一类约束满足问题及其算法

一类约束满足问题及其算法
一类约束满足问题及其算法

禁忌搜索算法浅析

禁忌搜索算法浅析 摘要:本文介绍了禁忌搜索算法的基本思想、算法流程及其实现的伪代码。禁忌搜索算法(Tabu Search或Taboo Search,简称TS算法)是一种全局性邻域搜索算法,可以有效地解决组合优化问题,引导算法跳出局部最优解,转向全局最优解的功能。 关键词:禁忌搜索算法;组合优化;近似算法;邻域搜索 1禁忌搜索算法概述 禁忌搜索算法(Tabu Search)是由美国科罗拉多州大学的Fred Glover教授在1986年左右提出来的,是一个用来跳出局部最优的搜寻方法。在解决最优问题上,一般区分为两种方式:一种是传统的方法,另一种方法则是一些启发式搜索算法。使用传统的方法,我们必须对每一个问题都去设计一套算法,相当不方便,缺乏广泛性,优点在于我们可以证明算法的正确性,我们可以保证找到的答案是最优的;而对于启发式算法,针对不同的问题,我们可以套用同一个架构来寻找答案,在这个过程中,我们只需要设计评价函数以及如何找到下一个可能解的函数等,所以启发式算法的广泛性比较高,但相对在准确度上就不一定能够达到最优,但是在实际问题中启发式算法那有着更广泛的应用。 禁忌搜索是一种亚启发式随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向。 TS是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中涉及邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu 1ength)、候选解(candidate)、藐视准则(candidate)等影响禁忌搜索算法性能的关键因素。迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。 2禁忌搜索算法的基本思想 禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索,TS的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。 禁忌搜索是对局部邻域搜索的一种扩展,是一种全局逐步寻求最优算法。局部邻域搜索是基于贪婪思想持续地在当前解的邻域中进行搜索,虽然算法通用易实现,且容易理解,但搜索性能完全依赖于邻域结构和初解,尤其会陷入局部极小而无法保证全局优化型。 禁忌搜索算法中充分体现了集中和扩散两个策略,它的集中策略体现在局部搜索,即从一点出发,在这点的邻域内寻求更好的解,以达到局部最优解而结束,为了跳出局部最优解,扩散策略通过禁忌表的功能来实现。禁忌表中记下已经到达的某些信息,算法通过对禁

约束优化算法拉格朗日乘子法

拉格朗日乘子法 约束优化问题的标准形式为: min (),..()0,1,2,...,()0,1,2,...,n i j f x x R s t g x i m h x j l ∈≤=== ,,:n i j f g h R R →其中 约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。 1. 罚函数法 罚函数法(内点法)的主思想是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。 它只适用于不等式约束: min (),..0,1,2,...,n i f x x R s t g i m ∈≤= 它的可行域为: {|()0,1,2,...,}n i D x R g x i m =∈≤= 对上述约束问题,其其可行域的内点可行集0D ≠?的情况下,引入效用函数: min (,)()()B x r f x rB x =+%、 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑% 算法的具体步骤如下: 给定控制误差0ε>,惩罚因子的缩小系数01c <<。 步骤1:令1k =,选定初始点(0)0x D ∈,给定10r >(一般取10)。 步骤2:以()k x 为初始点,求解无约束 min (,)()()k B x r f x r B x =+% 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑%,得最优解()()k k x x r = 步骤3:若()()k k r B x ε<%,则()k x 为其近似最优解,停;否则,令,1k k r cr k k ==+, 转步骤2.

