高密度电法反演软件Res2dinv使用说明

高密度电法反演软件Res2dinv使用说明
高密度电法反演软件Res2dinv使用说明

二维高密度电法反演程序

ver.3.6 for WIN98/Me/2000/XP/2003

使

一、安装软件

当您拿本软件光盘后,双击2DRES,将软件解压至C:\2DRES目录中,插入USB加密锁后,双击2DRES.EXE即可运行该二维高密度电法反演程序。

如果你的操作系统是Windows98,则需安装USB加密锁驱动程序。

(1)点击DONGLE.exe,安装USB加密锁驱动程序。

(2)在98下插入USB加密狗后,提示寻找驱动程序,点击下一步,选择“搜索设备的最新驱动程序(推荐)”再点击下一步,找到C:\windows 目录,点击下一步,提示“请插入标签为......”点击确定后找到

C:\windows\system32\drivers”点击确定便可找到并安装该驱动程序。

以下是软件自带的一些示例数据可用于测试软件的全部功能:

LANDFILL.DAT 有50个电极的温纳排列

GRUNDFOR.DAT 不规则数据分布的温纳排列

ODARSLOV.DAT 高阻体上的温纳排列

ROMO.DAT 另一个大型温纳排列

DUFUYA.DAT 有300根电极且超过1200个数据的温纳排列

GLADOE2.DAT 含有地形信息温纳排列

BLOCKWEN.DAT 带有坏数据点的温纳排列

BLOCKDIP.DAT 偶极-偶极排列

BLOCKTWO.DAT 单极-单极排列

RATHCRO.DAT 带有地形信息的温纳排列

PIPESCHL.DAT 温纳—施伦贝谢尔排列

WATER.DAT 水下测量

MODEL101.DAT 一个很大的数据文件,需64兆内存以上

DIPOLEN5.DAT 偶极排列方式,“n”为非整数

BLUERIDGE.DAT 不同“n、a”的偶极排列方式

WENSCHN5.DAT n为非整数的温纳-施伦贝谢尔排列方式

PDIPREV.DAT 单极-偶极排列方式

POLDPIN5.DAT n为非整数的的单极-偶极排列方式

OHMMAPPER.DAT 移动测量系统

KNIVSAS.DAT 中间梯度排列

IPMODEL.DAT 极化数据(IP)

IPSHAN.DAT PFE的极化数据

IPMAGUSI.DAT 含金属因子的极化数据

IPKENN.DAT 带有相位角度的极化数据

BOREHOLE.DAT 跨孔数据

BOREHIP.DAT 跨孔极化数据

BOREDIFF.DAT 两个电极在钻孔不同高度

BORERES.DAT 跨孔测量值为视电阻率值

BOREHOLE_TOPO.DAT 含地形信息的钻孔数据

二、反演的一般步骤

1、数据格式转换

运行BTRC2002,点击“打开”调入待转换的原始高密度数据文件(.fda),点击“转换RES2DINV 格式”

(.dat)即可,本软件的数据格式详见子目录下的“数据格式说明(以GLADOE2.DAT为例).txt”。

2、运行本软件

点击2DRES目录里的2DRES.EXE即可运行。

3、输入数据

点击“文件”->“读数据文件”,选中刚才由BTRC2002转换好的数据(.dat)。如果提示该组数据在地表附近电阻率值差异过大,您可以在“反演”菜单中选择“精细模型”,将模型子块宽度设为1/2单位电极距以提高反演精度,然后再重新读取该文件。

4、反演

点击“反演”->“最小二乘反演”,提示保存将要得到的反演结果(.inv)后,本软件便开始用默认反演参数进行反演,在屏幕最下面会显示反演进程。

依据数据量大小、反演参数不同以及计算机硬件配置好坏,反演需要花几分钟~十几分钟,请耐心等待。

反演完毕后,会提示是否增加迭代次数,程序默认迭代5次,如无需继续迭代,请输入0。

5、保存反演图件

点击“输出”->“保存为BMP或PCX文件”,这些格式文件可由如photoshop等图像编辑软件打开并编辑(如加入标注),然后输入到打印机。

6、打开反演结果

点击“显示”->“显示反演结果”即可进入结果显示窗口,点击“文件”->“打开反演结果”即可打开先前保存的反演结果(.inv),点击“显示”->“显示数据及模型断面”即可显示该反演结果。

