高考第一轮复习数学:3.1 数列的概念

高考第一轮复习数学:3.1  数列的概念
高考第一轮复习数学:3.1  数列的概念

第三章数列

●网络体系总览

●考点目标定位

1.知识要求:(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出一种数列的表示方法,并能写出数列的前n项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解决简单的问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.

2.能力要求:培养观察能力、化归能力和解决实际应用问题的能力.

●复习方略指南

本章在历年高考中占有较大的比重,约占10%~12%,特别是2002年共计26分,占17%,2003年共计21分,占14%,2004年26分,占17%.考题类型既有选择题,也有填空题和解答题,既有容易题,也有中档题,更有难题.由于等差数列和等比数列在内容上是平行的,所以在复习时要应用对比去认识、理解、掌握数列知识.

纵观近几年的高考试题,可发现如下规律:

1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.

2.数列中a n与S n之间的互化关系也是高考的一个热点.

3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.

4.解答题的难度有逐年增大的趋势.

因此复习中应注意:

1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.

2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.

3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.

4.等价转化是数学复习中常常运用的,数列也不例外.如a n 与S n 的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.

5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.

6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.

3.1 数列的概念

●知识梳理

1.数列:按一定次序排列的一列数叫做数列.

(1)数列的一般形式可以写成a 1,a 2,a 3,…,a n ,…,简记为{a n },其中a n 是数列的第n 项.

(2)可视数列为特殊函数,它的定义域是正自然数集的子集(必须连续),因此研究数列可联系函数的相关知识,如数列的表示法(列表法、图象法、公式法等)、数列的分类(有限和无穷、有界无界、单调或摆动等).应注意用函数的观点分析问题.

2.通项公式

如果数列{a n }的第n 项a n 与项数n 之间的函数关系可以用一个公式来表达,那么这个公式就叫做数列的通项公式,可以记为a n =f (n ).

并非每一个数列都可以写出通项公式,有些数列的通项公式也并非是唯一的.

3.数列的前n 项和

数列{a n }的前n 项之和,叫做数列的前n 项和,常用S n 表示.

S n 与通项a n 的基本关系是:

a n =???--11n n

S S S ).2(),1(≥=n n S n =a 1+a 2+…+a n .

4.数列的分类

(1)按项分类

有穷数列:项数有限;无穷数列:项数无限.

(2)按a n 的增减性分类

递增数列:对于任何n ∈N *,均有a n +1>a n ;

递减数列:对于任何n ∈N *,均有a n +1<a n ;

摆动数列:例如:-1,1,-1,1,…;

常数数列:例如:6,6,6,6,…;

有界数列:存在正数M 使|a n |≤M ,n ∈N *;

无界数列:对于任何正数M ,总有项a n 使得|a n |>M .

5.递推是认识数列的重要手段,递推公式是确定数列的一种方式,根据数列的递推关系写出数列.

●点击双基

1.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N 都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 A.1661 B.925 C.1625 D.15

31

解析一:令n =2、3、4、5,分别求出a 3=49,a 5=1625,∴a 3+a 5=16

61. 解析二:当n ≥2时,a 1·a 2·a 3·…·a n =n 2.

当n ≥3时,a 1·a 2·a 3·…·a n -1=(n -1)2.

两式相除a n =(

1

-n n )2, ∴a 3=49,a 5=1625.∴a 3+a 5=1661. 答案:A

2.已知数列{a n }中,a 1=1,a 2=3,a n =a n -1+2

1

-n a (n ≥3),则a 5等于 A.1255 B.313 C.4 D.5

解析:令n =3,4,5,求a 5即可.

答案:A

3.根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n

(万件)近似地满足关系式S n =90

n (21n -n 2-5)(n =1,2,…,12),按此预测,在本年度内,需求量超过1.5万件的月份是 A.5、6月 B.6、7月

C.7、8月

D.8、9月 解法一:由S n 解出a n =301(-n 2+15n -9),再解不等式30

1(-n 2+15n -9)>1.5,得6<n <9.

解法二:将选项中的月份代入计算验证.

答案:C

4.已知a n =20012000

--n n ,且数列{a n }共有100项,则此数列中最大项为第____________

项,最小项为第___________________项.

解析:a n =20012000

--n n =1+20012000

2001--n ,又44<2001<45,2001-2000>0,

故第45项最大,第44项最小.