约束优化设计

行域 φ 内,选择一个初始点 X 然后确定一个可行 得一个目标函数有所改善的可行的新点 X 即完成了 第四章 约束优化设计 ● 概述 ● 约束坐标轮换法 ● 随机方向法 ● 罚函数法 概述 结构优化设计的问题,大多属于约束优化设计问题,其数学模型为: s .t . min f (x ) g u (x ) ≤ 0 h v (x ) = 0 x ∈ R n u = 1, 2,..., m v = 1, 2,..., p < n 根据求解方式的不同,可分为直接解法和间接解法两类。 直接解法是在仅满足不等式约束的可行设计区域内直接求出问题的约束最优解。属于 这类方法的有:随机实验法、随机方向搜索法、复合形法、可行方向法等。其基本思路: 在由 m 个不等式约束条件 gu(x )≤0 所确定的可 0 搜索方向 S ,且以适当的步长沿 S 方向进行搜索,取 1 一次迭代。以新点为起始点重复上述搜索过程,每次 均按如下的基本迭代格式进行计算: X k+1=X k +α k S k (k=0,1,2,..) 逐步趋向最优解, 直到满足终止准则才停止迭代。 直接解法的原理简单,方法实用,其特点是: 1) 由于整个过程在可行域内进行,因此,迭代计算 不论何时终止,都可以获得比初始点好的设计点。 2) 若目标函数为凸函数,可行域为凸集,则可获得全域最优解,否则,可能存在多个局 部最优解,当选择的初始点不同,而搜索到不同的局部最优解。 3) 要求可行域有界的非空集

φ(X,μ1,μ2)=F(X)+∑μ 1 G??g j X)??+∑μ2H??h k(X)?? a)可行域是凸集;b)可行域是非凸 集 间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于间接解法可以选用已研究比较成熟的无约束优化方法,并且容易处理同时具有不等式约束和等式约束的问题。因而在机械优化设计得到广泛的应用。 间接解法中具有代表性的是惩罚函数法。将约束函数进行特殊的加权处理后,和目标函数 结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优 化问题。 m l j=1k=1 新目标函数 然后对新目标函数进行无约束极小化计算。 加权因子 间接法是结构优化设计中广泛使用的有效方法,其特点: 1)由于无约束优化方法的研究日趋成熟,为间接法提供可靠基础。这类算法的计算效率和数值计算的稳定性大有提高; 2)可以有效处理具有等式约束的约束优化问题; 3)目前存在的主要问题,选取加权因子较为困难,选取不当,不仅影响收敛速度和计算精度,甚至导致计算失败。

禁忌搜索算法评述(一)

