夹层在泥岩、砂岩、砾岩和煤线组合中含有大量的火山碎屑。而沉积岩夹层之上的火山岩段,其岩性在纵向上表现为底部发育玄武岩基性段。向上为安山岩中性段,区域上在安山岩中性段之上还发育一套流纹岩-凝灰岩酸性岩段。但后期的地壳抬升剥蚀作用使得滴西17井酸性岩段剥蚀殆尽,因此沉积岩夹层之上的火山岩在纵向上具备从基性-中型-酸性的正序列韵律性岩性变化特点。结合岩浆演化规律,将沉积岩夹层之上的火山岩总体划归同一个火山序列,命名为火山序列Ⅱ(或上序列)。滴西17井只钻遇了沉积岩夹层下伏火山岩段的顶部,其岩性以流纹质酸性岩为主。结合区域认识和岩浆演化规律分析,可将沉积岩夹层下伏的巴塔玛依内山组火山岩段划归为同一火山序列,命名为火山序列Ⅰ(或下序列), 滴西17井钻遇的流纹质酸性岩是火山序列Ⅰ顶部的酸性岩段(图1)。

测井曲线解释

测井曲线基本原理及其应用 一. 国产测井系列 1、标准测井曲线 2、5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0、5m电位曲线。测量地层的侵入带电阻率。0、45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时就是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性与铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,就是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2、5米底部梯度曲线。以其极大值与极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2、5粘梯度与自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

测井曲线的识别与应用

一、测井曲线资料应用的意义 测井资料在油、气田的勘探与开发中有广泛的的用途,大体可分为在裸眼井中的应用和套管井中的应用,及其它一些专门目的的应用。在裸眼井中,测井资料主要用于寻找油、气层,并对储集层的孔隙性、渗透性和含油性作出评价,为油、气田的开发决策提供信息;在套管井中,测井资料主要用于开发过程中油、气层的动态分析,为油、气田开发的合理调整提供资料。 二、常用的测井曲线的类型 常用的测井曲线有:自然电位曲线、自然伽玛测井曲线、微电位测井曲线、微梯度测井曲线、深感应测井曲线、中感应测井曲线、4米电阻测井曲线、声波时差测井曲线、井径测井曲线等。 三、常用测井曲线识别 第一节自然电位测井 在钻开岩层时,井壁附近产生的电化学活动能形成一电场,该场产生的电位就叫自然电位,其产生的原因是地层水矿化度和泥浆滤液矿化度压力不同,以及泥浆压力与地层压力不同。 在砂泥岩剖面中,自然电位曲线以泥岩为基线,只在砂质渗透性岩层处,才出现自然电位曲线异常,所以我们可以利用它来划分渗透性岩层。纯砂岩井段出现最大的负异常,含泥质的砂岩负异常幅度较低,

而且随泥质含量的增多负异常幅度下降。此外通过自然电位曲线幅度还可判断渗透层孔隙中所含流体的性质,一般含水砂岩的自然电位幅度比含油砂岩的自然电位幅度要高。 自然电位曲线的应用仅限于淡水泥浆钻的井,因为自然电位曲线幅度(偏离泥岩基线的幅度)与地层水含盐量和井中流体含盐量之差有关。对于淡水泥浆,纯砂岩的负向偏移幅度最大,当砂岩含泥时,幅度减小。而当采用盐水泥浆时,含盐水地层的SP曲线,偏移很小或没有偏移,甚至出现反转。自然电位曲线在含盐水纯砂岩部位最高,而当地层含有烃类时,自然电位幅度有所降低,当砂层厚度小于3m 或更薄时,其幅度大大降低;当砂岩胶结作用较强时,其幅度可显著降低。 应用:1、自然电位曲线,对于厚岩层可用由线半幅点划分岩层界面,对于薄岩层必须与视电阻率曲线配合,才能获得准确结果。 2、可以很清楚地划分渗透层与非渗透层。而且可以运用自然电位曲线观察岩性的变化,如当砂岩岩性变细,含泥量增加时,常表现为自然电位幅度的降低等。 3、判断水淹层:利用自然电位曲线上出现的基线偏移确定水淹程度,并根据偏移量的大小估计水淹程度。 第二节自然伽玛测井 自然伽玛测井是在井内测量岩层中自然存在的放射性核素核衰变过 程中放射出来的γ射线的强度来研究地质问题的一种测井方法。