答案:45 44

●典例剖析

【例1】 在数列{a n }中,a 1=1,a n +1=n

n na a +1,求a n . 剖析:将递推关系式变形,观察其规律. 解:原式可化为11

+n a -n

a 1=n ,

∴21a -11a =1,31a -21a =2,41a -3

1a =3,…, n

a 1-11-n a =n -1. 相加得n a 1-1

1a =1+2+…+(n -1), ∴a n =

2

22+-n n . 评析:求数列通项公式,特别是由递推公式给出数列时,除迭加、迭代、迭乘外还应注意变形式是否是等差(等比)数列.对于数列递推公式不要升温,只要能根据递推公式写出数列的前几项,由此来猜测归纳其构成规律. 【例2】 有一数列{a n },a 1=a ,由递推公式a n +1=n

n a a +12,写出这个数列的前4项,并根据前4项观察规律,写出该数列的一个通项公式.

剖析:可根据递推公式写出数列的前4项,然后分析每一项与该项的序号之间的关系,归纳概括出a n 与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.

解:∵a 1=a ,a n +1=n n a a +12,∴a 2=a

a +12, a 3=2212a a +=a

a a a

+++12114=a a 314+, a 4=3312a a +=a

a a a

3141318+++=a a 718+. 观察规律:a n =

ya

xa +1形式,其中x 与n 的关系可由n =1,2,3,4得出x =2n -1.而y 比x 小1, ∴a n =a

a n n )12(1211-+--. 评述:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.

思考讨论

请同学总结解探索性问题的一般思路.

【例3】 已知数列{a n }的通项公式a n =cn +

n

d ,且a 2=23,a 4=23,求a 10. 剖析:要求a 10,只需求出c 、d 即可. 解:由题意知???

????=+=+,2344,2322d c d c 解得?????==.2,41d c ∴a n =41n +n 2.∴a 10=41×10+102=10

27. 评述:在解题过程中渗透了函数与方程的思想.

●闯关训练

夯实基础

1.若数列{a n }前8项的值各异,且a n +8=a n 对任意的n ∈N *都成立,则下列数列中,能取遍数列{a n }前8项值的数列是

A.{a 2k +1}

B.{a 3k +1}

C.{a 4k +1}

D.{a 6k +1}

解析:由已知得数列以8为周期,当k 分别取1,2,3,4,5,6,7,8时,a 3k +1分别与数列中的第4项,第7项,第2项,第5项,第8项,第3项,第6项,第1项相等,故{a 3k +1}能取遍前8项.

答案:B

2.设a n =-n 2+10n +11,则数列{a n }从首项到第______________项的和最大.

A.10

B.11

C.10或11

D.12

解析:a n =-n 2+10n +11是关于n 的二项函数,它是抛物线f (x )=-x 2+10x +11上的一些离散的点,从图象可看出前10项都是正数,第11项是0,所以前10项或前11项的和最大.

另解: 由-n 2+10n +11≥0得-1≤n ≤11,

又n ∈N *,∴0<n ≤11.∴前10项为正,第11项为0.

答案:C

3.设{a n }是正数组成的数列,其前n 项和为S n ,并且对所有自然数n ,a n 与2的等差中项等于S n 与2的等比中项,写出此数列的前三项:______________,______________,______________. 解析:由题意得2

2+n a =n S 2,由此公式分别令n =1,n =2,n =3可依次解出前三项. 答案:2 6 10

4.(2004年春季上海,8)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有___________________个点.

(1) (2) (3) (4) (5)

解析:观察图中五个图形点的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,故第n 个图中个数为(n -1)×n +1=n 2-n +1.

答案:n 2-n +1

5.已知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

解:由已知S n +1=2n -1,得S n =2n +1-1,故当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -

1=2n ,故a n =???n 23

).

2(),1(≥=n n 6.已知在正项数列{a n }中,S n 表示前n 项和且2n S =a n +1,求a n .

解:由已知2n S =a n +1,得当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1,代入已知有2n S =

S n -S n -1+1,即S n -1=(n S -1)2.又a n

>0,故1-n S =n S -1或1-n S = 1-n S (舍),即n S -1-n S =1(n ≥2),由定义得{n S }是以1为首项,1为公差的等差数列,∴n S =n .故a n =2n -1.

培养能力

7.(理)已知函数f (x )=-2x +2(2

1≤x ≤1)的反函数为y =g (x ),a 1=1,a 2=g (a 1),a 3=g (a 2),…,a n =g (a n -1),…,求数列{a n }的通项公式.

解:由已知得g (x )=-

2x +1(0≤x ≤1),则a 1=1,a n +1=-2

1a n +1. 令a n +1-P =-21(a n -P ),则a n +1=-21a n +23P ,比较系数得P =3

2. 由定义知,数列{a n -32}是公比q =-21的等比数列,则a n -32=(a 1-32)·(-2

1)n -1= 32[1-(-21)n ].于是a n =34-32(-21)n . (文)根据下面各数列的前几项,写出数列的一个通项公式:

(1)3,5,9,17,33,…;

(2)32,154,356,638,99

10,…; (3)2,-6,12,-20,30,-42,….

解:(1)联想数列2,4,8,16,32,…,可知所求通项公式为a n =2n +1.