禁忌搜索算法评述(一) 摘要:工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。 关键词:禁忌搜索算法;优化;禁忌表;启发式;智能算法 1引言 工程领域内存在大量的优化问题,对于优化算法的研究一直是计算机领域内的一个热点问题。优化算法主要分为启发式算法和智能随机算法。启发式算法依赖对问题性质的认识,属于局部优化算法。智能随机算法不依赖问题的性质,按一定规则搜索解空间,直到搜索到近似优解或最优解,属于全局优化算法,其代表有遗传算法、模拟退火算法、粒子群算法、禁忌搜索算法等。禁忌搜索算法(TabuSearch,TS)最早是由Glover在1986年提出,它的实质是对局部邻域搜索的一种拓展。TS算法通过模拟人类智能的记忆机制,采用禁忌策略限制搜索过程陷入局部最优来避免迂回搜索。同时引入特赦(破禁)准则来释放一些被禁忌的优良状态,以保证搜索过程的有效性和多样性。TS算法是一种具有不同于遗传和模拟退火等算法特点的智能随机算法,可以克服搜索过程易于早熟收敛的缺陷而达到全局优化1]。 迄今为止,TS算法已经广泛应用于组合优化、机器学习、生产调度、函数优化、电路设计、路由优化、投资分析和神经网络等领域,并显示出极好的研究前景2~9,11~15]。目前关于TS 的研究主要分为对TS算法过程和关键步骤的改进,用TS改进已有优化算法和应用TS相关算法求解工程优化问题三个方面。 禁忌搜索提出了一种基于智能记忆的框架,在实际实现过程中可以根据问题的性质做有针对性的设计,本文在给出禁忌搜索基本流程的基础上,对如何设计算法中的关键步骤进行了有益的总结和分析。 2禁忌搜索算法的基本流程 TS算法一般流程描述1]: (1)设定算法参数,产生初始解x,置空禁忌表。 (2)判断是否满足终止条件?若是,则结束,并输出结果;否则,继续以下步骤。 (3)利用当前解x的邻域结构产生邻域解,并从中确定若干候选解。 (4)对候选解判断是否满足藐视准则?若成立,则用满足藐视准则的最佳状态y替代x成为新的当前解,并用y对应的禁忌对象替换最早进入禁忌表的禁忌对象,同时用y替换“bestsofar”状态,然后转步骤(6);否则,继续以下步骤。 (5)判断候选解对应的各对象的禁忌情况,选择候选解集中非禁忌对象对应的最佳状态为新的当前解,同时用与之对应的禁忌对象替换最早进入禁忌表的禁忌对象。 (6)转步骤(2)。 算法可用图1所示的流程图更为直观的描述。 3禁忌搜索算法中的关键设计 3.1编码及初始解的构造 禁忌搜索算法首先要对待求解的问题进行抽象,分析问题解的形式以形成编码。禁忌搜索的过程就是在解的编码空间里找出代表最优解或近似优解的编码串。编码串的设计方式有多种策略,主要根据待解问题的特征而定。二进制编码将问题的解用一个二进制串来表示2],十进制编码将问题的解用一个十进制串来表示3],实数编码将问题的解用一个实数来表示4],在某些组合优化问题中,还经常使用混合编码5]、0-1矩阵编码等。 禁忌搜索对初始解的依赖较大,好的初始解往往会提高最终的优化效果。初始解的构造可以

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

人工智能 约束满足问题 6-3 回溯搜索CSP

Backtracking Search for CSPs

Contents ?6.3.1 Overview of Backtracking Search ?6.3.2Questions to Improve Backtracking

6.3. Backtracking Search for CSPs Overview of Backtracking Search 回溯搜索概述 ?It is a general algorithm on depth-first search, used for finding solutions to some computational problems, notably CSPs. 是一种深度优先搜索的通用算法,用于查找某些计算问题的答案,尤其是CSPs。 ?Backtracking search incrementally builds candidates to the solutions, and abandons each partial candidate c(backtracks), as soon as it determines that c cannot possibly be completed to a valid solution. 回溯搜索递增地构建解的候选,而且一旦确定部分候选c不能成为一个合法的解,就将c抛弃(回溯)。 Example: 8-queens puzzle 8皇后难题 ?In the common backtracking approach, the partial candidates are arrangements of k queens in the first k rows of the board, all in different rows and columns. 常见的回溯方法,部分候选是在棋盘的在前k行上布局k个皇后,所有这些要在不同的行与列上。

约束满足与邻域搜索结合的混合算法及应用

约束满足与邻域搜索结合的混合算法及应用[摘要] 总结约束满足求解技术和邻域搜索算法,分析约束满足与邻域搜索 单一算法的优劣,以及两者结合的优势,提出约束满足与邻域搜索相结合的混合算法的一般框架,并以Job Shop 调度优化问题为例对该算法框架进行实例说明。 [关键词] 约束满足;邻域搜索;混合算法 ddoi : 10 . 3969 / j . issn . 1673 - 0194 . 2009 . 21 . 017 1引言 约束满足技术集成了运筹学、人工智能、逻辑编程和图论中的方法和思想,是解决组合优化问题的一门新兴技术。约束满足建模能力较强,在约束求解中,能够充分利用问题的结构信息和约束关系,采用约束传播、回溯等技术对求解空间快速缩减,提高问题的求解效率。邻域搜索算法是一种非常有效的解决组合优化问题的方法,在搜索空间内利用局部指导规则探索优良解,搜索效率高,具有可衡量性。约束满足与邻域搜索法均存在自身的优势和局限性,相互结合可以有效利用算法的互补性。 目前对约束满足与邻域搜索相结合的混合算法的研究成果比较少。文献[1]将邻域搜索和向前看(Look Ahead)技术结合,在搜索过程中遇到死点时要么回溯,要么应用邻域搜索继续新的空间搜索。文献[2]中提出的“Decision-Repair”方法集成了禁忌搜索、一致性技术和基于冲突的启发式方法来引导搜索过程。文献[3]在系统搜索过程中,使用变量排序和值排序法,进行不完全搜索,用N皇后问题进行算法测试。文献[4]用约束规划算法产生一个可行解,作为禁忌搜索算法的初始解。文献[5]对NEH算法加以扩展,得到高质量的初始解,提出跳出局部极值方法,改进约束满足修复算法。 本文首先介绍约束满足技术和邻域搜索技术,然后总结两者相结合的混合算法的框架,最后以Job Shop 调度为例,给出混合算法实现步骤。 2约束满足技术和邻域搜索技术 2.1 约束满足技术