利用测井资料判断岩性及油气水层知识讲解

利用测井资料判断岩性及油气水层 一、普遍电阻率测井(双侧向、三侧向、2.5m、4.0m、七侧向、微电极) 1、基本原理:电阻率测井是由一个供电电极或多个供电电极供给低频或较低频电流I,当电流通过地层时,用另外的测量电极测量电位U,利用Ra=K U/I K:电极系数 Ra:视电阻率 U:电位 I:电流 2、应用 (1)求地层电阻率 利用微球形聚焦、微电极,求取冲洗带电阻率。 利用浅侧向、2.5m求取侵入带电阻率。 利用深侧向、4.0m求取原状地层电阻率。 (2)确定岩性界面: 利用微球形聚焦、微电极划分界面,界面划在曲线最陡或半幅点处。 利用侧向划分界面,界面可划在曲线半幅点处。 利用2.5m划分界面,顶界划在极小值,底界划在极大值。 (3)判断岩性 泥岩:低电阻,微球形聚焦、微电极、双侧向基本重合,2.5m、4.0m平直。 灰质岩:高阻,微球形聚焦,微电极、双侧向基本重合,2.5m、4.0m都高。 盐膏岩:电阻特别高,井径不规则时深侧向>浅侧向>微球聚焦。4.0m>2.5m>微电极。 页岩、油页岩:高阻,井径不规则时微球、双侧向基本重合,4.0m>2.5m>微电极。 (4)判断油气水层 ①油气层:A、Rmf>Rw ,增阻侵入,随探测深度增加电阻率降低。Rmf――泥浆滤液电阻率,Rw――地层水电阻率。 B、RmfRw,增阻侵入,R深<R浅。 B、Rmf

主要测井曲线及其含义

主要测井曲线及其含义

自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。 ③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,