以上仅介绍了二维高密度电法反演软件使用的一般步骤,反演参数使用默认值,您可参阅后面的“各菜单功能介绍”以及附录后,在反演前改变反演参数,然后执行反演操作。

反演结果示例

三、各菜单功能介绍

1)“文件”菜单

读数据文件:读入当前子目录下扩展名为.DAT 的数据文件。.DA T数据文件为文本格式,可用Windows自带的记事本notepad.exe编辑。数据项之间可用逗号、空格、或换行/回车符分隔。程序要求数据按一定的格式排列,如果程序在运行中出现问题,一个最可能的原因就是输入数据

格式错误所致,首先应检查数据文件的格式。程序将试图检测一些共性错误,例如零或负视电阻

率值等。作为缺省选项,程序读入地形数据之后,将试图精简地形数据点。如果你改变了此缺省选项,程序将询问是否要精简地形数据点。如果有某些地形点处在相同斜度的地面上,则地形点的数量就会被精简。缩减地形点的数量,将会大大缩短计算地形改正所需的时间。

自动转换电极:对于某些电法仪器,偶极-偶极排列被保存为C1-C2-P1-P2,这样所得的几何系数为负值,而正常情况下应为C2-C1-P1-P2,通过此选项,可以自动转换电极位置。

导入XXX格式数据:本选项允许你读入其他程序的数据格式,那些程序通常是由你所使用的高密度电法仪系统制造商所提供。

运行JACOBWIN.EXE:这个选项产生最优化反演迭代程序所需的一些支持文件(已运行过)。

改变缓存驱动器:程序自动使用选定磁盘的最大自由空间作为缓存驱动器空间,以存储反演计算时所需的临时文件。该选项允许你改变程序所使用的缓存盘。

设置程序优先级:在反演超过3000个数据点的大型资料时,反演子程序不被其他程序所中断是很重要的。设置该程序的优先权为“高”时,将给予程序最高优先权,仅仅在数据量非常庞大,并且保证反演数据格式正确时,才选择此选项。在大多数情况下,选“正常”选项就已经足够了。

数据排序后保存:读取数据后,你可以选择是否将排序后的文件自动保存为新文件,如果选“是”,程序将提示你是否保存,如果选“否”,程序将不会提示。

追踪程序进程:当程序运行出现问题时,使用本选项可以将程序运行的过程记录下来保存在C:盘根目录下的R2DTRACE.TXT文件中。

2)“编辑”菜单

当在主菜单中选择“编辑”时,显示上图:该选项使你能对前述选项中已经读入的数据作某些修改。能够删除数据中的某些坏数据点或在非常庞大的数据资料中选取部分数据进行反演。

删除坏点:在读入数据后,通常需要使用“删除坏点”菜单项来删除坏的数据点。在这个选项中,视电阻率值以剖面平面图的形式显示,可以使用鼠标删除任何坏数据点。本选项的主要目的是删除那些电阻率值有明显错误的数据点。这些坏数据点可能源于某个电极的连接失效,干燥土壤中电极接触不良或由于非常潮湿的环境条件导致的电缆短路等。这些坏数据点的视电阻率值通常比相邻点高得多或低得多。处理这些坏数据点得最好方法就是剔除它们,使之不影响反演获得的模型。移动鼠标的十字光标到数据点,点击鼠标左键,便可删除该点数据,数据点的颜色应由黑色变成红色。如果再次点击该数据点,便可将其恢复。

截取数据:如果数据文件中的数据点过多,超过了计算机硬件或软件的最大容量,无法一次进行反演处理,该选项可选择剖面数据资料中的某一段进行反演。选择该选项后,将以拟断面图的形式显示除数据点,用左右箭头键或Home、PgUp键移动数据段左电极边界,用End、PgDn