约束优化设计

第四章 约束优化设计 ● 概述 ● 约束坐标轮换法 ● 随机方向法 ● 罚函数法 概述 结构优化设计的问题,大多属于约束优化设计问题,其数学模型为: 根据求解方式的不同,可分为直接解法和间接解法两类。 直接解法是在仅满足不等式约束的可行设计区域内直接求出问题的约束最优解。属于这类方法的有:随机实验法、随机方向搜索法、复合形法、可行方向法等。其基本思路: 在由m 个不等式约束条件g u (x )≤0所确定的可行域φ内,选择一个初始点0 X 然后确定一个可行搜索方向S ,且以适当的步长沿S 方向进行搜索,取得一个目标函数有所改善的可行的新点1 X 即完成了一次迭代。以新点为起始点重复上述搜索过程,每次均按如下的基本迭代格式进行计算: k+1k k k =+S (k=0,1,2,..)X X α逐步趋向最优解, 直到满足终止准则才停止迭代。 直接解法的原理简单,方法实用,其特点是: 1) 由于整个过程在可行域内进行,因此,迭代计算不论何时终止,都可以获得比初始点好 的设计点。 2) 若目标函数为凸函数,可行域为凸集,则可获得全域最优解,否则,可能存在多个局部 最优解,当选择的初始点不同,而搜索到不同的局部最优解。 3) 要求可行域有界的非空集 1,2,...,1,2,...,u m v p n ==

间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于间接解法可以选用已研究比较成熟的无约束优化方法,并且容易处理同时具有不等式约束和等式约束的问题。因而在机械优化设计得到广泛的应用。 间接解法中具有代表性的是惩罚函数法。将约束函数进行特殊的加权处理后,和目标函数结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优化问题。 然后对新目标函数进行无约束极小化计算。 间接法是结构优化设计中广泛使用的有效方法,其特点: 1) 由于无约束优化方法的研究日趋成熟,为间接法提供可靠基础。这类算法的计算效率和 数值计算的稳定性大有提高; 2) 可以有效处理具有等式约束的约束优化问题; 3) 目前存在的主要问题,选取加权因子较为困难,选取不当,不仅影响收敛速度和计算精 度,甚至导致计算失败。 a) 可行域是凸集;b)可行域是非凸集 () ()()()121211 ,,m l j k j k X F X G g X H h X φμμμμ==??=++? ?????∑∑ 新目标函数 加权因子