测井

地球物理测井概念:测井是用各种专门的仪器设备,沿井身测量井剖面上岩层的各种地球物理参数,并根据测量结果进行综合解释来判断岩性、确定油气层位置及油气含量等的方法 石灰岩密度孔隙度单位:无论地层是何种岩性,均按石灰岩参数选取骨架密度参数,由此得到的石灰岩孔隙度单位。 岩石体积物理模型:根据岩石的组成按其物理性质的差异,把单位体积岩石分成相应的几部分,然后研究每一部分对岩石宏观物理量的贡献,并把岩石的宏观物理量看成是各部分贡献之和。 热中子寿命:热中子从生成开始到被俘获吸收为止所经历的平均时间。 相对渗透率Kro:是指岩石的有效渗透率与绝对渗透率的比值,其值在0~1之间。通常用Kro,Krg,Krw分别表示油,气,水的相对渗透率。 视电阻率:因为地层是非均匀介质,所以,进行电阻率测量时,电极系周围各部分介质的电阻率对测量结果都有贡献,测出的不是岩石的真电阻率,将这种在综合条件影响下测量的岩石电阻率称为视电阻率。 周波跳跃:在疏松地层或含气地层中,由于声波能量的急剧衰减,以致接收器接受波列的首波不能触发记录,而往往是后续波触发接收器,从而造成声波时差的急剧增大,这种现象称为周波跳跃。 声波时差:声波传播单位距离所用的时间。 绝对渗透率:当岩石孔隙中只有一种流体时,描述流体通过岩石能力的参数。。 地层压力:又称地层孔隙压力,指作用在岩石孔隙内流体(油,气,水)上的压力。 视地层水电阻率Rwa:是指地层电阻率Rt与其地层因素F的比值,用符号Rwa表示,即Rwa=Rt/F。 含油气孔隙度Sh:岩石含油气体积占有效孔隙体积的百分数,用Sh表示,且Sw+Sh=1。 有效孔隙度:是指具有储集性质的有效孔隙体积占岩石体积的百分数。 缝洞孔隙度:是指有效缝洞体积占岩石体积的百分数。 储集层有效厚度:是指在目前经济技术条件下,能够产出工业性油气流的储集层实际厚度,即符合油气层标准的储集层厚度扣出不符合标准的夹层(如泥岩或致密层)剩下的地层厚度。裂隙孔隙度:单位体积岩石中裂缝体积所占的百分数。 残余油饱和度Sor:当前开发技术,经济条件下无法开采出的油气占有效孔隙体积的百分数。 扩散电动势:在扩散过程中,各种离子的迁移速度不同,这样在低浓度溶液一方富集负电荷,高浓度溶液富集正电荷,形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势,记为Ed。 扩散吸附电动势:泥岩薄膜离子扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成吸附扩散电动势,记为Eda。 自然电位负异常:当地层水矿化度大于泥浆滤液矿化度时,储集层自然电位曲线偏向低电位一方的异常称为负异常。 自然电位正异常:当地层水矿化度小于泥浆滤液矿化度时,储集层自然电位曲线偏向高电位一方的异常称为正异常。 泥浆侵入:在钻井过程中,通常保持泥浆柱压力稍大于地层压力,在压力差作用下,泥浆滤液向渗透层侵入,泥浆滤液替换地层孔隙所含的液体而形成侵入带,同时泥浆中的颗粒附在井壁上形成泥饼,这种现象叫泥浆侵入。 泥浆高侵:侵入带电阻率Ri大于原状地层电阻率Rt的现象。 泥浆低侵:侵入带电阻率Ri小于原状地层电阻率Rt的现象。 梯度电极系:成对电极距离小于不成对电极到成对电极距离的电极系。 电位电极系:成对电极距离大于不成对电极到成对电极距离的电极系。 标准测井:一种简单的综合测井,是各油田或油区为了粗略划分岩性和油、气、水层,并进行井间地层对比,对每口井从井口到井底都必须测量的一套综合测井方法。因它也常用于地层对比,故又称对比测井。