(2)分别观察各项分子与分母的规律,分子为偶数列{2n };分母为1×3,3×5,5×7,7×9,…,故所求通项公式为a n =)

12)(12(2+-n n n . (3)将数列变形为1×2,-2×3,3×4,-4×5,…,于是可得已知数列的通项公式为a n =(-1)n +1·n (n +1).

8.已知数列{a n }的通项a n =(n +1)(11

10)n (n ∈N ).试问该数列{a n }有没有最大项?若有,求出最大项和最大项的项数;若没有,说明理由.

解:∵a n +1-a n

=(n +2)(1110)n +1-(n +1)(11

10)n

=(1110)n ·11

9n -, ∴当n <9时,a n +1-a n >0,即a n +1>a n ;

当n =9时,a n +1-a n =0,即a n +1=a n ;

当n >9时,a n +1-a n <0,即a n +1<a n ;

故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>….

∴数列{a n }有最大项a 9或a 10,其值为10·(11

10)9,其项数为9或10. 探究创新

9.有一个细胞集合,在一小时里死亡两个,剩下的细胞每一个都分裂成两个,假设开始有10个细胞,问经过几个小时后,细胞的个数为1540个?

解:设n 小时后的细胞个数为a n ,依题意得a n +1=2(a n -2),所以a n +1-4=2(a n -4).

又∵a 1=10,∴a n -4=(a 1-4)·2n -1=3·2n .

∴a n =3·2n +4,使3·2n +4=1540.

∴n =9.

●思悟小结

1.用归纳法依据前几项写出数列的一个通项公式,体现了由特殊到一般的思维方法,需要我们有一定的数学观察能力和分析能力,并熟知一些常见的数列的通项公式,如:数列{n 2},

{2n },{(-1)n

},{2n },{2n -1},并了解a n =???b a 为偶数为奇数n n , 的合一形式a n =2)1(11

+-+n a + 2

)1(1n

-+b . 2.对于符号(数字、字母、运算符号、关系符号)、图形、文字所表示的数学问题,要有目的地从局部到整体多角度进行观察,从而得出结论.

3.求数列的通项公式是本节的重点,主要掌握两种求法.

(1)由数列的前几项归纳出一个通项公式,关键是善于观察.(2)数列{a n }的前n 项和S n 与数列{a n }的通项公式a n 的关系,要注意验证能否统一到一个式子中.

●教师下载中心

教学点睛

1.要注意强调数列、数列的项、数列的通项三个概念的区别.

2.给出数列的方法中,递推关系包含两种:一种是项和项之间的关系;另一种是项和前n 项和S n 之间的关系.要用转化的数学思想方法.转化是数学中最基本、最常用的解题策略,S n 和a n 的转化,可给出数列,问题总是在一步步的转化过程中得到解决,在运用转化的方法时,一定要围绕转化目标转化.

3.重视函数与数列的联系,重视方程思想在数列中的应用.

拓展题例

【例1】 已知f (x )=(x +2)2(x ≥0),又数列{a n }(a n >0)中,a 1=2,这个数列的前n 项和的公式S n (n ∈N *)对所有大于1的自然数n 都有S n =f (S n -1).

(1)求数列{a n }的通项公式;

(2)若b n =n n n n a a a a 12

212+++(n ∈N *),求证∞→n lim (b 1+b 2+…+b n -n )=1.

分析:由于已知条件给出的是S n 与S n -1的函数关系,而要求的是a n 的通项公式,故关键是确定S n .

解:(1)∵f (x )=(x +2)2, ∴S n =(1-n S +2)2. ∴n S -1-n S =2.又1a =2, 故有n S =2+(n -1)2=n 2, 即S n =2n 2(n ∈N *).

当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2; 当n =1时,a 1=2,适合a n =4n -2. 因此,a n =4n -2(n ∈N *).

(2)∵b n =n n n n a a a a 12212+++=1+121-n -1

21+n , ∴b 1+b 2+b 3+…+b n -n =1-1

21+n . 从而∞→n lim (b 1+b 2+…+b n -n )=∞→n lim (1-

1

21+n )=1. 【例2】 已知数列{a n }中,a n ∈(0,21),a n =83+21·a n -12,其中n ≥2,n ∈N*,求证:对一切自然数n 都有a n <a n +1成立.

证明:a n +1-a n =

83+21a n 2-a n =21(a n -1)2-81. ∵0<a n <21,∴-1<a n -1<-2

1. ∴81<21(a n -1)2<2

1. ∴21(a n -1)2-81>0. ∴a n +1-a n >0,即a n <a n +1对一切自然数n 都成立.