约束优化算法拉格朗日乘子法

拉格朗日乘子法 约束优化问题的标准形式为: min (),..()0,1,2,...,()0,1,2,...,n i j f x x R s t g x i m h x j l ∈≤=== ,,:n i j f g h R R →其中 约束优化算法的基本思想就是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。 1. 罚函数法 罚函数法(内点法)的主思想就是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。 它只适用于不等式约束: min (),..0,1,2,...,n i f x x R s t g i m ∈≤= 它的可行域为: {|()0,1,2,...,}n i D x R g x i m =∈≤= 对上述约束问题,其其可行域的内点可行集0D ≠?的情况下,引入效用函数: min (,)()()B x r f x rB x =+%、 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑% 算法的具体步骤如下: 给定控制误差0ε>,惩罚因子的缩小系数01c <<。 步骤1:令1k =,选定初始点(0)0x D ∈,给定10r >(一般取10)。 步骤2:以()k x 为初始点,求解无约束 min (,)()()k B x r f x r B x =+% 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑%,得最优解()()k k x x r = 步骤3:若()()k k r B x ε<%,则()k x 为其近似最优解,停;否则,令,1k k r cr k k ==+,转步骤2、 2. 拉格朗日乘子法

单纯形法解决无约束优化问题

分数: ___________任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,

禁忌搜索算法摘录

禁忌(Tabu Search)算法是一种亚启发式(meta-heuristic)随机搜索算法1,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。 为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。 当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。这就是禁忌搜索 中“禁忌表(tabu list)”的含义。那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个没有兔子留守的地方优越性太突出,超过 了“best so far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。 伪码表达 procedure tabu search; begin initialize a string vc at random,clear up the tabu list; cur:=vc; repeat select a new string vn in the neighborhood of vc; if va>best_to_far then {va is a string in the tabu list} begin

多维无约束优化算法

多维无约束优化算法 多维无约束优化问题的一般数学表达式为: 求n 维设计变量 使目标函数 多维无约束优化算法就是求解这类问题的方法,它是优化技术中最重要最基础的内容之一。因为它不仅可以直接用来求解无约束优化问题,而且实际工程设计问题中的大量约束优化问题,有时也是通过对约束条件的适当处理,转化为无约束优化问题来求解的。所以,无约束优化方法在工程优化设计中有着十分重要的作用。 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 (1)间接法——要使用导数,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。 (2)直接法——不使用导数信息,如坐标轮换法、鲍威尔法单纯形法等。用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。这类方法较适用于解决变量个数较少的(n ≤20)问题,一般情况下比间接法效率低。间接法除要计算目标函数值外,还要计算目标函数的梯度,有的还要计算其海赛矩阵。 各种优化方法之间的主要差异是在于构造的搜索方向,因此,搜索方向的构成问题乃是无约束优化方法的关键。 下面介绍几种经典的无约束优化方法。 1、梯度法 基本思想:函数的负梯度方向是函数值在该点下降最快的方向。将n 维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法或梯度法。 搜索方向s 取该点的负梯度方向 (最速下降方向) ,使函数值在该点附近的范围内下降最快 。 为了使目标函数值沿搜索方向能够获得最大的下降值,其步长因子应取一维搜索的最佳步长。即有 12[]T n x x x = x ()min f →x ()k f -?x k αmin ()n f R ∈x x 1(0,1,2,)k k k k s k α+=+= x x 1(0,1,2,) k k k k s k α+=+= x x 1()(0,1,2,) k k k k a f k +=-?= x x x 1()[()]min [()]min ()k k k k k k k a a f f a f f a f ?α+=-?=-?=x x x x x