或[、]键移动数据段右电极边界。用-键或=键同时移动数据段左右电极边界,用上下箭头键选择数据层,用D键间隔删除所选层的数据点,用E键删除所选层的所有数据点,按键的全部说明均显示在屏幕上。已被选择了的数据点以紫色十字或点标记,而余下的数据点为黑色。段的左右

边界在拟断面图上部用黄色垂直线表示。程序可以读入包括15000个电极的数据文件,使用本选项可以选择进行反演的数据段(64MB内存的计算机最多运行650个电极、6500个数据点),整个资料便可以分段完成反演。选取了欲反演的子数据段后,应选取“删除坏点”选项检查坏数据点。通常,建议一次反演整个资料,在大多情况下,这可以很容易地用增加计算机内存或硬盘自由空间的方法解决。

剖面反向:本菜单项可左右倒转拟断面图。

首电极号:本菜单项允许变更剖面线上首电极的编号,这主要时为了跟计算机中设计的测线x坐标一致。

编辑数据:本选项将启动WINDOWS自带的记事本(notepad.exe)作编辑器。

运行其他程序:本菜单能够调用WINDOWS系统上的其他程序。

选择字体:系统默认字体是Arial字体,可选其他字体。

保存颜色:保存正在使用的色标参数。

3)“设置”菜单

程序内部预置了一套适用于多数资料的阻尼系数和其他变量,但是,在某些情况下,对控制反演过程的参数进行修改可能会得到更好的结果。“设置”菜单如下:

阻尼系数:在本选项中,可以设置阻尼系数的初始值以及最小阻尼系数。如果资料噪音很大,宜选择相对大一些的阻尼系数(如0.3)。如果资料噪音很小,宜选择较小的阻尼系数(如0.1)。反演子程序将在每一次迭代之后逐渐减小阻尼系数。必须设置最小阻尼系数以稳定反演过程,最小阻尼系数通常设置为初始阻尼系数的1/15。

阻尼深度系数:因为电阻率法的分辨率随着深度增加而呈指数下降,为了稳定反演过程,在最小二乘法反演中使用的阻尼系数通常随层增加,一般每层的增加系数为1.2。如果模型底层的电阻率出现不自然的振荡,改用较大的系数值可以抑制振荡。

优化阻尼系数:如果选择本选项,程序将试图找出最小二乘法方程中的最佳阻尼系数,借助于优化阻尼系数,能明显减少程序收敛所需要的迭代次数,但是每一次迭代所需的时间将要增加。对于中小型数据,本选项将使反演所需的总体时间明显减少。由于每次迭代都需要求解最小二乘方程,对于超过1000个数据的大型数据,尤其但数据资料噪音很大时,每次迭代所需要的时间明显增加。实际上,对于大多数据资料,优化阻尼系数并不能带来很明显的结果改善。

模型电阻率上下限:在某些情况下需要控制模型电阻率值的上下限以避免它的值过大或过小。

垂向/水平滤波比:本菜单项可以选择垂向平滑滤波(fz)与水平平滑滤波(fx)的阻尼系数比。默认二者的阻尼系数相等,但是,如果拟断面图上的异常沿垂向延长,可以选取较高的垂向/水平平滑滤波比值(如2.0),以迫使程序反演出的模型沿垂向拉长;反之,对于水平反向延伸的异常,宜取较小值(如0.5)。

钻孔子块附加阻尼:在某些情况下,临近钻孔的模型子块会出现很剧烈的电阻率变化。对这些子块使用较大的阻尼系数可以降低它们的变化量。

单位电极距的节点数:可以选择相邻电极之间的网格为2或4个节点,该网格由正演程序所使用。每个电极有4个节点时,计算出的视电阻率值将要精确得多(特别是电阻率差异很大时),但是,所需的计算时间也相应增多。当数据涉及到的电极数大于90时,程序默认使用2节点选项。

使用有限元法:程序允许使用有限差分或有限元法计算模型的视电阻率值。如果资料不包含地形,程序默认使用有限差分法,它速度较快,如果资料包含地形,默认使用有限元法。

精细网格:本选项允许在有限差分或有限元法中使用较细的网格(垂向)划分。这两种方法在细网格划分下计算出的视电阻率值精确度更高。但是对计算机硬件要求也随之增高。在介质电阻率差异大于20:1时,使用细网格能得到较好的效果,在低阻层位于高阻层之下时,本选项特别适用。