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

例谈高中数学一题多解和一题多变的意义

例谈高中数学一题多解和一题多变的意义 杨水长 摘 要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化,融会贯通,而且可以开阔思路,培养学生的发散思维和创新思维能力,从而达到提高学生的学习兴趣,学好数学的效果。 关键词:一题多变 一题多解 创新思维 数学效果 很大部分的高中生对数学的印象就是枯燥、乏味、不好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬着头皮学.如何才能学好数学?俗话说“熟能生巧”,很 多人认为要学好数学就是要多做.固然,多做题目可以 使学生提高成绩,但长期如此,恐怕也会使学生觉得数学越来越枯燥。 我觉得要使学生学好数学,首先要提高学生的学 习兴趣和数学思维能力。根据高考数学“源于课本, 高于课本”的命题原则,教师在教学或复习过程中可 以利用书本上的例题和习题,进行对比、联想,采取 一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 例题: 已知tanα=4 3 ,求sinα,cosα的值 分析:因为题中有sinα、cosα、tanα,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tanα= 4 3= α αcos sin , 且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cosα= 5 4 或者 cosα= -54 ;而sinα=53或者sinα=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tanα=4 3 :α在第一、三象限 在第一象限时: cos2α = ααcos sin cos 2 2 2 5+=αtan 2 11+=2516 cosα=5 4 sinα=αcos 21-=5 3 而在第三象限时: cosa=- 5 4 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙: 法三 tanα= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α= ± 3 4cos sin 2 2 2 2 ++α α ∴sinα=53,cosα= 54 或sinα=-53,cosα=-54 分析: 上面从代数法角度解此题,如果单独考虑sinα、cosα、tanα,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于tana=4 3,在直角△ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得,c=5x sinA=AB BC = 53 ,cosA=AB AC =5 4

高中数学-数列的概念与简单表示法教案

课题: §2.1数列的概念与简单表示法 授课类型:新授课 备课人: ●教学目标 知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的一个通项公式;了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项; 过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ●教学重点 了解数列的概念和简单表示法,了解数列是一种特殊函数,体会数列是反映自然规律的数学模型 ●教学难点 将数列作为一种特殊函数去认识,了解数列与函数之间的关系,根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入 (引言)数产生于人类社会的生产、生活需要,它是描绘静态下物体的量,因此,在人类社会发展的历程中,离不开对数的研究,在这一背景下产生数列。数列是刻画离散现象的函数,是一种重要的数学模型。人们往往通过离散现象认识连续现象,因此就有必要研究数列 三角形数:1,3,6,10,… 正方形数:1,4,9,16,25,… Ⅱ.讲授新课 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项. ⒊数列的一般形式:ΛΛ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,

中职数学数列复习(中职教学)

复习模块:数列 知识点 数列:按一定顺序排列的一列数,记作,,,,321 n a a a a 简记{}n a 。 1 1(1)(2) n n n S n a S S n -=?=? -≥? 按照位置依次叫做第1项(或首项),第2项,第3项,…,第n 项,…,其中1,2,3,…,n ,分别叫做对应的项的项数。 如果一个数列从第2项开始,每一项与它前一项的差都等于同一个常数,那么,这个数列叫做等差数列.这个常数叫做等差数列的公差,一般用字母d 表示. 递推公式:1n n a a d +-= 通项公式:()11.n a a n d =+- 推广公式:d m n a a m n )(-+=; q p n m a a a a q p n m +=++=+,则若。 等差中项:若c b a ,,成等差数列,则b 称c a 与的等差中项,且2 c a b +=;c b a ,,成等差数列是c a b +=2的充要条件。 等差数列求和公式: ()12 n n n a a S += ; ()112 n n n S na d -=+ 如果一个数列从第2项开始,每一项与它前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做这个等比数列的公比,一般用字母q 来表示. 递推公式:则1a 与q 均不为零,有 1 n n a q a +=,即1n n a a q +=? 通项公式:.1 1-?=n n q a a 推广公式:m n m n q a a -?=; q p n m a a a a q p n m ?=?+=+,则若 等比中项:若三个数c b a ,,成等比数列,则称b 为c a 与的等比中项,且为 ac b ac b =±=2,注:是成等比数列的必要而不充分条件。 等比数列和公式:1111-=≠-n n a q S q q ()(). 111-=≠-n n a a q S q q (). )1(1 ==q na s n