测井岩性识别方法研究_杨玲

2015年第2期(总第317期) NO.2.2015 ( Cumulativety NO.317 ) 1 概述 识别储层岩性最直接最有效的方法是岩心分析,但考虑到油田上的生产效益,深层钻井成本很高,因此不能在每口井中都取心,测井岩性识别方法作为一种简单而有效的技术方法,已经得到了广泛的应用。尤其是近年来岩性识别方法得到了迅猛的发展,2009年李祖兵利用M-N交会图对具有不同结构和构造的同类岩性进行了识别;2010年张伯新以准噶尔盆地六九区石炭系火山岩为研究对象,构建了测井相-岩性建模数据库,应用模糊数学方法建立了工区内火山岩岩性识别标准模型;2013年杨辉运用BP神经网络模型对研究区域复杂岩性进行识别,识别结果与岩心岩性和录井岩性较为相符,对该区域的储层识别和沉积相的研究具有一定的参考价值。2014年刘国全针对沧东凹陷孔二段源储互层型致密储层岩性识别的难点,利用散点图、交会图及ECS测井进行岩性的识别,形成了源储互层型致密油岩性识别的有效方法等。 测井岩性识别方法是根据已有的测井曲线资料来划分地下地层的岩性,传统岩性识别方法的方法为交会图法。测井曲线资料包含有丰富的岩性信息,地下的岩性主要包括岩石的物理组成、排列结构、孔隙度及孔隙流体的性质直接着影响测井曲线的测量结果,其中自然伽马(GR)、自然电位(SP)及泥质含量(Vsh)等测井曲线对地下岩性的变化反应最为灵敏。实际应用中,特定的岩性对应着特定的测井参数组合,因此,测井解释人员可以根据特定的测井参数组合来确定地下地层的岩性。 2 基础数据整理 测井曲线的质量直接影响整个研究工作的顺利开展。实际测量过程中一方面由于环境因素的影响会造成测井资料中出现一些不稳定的跳跃状态,需要对测井曲线进行滤波处理;另一方面由于仪器刻度的不精确性会引起刻度误差,需要进一步做标准化处理。 其中频率直方图是测井标准化处理的一种基础方法,首先选取一套岩性稳定、厚度大、分布范围广的地层作为标准层,然后对选定的标准层分别做自然伽马、补偿声波、补偿密度、补偿中子孔隙度等测井资料频率直方图,确定每项测井资料在每口井的主要分布范围和峰值,确定对应关键井相应的测井资料分布范围和峰值确定校正值并进行校正。 3 常规测井资料识别地层岩性 实际情况中,考虑成本及效率因素,绝大部分油田都采用常规的测井系列,常规的测井资料主要包括自然伽马(GR)、自然电位(SP)、声波时差(DT)、密度(DEN)、电阻率(Rt、Rxo)、放射性(CNL)等岩石物理参数,这些测井曲线包含了地下地层的岩性、物性和含油性信息,是一套比较全面而灵敏的测量组合系统。大量理论及实践资料表明,常规测井识别岩性是可靠并且有效的。 利用常规测井资料识别地层岩性运用最多的是交会图法。交汇图法是选用两种对岩性反应敏感的物理量进行交会来识别地层的岩性,主要是依据不同储层的岩性和流体类型异常在交会图平面上占有不同区域的特点,进行异常划分。常用的有中子-密度交会图、声波时差-密度交会图、中子-声波时差交会图等。交会图具有制作简单、使用方便和快捷的优点,是一种被广泛采用的岩性识别方法。但其缺点是对复杂岩性识别率低。 根据某工区18口井不同岩性测井响应的差别,针对泥岩、砂岩干层、油层、水层及盐岩等5种岩性建立的GR-波阻抗交会图样板,利用该样板可以直观有效地进 测井岩性识别方法研究 杨 玲1 李鹏飞2 (1.山西省煤炭地质114勘查院,山西长治 046011;2.长江大学,湖北武汉 430100) 摘要:地层的岩性是岩石颜色、成分、结构、构造等特征的总和,识别钻井剖面上地层的岩性,尤其是储层的岩性,是石油勘探和开发中的一项重要的基础性工作。其能有效进行测井储层识别,岩性识别是前提,因此,岩性识别方法在油气层识别中占有不可或缺的地位。 关键词:测井技术;岩性识别方法;储层;石油勘探;石油开发 文献标识码:A 中图分类号:P631 文章编号:1009-2374(2015)02-0176-02 DOI:10.13535/https://www.360docs.net/doc/30239822.html,ki.11-4406/n.2015.0184 - 176 -

测井曲线的识别及应用(3)

第一讲测井曲线的识别及应用 钻井取芯、岩屑录井、测井是目前比较普及的三种认识了解地层的方法。钻井取芯直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的;具有经济、实用、收获率高,易保存的优势,是目前我们认识地层的主要途径。 测井系列:鄂尔多斯盆地常规测井系列由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。 测井结果的表现形式有综合测井图和标准测井图两种。 综合测井图:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200,斜井在目的层段有校深图。综合测井图在油田开发阶段的地层对比划分中使用较多。 标准测井图:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,近几年的标准测井图仅比综合测井图少了一项微电极测井。标准测井图在区域勘探阶段的地层对比划分中使用较多。 名词解释: 泥饼:在井筒压力作用下,泥浆中的水分进入渗透性地层后,泥浆颗粒吸附在井壁上,形成的固体物质。泥饼的厚度一般在3—5厘米之间。 冲洗带:冲洗带是紧靠井壁附近,地层中的流体几乎被全部赶走了的部分。冲洗带宽度(深入地层的范围)一般约7—8厘米。 侵入带:从冲洗带到地层的过渡段,泥浆滤液与地层中的流体混合的部分。侵入带宽度一般1~2米。 第一节、测井曲线的识别 1、感应测井 感应测井是利用电磁感应的原理来测量地层的导电性能。双感应—八侧向综合井下仪器,测量的是地层深、中、浅三个不同位置上的电阻率值。深感应

相关文档
最新文档