线性搜索:反演程序借助了解阻尼约束最小二乘法方程来修改模型参数,通常,参数修改矢量d将减小模型的均方误差。在均方误差增加的情况下,面临三种选择,一种是使用四次插值执行线性搜索去寻找改变模型块电阻率的最佳步长以降低均方误差,但是可能会被陷在局部极小值中,另一种是不理会这次误差增大,而寄希望于下一次迭代会产生较小的均方误差。这可能会跳过局部极小,但是也可能会导致误差的进一步增大;第三中选择是在每一次迭代执行线性搜索。这通常会得到最佳步长,但是在每一次迭代中需要至少进行一次提前计算。如果能减少用于使均方误差降低到可接受水平所需的迭代次数,在某些情况下,这些额外的提前计算是值得的。本设置仅仅从第三次迭代开始起作用,这是由于头两次迭代的均方误差变化一般较大,程序试图寻找最佳步长以进一步降低均方误差时,总是执行线性搜索。

线性搜索误差:线性搜索法通常能估算出下次迭代后视电阻率均方误差的变化量,如果这个变化量太小,则计算模型参数变化矢量最佳步长的线性搜索就不值得再进行下去,通常该值为0.1~1.0%。

收敛极限:设置两次迭代均方误差相对变化率的最低限,默认为5%。当两次迭代的均方误差变化小于收敛极限时,便可以认为迭代已经收敛。程序使用均方误差的相对变化而不是绝对均方误差值来适应具有不同噪音水平的资料。

均方误差收敛极限:当RMS误差百分比值低于该值时,反演即会停止,常取2~5。

迭代次数:本选项允许用户设置反演程序的最高迭代次数。默认设置次数为5次,对于大多数资料而言已足够。当反演达到最高限制次数时,程序会询问用户是否再增加迭代次数。通常不需要进行10次以上的迭代。

检查模型电阻率值:反演迭代过程中,如果模型电阻率值变得过高(大于视电阻率最大值20倍)或过低(低于视电阻率最小值1/20),程序将示警。本选项允许关闭示警。

等值线间隔:程序在显示视电阻率拟断面和电阻率模型时,默认使用对数等值线间隔。这在大多数情况下是适宜的。但是,也可以使用线性间隔或自定义等值线间隔。

反演时显示拟断面图:在反演过程中,可以选择同时显示拟断面图或仅仅显示模型的均方误差值。除非计算机速度特慢,建议在反演过程中显示断面图。

保存反演参数:将本次设置参数保存在硬盘上。

读取反演参数:读取以前设置好的反演参数。

4)“反演”菜单

最小二乘反演:使用最小二乘反演所读取的数据,反演前会提示是否保存将得到的反演结果。

圆滑约束:程序默认对最小二乘法的模型修改矢量进行圆滑约束。在数据噪声非常大的情况下,也对模型电阻率进行圆滑约束可能会得到更好的反演结果。在阻尼系数相同时,直接圆滑模型电阻率反演模型的视电阻率均方误差通常较大。但是它能保证使反演成果模型的电阻率呈平稳变化。

使用组合反演:在某些情况下,例如在良导体上方进行测量时,电流线将被扭曲,致使地下的某些部分电流很小,反演模型中的相应部位数据灵敏度很低。这将导致在低阻体下方产生严重畸变。使用脊回归和圆滑约组合反演法,可以在某种程度上降低这种畸变。

使用robust反演:在有锐利的边界时可使用这种方法,robust约束对噪音反应不灵敏,但是会使视电阻率的RMS误差增大。

对数视电阻率值:缺省时,使用对数电阻率值作为反演时的数据参数,对于大多情况这时适用的,除了某些情况下视电阻率值为零或负数时。

计算雅克比矩阵:在本程序中,有三种计算最小二乘法方程种雅克比矩阵J的方法,最快的方法是使用准牛顿法估算雅克比矩阵,常用于野外快速计算。最准确但最慢的方法是在每一次迭代时计算雅克比矩阵,但这要求有较好的计算机配置。在介质电阻率差异很大(视电阻率最大值为