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高三数学《一题多解 一题多变》试题及详解答案

高三《一题多解 一题多变》题目 一题多解 一题多变(一) 原题:482++=x mx x f )( 的定义域为R ,求m 的取值范围 解:由题意0482≥++x mx 在R 上恒成立 0>∴m 且Δ0≤,得4≥m 变1:4823++=x mx x f log )(的定义域为R ,求m 的取值范围 解:由题意0482>++x mx 在R 上恒成立 0>∴m 且Δ0<,得4>m 变2:)(log )(4823++=x mx x f 的值域为R ,求m 的取值范围 解:令=t 482++x mx ,则要求t 能取到所有大于0的实数, ∴ 当0=m 时,t 能取到所有大于0的实数 当0≠m 时,0>m 且Δ0≥4≤0?m < 40≤≤∴m 变3:182 23++=x n x mx x f log )(的定义域为R,值域为[]20,,求m,n 的值 解:由题意,令[]911 82 2,∈+++=x n x mx y ,得0-8--2=+n y x x m y )( m y ≠时,Δ0≥016-)(-2≤++?mn y n m y - ∴ 1和9时0162=++-)(-mn y n m y 的两个根 ∴ 5==n m ∴ 当m y =时,08 ==m n x - R x ∈ ,也符合题意 ∴5==n m 一 题 多 解- 解不等式523<<3-x 解法一:根据绝对值的定义,进行分类讨论求解

(1)当03-≥x 2时,不等式可化为53-<x x x x ?-3-或且 综上:解集为}{0x 1-<<<<或43x x 解法三:利用等价命题法 原不等式等价于 -33-2x 5-53-<<<<或x 23,即0x 1-<<<<或43x 解集为}{0x 1-<<<<或43x x 解法四:利用绝对值的集合意义 原不等式可化为 2 5 23<<23-x ,不等式的几何意义时数轴上的点23到x 的距离大于 23,且小于2 5 ,由图得, 解集为} {0x 1-<<<<或43x x 一题多解 一题多变(二) 已知n s 是等比数列的前n 想项和,963s s s ,,成等差数列,求证: 852a a a ,,成等差数列 法一:用公式q q a s n n 一一111)(=,

2018年高中数学北师大版必修五:第1章 §1-1.1 数列的概念包含解析

[A 基础达标] 1.下列说法中不正确的是( ) A .数列a ,a ,a ,…是无穷数列 B .1,-3,45 ,-7,-8,10不是一个数列 C .数列0,-1,-2,-3,…不一定是递减数列 D .已知数列{a n },则{a n +1-a n }也是一个数列 解析:选B.A ,D 显然正确;对于B ,是按照一定的顺序排列的一列数,是数列,所以B 不正确;对于C ,数列只给出前四项,后面的项不确定,所以不一定是递减数列.故选B. 2.已知数列{a n }的通项公式为a n =1+(-1)n + 12,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1 C.12,0,12,0 D .2,0,2,0 解析:选A.当n 分别等于1,2,3,4时,a 1=1,a 2=0,a 3=1,a 4=0. 3.已知数列{a n }的通项公式是a n =2n 2-n ,那么( ) A .30是数列{a n }的一项 B .44是数列{a n }的一项 C .66是数列{a n }的一项 D .90是数列{a n }的一项 解析:选C.分别令2n 2-n 的值为30,44,66,90,可知只有2n 2-n =66时,n =6(负值舍去),为正整数,故66是数列{a n }的一项. 4.已知数列的通项公式是a n =? ????2,n =1,n 2-2,n ≥2,则该数列的前两项分别是( ) A .2,4 B .2,2 C .2,0 D .1,2 解析:选B.当n =1时,a 1=2;当n =2时,a 2=22-2=2. 5.如图,各图形中的点的个数构成一个数列,该数列的一个通项公 式是 ( ) A .a n =n 2-n +1 B .a n =n (n -1)2 C .a n =n (n +1)2 D .a n =n (n +2)2 解析:选C.法一:将各图形中点的个数代入四个选项便可得到正确结果.图形中,点的个数依次为1,3,6,10,代入验证可知正确答案为C. 法二:观察各个图中点的个数,寻找相邻图形中点个数之间的关系,然后归纳一个通项公式.观察 点的个数的增加趋势可以发现,a 1=1×22,a 2=2×32,a 3=3×42,a 4=4×52,所以猜想a n =n (n +1)2 ,故选C.

2019-2020年高考数学一题多解含17年高考试题(III)

2019-2020年高考数学一题多解含17年高考试题(III) 1、【2017年高考数学全国I 理第5题】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【答案】D 【知识点】函数的奇偶性;单调性;抽象函数;解不等式。 【试题分析】本题主要考察了抽象函数的奇偶性,单调性以及简单的解不等式,属于简单题。 【解析】 解析二:(特殊函数法)由题意,不妨设()f x x =-,因为21()1x f --≤≤,所以121x -≤-≤,化简得13x ≤≤,故选D 。 解析三:(特殊值法)假设可取=0x ,则有21()1f --≤≤,又因为1(12)()f f ->=-,所以与21()1f --≤≤矛盾,故=0x 不是不等式的解,于是排除A 、B 、C ,故选D 。 2、【2017年高考数学全国I 理第11题】设xyz 为正数,且235x y z ==,则 A .235x y z << B .523z x y << C .352y z x << D .325y x z << 【答案】D 【知识点】比较大小;对数的运算;对数函数的单调性; 【试题分析】本题主要考察了对数的比较大小,其中运用到了对数的运算公式,对数的单调性等。属于中档题。 【解析】 解析一:令()2350x y z t t ===>,则2log x t =,3log y t =,5log z t =, 2lg 22log 1lg 22t x t ==,3lg 33log 1lg33t y t ==,5lg 5log 1lg55 t z t ==, 要比较2x 与3y ,只需比较1lg 22,1lg 33,即比较3lg 2与2lg3,即比较lg 8,lg 9,易知lg8lg9<,故23x y >.