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

禁忌搜索算法公式

6.2基于均衡原理的LRP 算法设计 6.2.1基于均衡原理的LRP 算法整体流程 基于均衡原理的LRP 算法整体流程如下: step1:初始化,设置整体收敛性判断参数δ; step2:随机生成一组LRP 选址问题的解D ,求出相应的目标值F ; step3:根据上层解D ,利用Frank-Wolfe 算法(见6.2.3节)求出各客户的 货物总量Q j 及客户在各配送中心的货物均衡分配量x j i ,; step4:根据D 及x j i ,运用禁忌算法求解VRP 问题(见6.2.4节),得出各配送 中对各客户的单位货物配送费用C j i ,; step5:根据 x j i ,及公式(6-8)求出下层 x j i ,与 d i 的关系y d x j i i j i W ,,+ =; step6:将LRP 模型上层目标函数中用代替,并代入下层求得的Q j 和C j i ,,运用禁忌算法 求得新的LRP 选址规划的解'Z 及目标函数'F (见6.2.2节); step7:如果δ<-F F ' ,转step8,算法结束,D 、F 为LRP 的最终解和解值;否则 '':,:F F D D ==,转step3; step8:算法结束。 6.2.2 LRP 选址规划的禁忌算法 模型上层是基于0-1整数规划的选址问题。由于选址问题是NP-hard ,如果 用精确算法求解,对节点数目的限制将有严格的要求。本章根据模型的特点, 采用禁忌算法优化产业选址问题。 1.解的构造和初始解的生成 采用二进制编码,编码长度为潜在的配送中心地点数量N T ,对于编码中位置i ,1表示选中i 点作为厂址,0表示没有选中。对于解中任意点i ,产生随机数δ,如果N T N /≥δ,则置i 点为0,否则置1。重复以上步骤m 次,得到初始解。 2.邻域的搜索 根据本章选址问题的特点,设计了三种邻域操作,分别为自身取反、2-swap 交换和2-opt 交换。 1).自身取反。为单点操作,即选择解中i 点,对该点的值取反; 2).2-swap 交换。为双点操作,选择解中两点进行交换,其它位置的值不变。例如解001101中的2、6点被选中,则2-swap 交换后变为:011100; 3).2-opt 交换。为多点操作,选择解中两点进行交换,同时两点之间的值逆序改变。例如解001101中的2、6点被选中,则2-swap 交换后变为:010110;

无约束优化算法:单纯形法

单纯形法 1. 算法原理 单纯形法的基本思想是: 设(0)(1)(),,...,n x x x 是n R 中的1n +个点,构成一个当前的单纯形,max min ,x x 定义如下: {}(0)(1)()max ()max (),(),...,()n f x f x f x f x = {}(0)(1)()min ()min (),(),...,()n f x f x f x f x = 记x 为这个单纯形除去max x 外的所有顶点的形心, ()max 01n i i x x x n =??=- ??? ∑ 取max x 关于x 的反射点(1)n x +,(1)max ()n x x x x +=+-构成新的单纯形,反复上述过程,直到达到停止条件。 2. 函数min f search 1) 函数语法 min (,0)x f search fun x = min (,0,) [,]min (...) [,,]min (...) [,,,]min (...) x f search fun x options x fval f search x fval exitflag f search x fval exitflag output f search ==== 函数输入: fun :目标函数 0x :迭代初始点 options :函数参数设置 函数输出: x :最优点 fval :最优点对应的函数值 exitflag :函数停止信息 1:函数收敛正常停止 0:迭代次数,目标函数计算次数达到最大数 -1:算法被输出函数停止 output :函数运算信息

2)函数使用 BanaFun m (1)目标函数程序. function f BanaFun x =不含导数解析式 ()() f x x x =-+- 100*((2)(1)^2)^2(1(1))^2 -函数不需要导数信息。 Nelder Mead Simplex SimplexUnc m (2)算法参数设置:. ('arg','','','','',250,'','') = options optimset L eScale off gradobj off MaxFunEvals display iter SimplexUnc m (3)函数调用运算:. = ('arg','','','','',250,'','') options optimset L eScale off gradobj on MaxFunEvals display iter x=- [ 1.9,2] x fval exitflag output f search BanaFun x options = [,,,]min(@,,) 3)计算结果 Iteration Func-count min f(x) Procedure 0 1 267.62 1 3 236.4 2 initial simplex 2 5 67.2672 expand 3 7 12.2776 expand 4 8 12.2776 reflect 5 10 12.277 6 contract inside 6 12 6.76772 contract inside 7 13 6.76772 reflect 8 15 6.76772 contract inside 9 17 6.76772 contract outside 10 19 6.62983 contract inside 11 21 6.55249 contract inside 12 23 6.46084 contract inside 13 24 6.46084 reflect 14 26 6.46084 contract inside 15 28 6.45544 contract outside 16 30 6.42801 expand 17 32 6.40994 expand 18 34 6.32449 expand 19 36 6.28548 expand 20 38 6.00458 expand 21 39 6.00458 reflect 22 41 5.43287 expand