最小值10倍以上)时,此方法反演出的模型边界要清晰得多;第三种方法基于雅克比矩阵通常仅在头几次迭代种变化最大的现实,仅仅在前两次迭代中重新计算雅克比矩阵。而在后续的迭代则使用准牛顿更新法。在多数情况下,第三种方法给出了在速度和精度之间的最佳折衷。

最优化方法:计算最小二乘方程时有两种方法可供选择。默认时,选择使用“标准高斯牛顿”最小二乘法,特别是当数据的模型单元小于1000时,可以得到最小二乘法的精确结果;如果当模型单元数目大于2000,则计算最小二乘方程的时间就会增加,在反演时占很大一部分。为了减少反演时间,可用“不完全标准高斯牛顿”最小二乘方法,设置绝对精确度,对大部分数据,值为0.5%(就是上图中的0.005),所得结果,跟使用“标准高斯牛顿”方法精度差不多。当设置的值为0.1%时,所的结果跟使用“标准高斯牛顿”方法精度很相近,但这需要很长的反演时间。当数据或模型单元数目很大时,通常超过1000时,可使用“非标准高斯牛顿”最小二乘方法中的数据压缩,这能明显减少反演时间。当数据量非常大(电极数超过2000),选择稀疏反演项,可降低计算机的运行时间和内存要求。

显示模型子块:选项可显示模型子块和数据点的分布。程序最大可显示的模型层为24层,如果选择以10%的层厚增加,当最下一层要超过最底排的数据点时,可以选择以25%的层厚增加,可能就使最下一层和数据点刚好在同一深度上。

修改层厚:在本菜单项中,可以选择模型中下层比相邻上层的层厚增加率为10%或25%。

如果数据层数很少(小于或等于8层),宜选择10%选项;如果有很多稀疏数据层,选择25%选项可能会好一些。也可以选择用户自定义模型,指定第一层厚度和相邻下一层的厚度增加系数。第一层的厚度以第一层的实际厚度与单位电极距的比值给出。例如,值0.5表示第一层的实际厚度是测线上相邻电极距的一半。第一层厚度的可接受值为0.3~0.9。从第二层往下,每一层的厚度都比上一层大,增大的厚度由层厚递增系数决定。例如,值1.05表示层厚比上一层增加5%。厚度增加系数的可接受值为1.00~1.35。如果厚度增加系数值选用1.00,则所有各层的厚度相同,也使得各模块有相同的宽度。在这种情况下,你可能也会设置允许模型子块数超过数据点数。

修改层深度:这个选项允许改变反演模型层的深度,使模型的某些边界与钻孔或其他资料的已知深度一致。

使用扩展模型:在默认情况下程序安排的模型子块仅排满在含有数据点的区域。本选项可以使模型子块排满至测线的边缘。本选项仅可用于在近测线边缘具有相对较高模型灵敏度的偶极-偶极、单极-偶极、和单极-单极排列,不可用于温纳及温纳-施伦贝谢尔等排列。

模型子块数目限制:在默认情况下,程序按模型子块的数目不超过数据点数目的原则安排模型子块的位置和尺寸。这对于50根电极以上的大中型资料而言,特别是在较大电极距、数据点分布比较稀疏时比较合适。这时,下层模型子块的宽度可能大于上层模型子块的宽度,但是,对于小型数据,允许模型子块数超过数据点数可能效果更好。该选项使各层的所有模型子块具有相同的宽度,并等于最小电极距。

子块具有相同宽度:如果允许模型子块数目多于数据点数,你也可以指定所有模型子块具有相同宽度,这可以避免宽的模型子块位于边侧,特别是对于越下面的层。

降低边缘影响:在反演模型中,两边和底部的模型子块延伸至有限差分或有限元网格的边缘,因此,这些子块对反演过程的影响要相对大于处于模型内部的子块。特别对于那些有较高噪音的数据,可能会在模型左下角或右下角出现不正常的极高或极低的电阻率值,本选项可以降低这种效应。本选项常用于温纳和温纳-施伦贝谢尔排列,建议不要用于偶极-偶极和单极-偶极排列。