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

2017年高考数学一题多解——江苏卷

江苏卷 2017年江苏卷第5题:若tan 1-=46πα?? ???,则tan α= 【答案】75 【知识点】两角和与差的正切公式 【试题分析】本题主要考查了两角和与差的正切公式,属于基础题。 解法一:直接法 由61)4tan(=-π α,得6 1tan 4tan 14tan tan =+-αππ α,故可知57tan =α 解析二:整体代换 11tan()tan 7644tan tan[()]1445 1tan()tan 1446 ππαππααππα+-+=-+===---. 解法三:换元法 令t =-4π α,则61tan =t ,t +=4πα.所以57tan 11tan )4tan(tan =-+=+=t t t πα 2017年江苏卷第9题(5分)等比数列{a n }的各项均为实数,其前n 项为S n ,已知S 3=,S 6= ,则a 8= . 法二:65436144 7463a a a s s ++==-=- 84 71433 21654===++++q a a a a a a

S 3=,∴ ,得a 1=,则a 8==32. 法三:9133 2165432136=+=+++++++=q a a a a a a a a a s s ∴q=2 ∴,得a 1=,则a 8==32. 2017年江苏卷第15题.(14分)如图,在三棱锥A ﹣BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 法二: 在线段CD 上取点G ,连结FG 、EG 使得FG ∥BC ,则EG ∥AC , 因为BC ⊥BD ,所以FG ⊥BD , 又因为平面ABD ⊥平面BCD ,

《数列的概念与简单表示法》优质课比赛教学设计

数列的概念与简单表示法 一、教材与教学分析 1.数列在教材中的地位 根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边. 作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题). 2.教学任务分析 (1)了解数列的概念 新课标的教学更贴近生活实际.通过实例,引入数列的概念,理解数列的顺序性,感受数列是刻画自然规律的数学模型.了解数列的几种分类. (2)了解数列是一类离散函数,体会数列中项与序号之间的变量依赖关系. 3.教学重点与难点 重点:理解数列的概念,认识数列是反映自然规律的基本数学模型. 难点:认识数列是一种特殊的函数,发现数列与函数之间的关系. 二、教学方法与学习方法 自主学习与合作探究相结合. 三、教学情境设计 问题设计设计意图师生活动 问题一:根据实际例子,归纳数列的概念. (1)棋盘中的数学 (2)一尺之棰,日取其半,万世不竭.——《庄子》 (3)三角形数; (4)正方形数; (5)观察树枝数目; (6)餐馆一周的营业额. 从生活实例引 入,让学生认识数 列是一种重要的数 学模型. 认识数列具有 顺序性.并总结数 列的定义. 师:引导学生分析每一列数的规律,并 利用所发现的规律求出下一个数. 生:分析每一个数的规律并利用规律求 出下一个数. 师:让学生体会从实际生活中提炼出一 列数据,分析这些数据的规律,利用这些规 律解决一些实际生活问题,引出数列是一种 重要的数学模型.(板书课题——§2-1-1 数列的概念) 师:请分析六组数的共同特征,总结数 列的概念. 生:分析并找出规律,总结数列的概念: 按照一定顺序排列着的一列数称为数列. 问题二:思考下面两个问认识数列是有师:肯定学生的回答,并引导学生分析

高三数学数列的概念测试题 百度文库

一、数列的概念选择题 1.已知数列{}n a 的通项公式为2 n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实 数λ的取值范围是( ) A .(),3-∞ B .(),2-∞ C .(),1-∞ D .(),0-∞ 2.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1 B .3 C .2 D .3- 3.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若11 02 a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+ D .71089a a a a +>+ 4.已知数列{}n a 的前n 项和为( )* 22n n S n =+∈N ,则3 a =( ) A .10 B .8 C .6 D .4 5.数列1,3,6,10,…的一个通项公式是( ) A .()2 1n a n n =-- B .2 1n a n =- C .() 12 n n n a += D .() 12 n n n a -= 6.若数列的前4项分别是 1111,,,2345 --,则此数列的一个通项公式为( ) A .1(1)n n -- B .(1)n n - C .1 (1)1 n n +-+ D .(1)1 n n -+ 7.在数列{}n a 中,11 4 a =-,1 1 1(1)n n a n a -=- >,则2019a 的值为( ) A . 45 B .14 - C .5 D .以上都不对 8.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30 B .20 C .40 D .50 9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有 ()()()f x f y f x y ?=+,若112 a = ,()() * n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A . 1324n S ≤< B .314n S ≤< C .102 n S <≤ D . 1 12 n S ≤< 10.数列1,3,5,7,9,--的一个通项公式为( ) A .21n a n =- B .()1(21)n n a n =--