禁忌搜索算法

无时限单向配送车辆优化调度问题的禁忌搜索算法无时限单向配送车辆优化调度问题,是指在制定配送路线时不考虑客户对货物送到(或取走)时间要求的纯送货(或纯取货)车辆调度问题。 无时限单向配送车辆优化调度问题可以描述为:从某配送中心用多台配送车辆向多个客户送货,每个客户的位置和需求量一定,每台配送车辆的载重量一定,其一次配送的最大行驶距离一定,要求合理安排车辆配送路线,使目标函数得到优化,并满足一下条件:(1)每条配送路径上各客户的需求量之和不超过配送车辆的载重量; (2)每条配送路径的长度不超过配送车辆一次配送的最大行驶距离; (3)每个客户的需求必须满足,且只能由一台配送车辆送货。 一、禁忌搜索算法的原理 禁忌搜索算法是解决组合优化问题的一种优化方法。该算法是局部搜索算法的推广,其特点是采用禁忌技术,即用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点,以此来挑出局部最优点。 在禁忌搜索算法中,首先按照随机方法产生一个初始解作为当前解,然后在当前解的领域中搜索若干个解,取其中的最优解作为新的当前解。为了避免陷入局部最优解,这种优化方法允许一定的下山操作(使解的质量变差)。另外,为了避免对已搜索过的局部最优解的重复,禁忌搜索算法使用禁忌表记录已搜索的局部最优解的历史信息,这可在一定程度上使搜索过程避开局部极值点,从而开辟新的搜索区域。 二、算法要素的设计 1.禁忌对象的确定 禁忌对象是指禁忌表中被禁的那些变化元素。由于解状态的变化可以分为解的简单变化、解向量分量的变化和目标值变化三种情况,则在确定禁忌对象时也有相对应的三种禁忌情况。 一般来说,对解的简单变化进行禁忌比另两种的受禁范围要小,因此可能早能造成计算时间的增加,但其优点是提供了较大的搜索范围。 根据配送车辆优化调度问题的特点,可采用对解的简单变化进行禁忌的方法。举例进行说明:当解从x变化到y时,y可能是局部最优解,为了避开局部最优解,禁忌y这一解再度出现,可采用如下禁忌规则:当y的领域中有比它更优的解时,选择更优的解;当y为其领域的局部最优解时,不再选y,而选比y稍差的解。 2.禁忌长度的确定 禁忌长度是指被禁对象不允许被选取的迭代步数,一般是给被禁忌对象x一个数l(称为禁忌长度),要求x在l步迭代内被禁,在禁忌表中采用Tabu(x)=l记忆,每迭代一步,该指标做运算Tabu(x)=l-1,直到Tabu(x)=0时解禁。关于禁忌长度l的选取,可归纳为以下几种情况。 (1)l为常数,可取l=10、(n为领域中邻居的总个数)。这种规则容易在算法中实现。 (2)。此时,l是可以变化的数,其变化的依据是被禁对象的目标函数值和领域的结构。、是确定的数,确定的常用方法是根据问题的规模N,限定变化区间;也可以用领域中邻居的个数n确定变化区间。 禁忌长度的选取同实际问题和算法设计者的经验有紧密联系,同时它也会影响计算的复杂性,过短会造成循环的出现,过长又会造成计算时间的增加。 3.候选集合的确定 候选集合由领域中的邻居组成,常规的方法是从领域中选择若干个目标函数值或评价值最佳的邻居。

相关文档
最新文档