修改模型子块宽度:本选项适用于相邻数据点的电极距远远小于排列设置中使用的电极距的移动式勘测系统数据,这种勘测常常产生数千个电极位。对于这种数据排列,你可以将子块宽度设置为2倍或多倍正常电极距,这同时也有益于消除这种反演模型中常见的连锁反应。不过本选项只适用于当使用了扩展模型选项后模型层部分超出测量线边界时的情况。

精细模型:默认情况下,程序将模型子块宽度设为等于单位电极距。如果地表电阻率变化较

大,你就可以使用子块宽度小一点的模型,这对像单极-偶极/偶极-偶极这种对地表变化反应灵敏的排列尤其重要,一般来说,将模型子块宽度设为单位电极距的一半能得到最好的效果。

跨孔模型:有标准模型和小块模型两种可以选择。标准模型的模型子块尺寸与地面及钻孔中的电极距相同,小块模型的模型子块尺寸则为电极距的一半。

显示模型子块灵敏度:本选项将显示反演模型子块灵敏度的图示。灵敏度值是模型子块电阻率信息量在实测电阻率资料中的度量值。灵敏度值越高,模型电阻率值约可靠。通常,由于电极附近的灵敏度函数值非常大,邻近地表的模型子块往往具有较高的灵敏度值。模型两边及底部的模型子块由于被延伸到有限差分或有限元网格的边缘而具有大的多的尺寸,也有很高的灵敏度值。如果调用本选项之前已经对资料作了反演计算,程序将使用最后一次雅克比矩阵。否则,程序将计算均匀大地模型的雅克比矩阵来计算模型子块灵敏度。

地表灵敏度:显示地表相同尺寸模型子块的灵敏度,这就基本上消除了子块尺寸大小对灵敏度的影响,可以非常明显的显示出地表灵敏度随深度和位置的变化。

标准灵敏度值:剖面上显示的灵敏度值,都是平均灵敏度值除以计算所得灵敏度值后的,也可以不选择显示为标准灵敏度值。

强制模型子块宽度:强制模型子块具有相同的宽度,可以避免较宽的子块在较低的层中。

IP(激发极化)反演方法:对于同时观测了电阻率和IP数据的资料反演, 可以选择两种数据顺序依次反演或两种数据同时分别反演。对于顺序的选择,你可以让程序自动运行IP数据反演而无需等待用户的响应。

IP反演阻尼系数:在反演时,IP阻尼系数通常比相应的电阻率反演中使用的阻尼系数要小。当设置的值为1时,则电阻率反演和IP数据反演程序使用相同的阻尼系数。正常情况下一般使用0.05~0.25,也可以选择让程序自动计算阻尼系数。

批处理模式:本选项可以自动反演多个数据文件。

使用汇编语言子程序:在反演过程中,可以选择仅使用C语言子程序,或在某些计算耗时大的位置同时使用汇编语言子程序。汇编语言子程序的计算速度最快,但是通过测试的系统平台和工作环境较C 语言子程序为少。为了加快反演速度,请选用汇编语言子程序,如果在反演过程出现问题,可尝试改为不使用汇编语言子程序。

5)“地形”菜单

当程序从数据文件读入地形数据后,程序会自动选择使用有限元法。地形改正在反演时自动完成。

显示地形:本选项可显示地形剖面图

背景切除:可以选择切除平均高程、最小二乘线性趋势面背景或连接两个端点的直线背景。如果除个别点外,沿测线的地面基本平坦,使用将测点高程减去常数的选项。如果测线位于斜坡上,选择最小二乘或两端点连线为线性趋势面。

地形模拟有3种方法:

使用统一变形的有限元网格:这是程序的默认选项,使网格表面能与实际地形表面相匹配。

使用阻尼系数变形的有限元网格:这种方法使地表下的节点比表面的变化小,也即用深度阻尼系数来修正地形,这更适合于地形曲率较小的情况,控制深度阻尼程度的系数可由用户修改。

使用S-C变换法变形的有限元网格:这种方法是使用S-C变换方法计算地下各层的扭曲,对地形曲率较大地形,这是一种最好的方法,可以产生一个很自然的模型剖面。在测线最高处,如地形变化很大且地形数据量较少时,有可能这方法不能用,这时可以在地形最高处附近增加地形数据点来解决。