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

2018年高考数学一题多解——全国I卷

全国I 卷 1、【2017年高考数学全国I 理第5题】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【答案】D 【知识点】函数的奇偶性;单调性;抽象函数;解不等式。 【试题分析】本题主要考察了抽象函数的奇偶性,单调性以及简单的解不等式,属于简单题。 【解析】 解析二:(特殊函数法)由题意,不妨设()f x x =-,因为21()1x f --≤≤,所以121x -≤-≤,化简得 13x ≤≤,故选D 。 解析三:(特殊值法)假设可取=0x ,则有21()1f --≤≤,又因为1(12)()f f ->=-,所以与21()1f --≤≤矛盾,故=0x 不是不等式的解,于是排除A 、B 、C ,故选D 。 2、【2017年高考数学全国I 理第11题】设xyz 为正数,且235x y z ==,则 A .235x y z << B .523z x y << C .352y z x << D .325y x z << 【答案】D 【知识点】比较大小;对数的运算;对数函数的单调性; 【试题分析】本题主要考察了对数的比较大小,其中运用到了对数的运算公式,对数的单调性等。属于中档题。 【解析】 解析一:令()2350x y z t t ===>,则2log x t =,3log y t =,5log z t =, 2lg 22log 1lg 22t x t == ,3lg 33log 1lg33t y t ==,5lg 5log 1lg55 t z t ==, 要比较2x 与3y ,只需比较1lg 22,1 lg 33,即比较3lg 2与2lg3,即比较lg 8,lg 9,易知lg8lg9<, 故23x y >.

高中数学--极限

高中数学-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

高考数学典型题一题多解系列三

第11题 一道根式函数题的6种解法 设t t =求的取值范围(江苏高考解答题中的一个小题) 解法一:(平方化为二次函数)对t =两边平方得22t =+ 011≤-≤ 224,0t t ∴≤≤≥又 2t ≤≤ , 故t 的取值范围是?? 解法二:(三角换元法)注意到 ))()211x + =-≤≤, 可用三角换元法,如下: 2sin ,0,2πααα??==∈???? 得 2sin 4t πααα? ?==+ ??? 由 32sin 24 4 424π π ππαα? ?≤+ ≤ ≤+≤ ?? ? t ∴的取值范围是?? 解法三:(三角换元法)[]11,cos ,0,x x θθπ-≤≤∴=∈令, 则有 cos sin cos sin 2222t θθ θθ??==+=+???? 以下解法同解法二,这两种换元法本质上是一样的,只不过是从不同角度看问 题的, 解法二,注意到了平方和为一个常数,解法三则由定义域[]1,1x ∈-入手. 解法四:(双换元法),u v x ==消去得: 2 2 2u v +=,问题转化为方程组2 2 02 u v t u v u v +=?≤≤≤≤?+=?在条件下有解时, 求t 的取值范围,即动直线u v t +=与圆弧222(0u v u v +=≤≤≤≤有公共点时, 求t 的取值范围,以下用数形结合法解(略)。

解法五:(构造等差数列)由t =22 t =?, 2t 成等差数列。 22 t t d d =-=+, 消去x 得2 22222,442t d t d =+=-,由20d ≥知 22444t d =-≤,得2t ≤。 0。 222 d d ≤≤- ≤≤ 221 444422 t d ∴=-≥-?=2t ≤≤ 解法六:(构造向量法)设向量(1,1),(1p q x ==+,两向量的夹角为α, 则112cos 2t p q t αα=?=+=∴≤ 由图像知:当点位于坐标轴上时,cos α取最小值。 01,01,x t x t =====-=即得即也得 2t ≤≤ 解题反思:上述六种解法一个共同特点,都是从函数式的结构特点出发,或变更形式,或巧妙换元,或数形结合,或构造向量,都是数学转化思想的有效应用,但对六种方法作一对比,不难看出,方法一最为简单,究其原因,仍是平方后的结构简洁的特点所致,因此,函数结构特征决定求解方法。 通过解一道高考题,探索其多种解法,体现了换元法、向量法、解析几何 法以及数形结合、转化与化归等数学思想在求无理函数最值(值域)中的应用。 数学知识有机联系纵横交错,解题思路灵活多变,解题方法途径众多,但最终却能殊途同归,即使一次性解题合理正确,也未必保证一次解题就是最佳思路与最优最简捷的解法,不能解完题就此罢手,应该进一步反思,探求一题多解,开拓思路,勾通知识,掌握规律,权衡解法优劣,培养学生发散思维能力;探求一题多变,做到举一反三,在更高层次更富有创造性地去学习,摸索总结,使自己的解题能力能更上一层楼。 第12题 特值压缩法求解参数取值范围 已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和()y g x =曲线都过点P(0,2),且在点P 处有相同的切线42y x =+。

高考第一轮复习数学:3.1 数列的概念

第三章数列 ●网络体系总览 ●考点目标定位 1.知识要求:(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出一种数列的表示方法,并能写出数列的前n项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解决简单的问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题. 2.能力要求:培养观察能力、化归能力和解决实际应用问题的能力. ●复习方略指南 本章在历年高考中占有较大的比重,约占10%~12%,特别是2002年共计26分,占17%,2003年共计21分,占14%,2004年26分,占17%.考题类型既有选择题,也有填空题和解答题,既有容易题,也有中档题,更有难题.由于等差数列和等比数列在内容上是平行的,所以在复习时要应用对比去认识、理解、掌握数列知识. 纵观近几年的高考试题,可发现如下规律: 1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有. 2.数列中a n与S n之间的互化关系也是高考的一个热点. 3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用. 4.解答题的难度有逐年增大的趋势. 因此复习中应注意: 1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

高中数学真题与经典题一题多解解法与解析

函数篇 【试题1】(2016全国新课标II 卷理16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln (1)y x =+的切线,b = . 【标准答案】1ln 2- 解法一:设直线y kx b =+与曲线ln 2y x =+和ln (1)y x =+切点分别是 11(,ln 2)x x +和22(,ln (1))x x +. 则切线分别为:111ln 1y x x x =?++,()2 2221ln 111x y x x x x = ++-++ ∴()12 2 12 21 11ln 1ln 11x x x x x x ?=?+?? ?+=+-?+? 解得112x = 21 2x =- ∴解得1ln 11ln 2b x =+=- 解法二:设直线y kx b =+与曲线ln 2y x =+和ln (1)y x =+切点分别是11(,)x y 和 22(,)x y . ∵曲线ln 2y x =+通过向量()1,2平移得到曲线()ln 1y x =+ ∴2121(,)(1,2)x x y y --= ∴两曲线公切线的斜率2k =,即112x =,所以1 ln 11ln 22 b =+=- 【试题2】【2015新课标12题】设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A.32[,1)e - B 33,24e - ()C.33[,)24e D.3 [,1) 2e

解法一:由题意可知存在唯一的整数0x 使得000(21)x e x ax a -<-,设 ()(21),()x g x e x h x ax a =-=-由'()(21)x g x e x =+,可知()g x 在1(,)2 -∞-上单调递减, 在1 (,)2-+∞上单调递增,故 (0)(0) (1)(1)h g h g >-≤-?? ?得312a e ≤< 解法二:由题意()0f x <可得(21)(1)x e x a x -<- ①当1x =时,不成立; ②当1x >时,(21)1x e x a x ->-,令(21) ()1 x e x g x x -=-,则22 (23)'()(1)x e x x g x x -=-, 当3(1,)2x ∈时,()g x 单调递减,当3(,)2 x ∈+∞时,()g x 单调递增 所以32 min 3()()42 g x g e ==,即3 24a e >,与题目中的1a <矛盾,舍去。 ③当1x <时,(21)1x e x a x -<-,令(21) ()1 x e x g x x -=- 同理可得:当(,0)x ∈-∞时,()g x 单调递增,当(0,1)x ∈时,()g x 单调递减 所以max ()(0)1g x g ==,即1a <,满足题意。 又因为存在唯一的整数0x ,则3(1)2a g e ≥-= 此时3 [ ,1)2a e ∈ 综上所述,a 的取值范围是3[ ,1)2e 解法三:根据选项,可以采取特殊值代入验证,从而甄别出正确答案。 当0a =时,()(21)x f x e x =-,'()(21)x f x e x =+,可知()f x 在1(,)2 -∞-递减,在1(,)2 -+∞递增,又(0)10f =-<,1(1)30f e --=-<,不符合题意,故0a =不成立,排除答案A 、B. 当34 a =时,33()(21)4 4 x f x e x x =--+,3'()(21)4 x f x e x =+-,因为3'()(21)4 x f x e x =+-为增函数,且31'(0)104 4 f =-=>,13'(1)04 f e --=--<,所以存在(1,0)t ∈-,使得'()0f t =,则()f x 在(,)t -∞递减,在(,)t +∞递增,又3 (0)104 f =-+<,13(1)302 f e --=-+>,

相关文档
最新文档