具体如下图所示:

6)“输出”菜单

点击“输出”->“保存为BMP或PCX文件”,这些格式文件可由如photoshop等图像编辑软件打开并编辑(如加入标注),然后输入到打印机。

7)“结果显示窗口”

点击“显示”菜单中的“显示反演结果”,进入上面的结果显示窗口。

本窗口用于读取反演结果(.inv),并且显示实测、拟合视电阻率拟断面图和模型断面,可以改变用于绘制拟断面的等值线间隔、是否绘制等值线、纵横刻度比例、是否显示数据点、是否划分基岩面、色标、单位字体等窗口显示参数,并可作RMS误差统计,按照屏幕提示即可完成各项操作。

附录1高密度电阻率法剖面的图示及反演程序原理

电阻率法的探测深度随着供电电极C1C2距离的增大而增大,当隔离系数n逐次增大时,C1C2电极距也逐次增大,对地下深部介质的反映能力亦逐步增加。由于岩土剖面的测点总数是固定的,因此,当极距扩大时,反映不同勘探深度的测点数将依次减少。我们通常把高密度电阻率法的测量结果记录在观测电极P1P2的中点、深度为na的点位上,整条剖面的测量结果便可以表示成一种倒三角形的二维断面的电性分布。如下图

本软件所使用的反演程序是基于圆滑约束最小二乘法,使用了基于准牛顿最优化非线性最小二乘法的新算法。使得大数据量下的计算速度较常规最小二乘法快10倍以上且占用内存较少。圆滑约束最小二乘法基于以下方程:

( J’J + uF )d = J’g

其中F =fxfx’ + fzfz’

fx = 水平平滑滤波系数矩阵

fz = 垂直平滑滤波系数矩阵

J = 偏导数矩阵

J’ = J的转置矩阵

u = 阻尼系数

d = 模型参数修改矢量

g = 残差矢量

这种算法的一个优点是可以调节阻尼系数和平滑滤波器以适应不同类型的资料。

反演也可以使用常规高斯-牛顿法,每次迭代后重新计算偏导数的雅克比(Jacobian)矩阵。它的反演速度比准牛顿慢得多,但在电阻率差异大于10:1的高电阻率差异地区,效果要稍好一些,反演逼近也可以在第二或第三次迭代以前,使用高斯-牛顿法,然后使用准牛顿法,在许多情况下,这提供了一个最佳折衷选择。

反演程序使用的二维模型把地下空间分成许多模型子块。然后确定这些子块的电阻率,使得正演计算出的视电阻率拟断面与实测拟断面值相吻合。对于温纳和施伦贝谢尔排列,第一层子块的厚度设置为0.5倍电极距。对于单极-单极、偶极-偶极和单极-偶极排列,首层层厚分别设置为0.9、0.3、及0.6倍电极距。后继层的厚度依次递增10%(或25%)。层厚也可由使用者设置改变。最优化方法主要靠调节模型子块的电阻率来减少正演值与实测电阻率的差异。这种差异用

均方误差(RMS)来衡量。然而,有时最低均方误差值的模型却显示出了模型电阻率值巨大的和不切实际的变化,从地质勘察角度而言,这并不总是最好的模型。通常,最谨慎的逼近是选取迭代后均方误差不再明显改变的模型,这通常在第三和第五次迭代之中出现。

反演程序使用的二维模型由一系列矩形格子构成。矩形格子的排列受拟断面图数据点分布的松散约束。格子的大小和贡献由程序自动产生,格子的数量一般不超过数据点的数量。然而程序设置了一个选项,允许用户使用格子数超过数据点的模型。最底排的格子设置深度近似等于最大电极距的等效勘察深度。

模拟正演子程序用于计算视电阻率值,采用了有限差分法或有限元法。本程序适用于温纳、单极-单极、偶极-偶极、单极-偶极、温纳-施伦贝谢尔和跨孔排列。可以一次处理多达10000个电极、21000个数据点的拟断面图。

附录2本软件所支持的排列装置类型及标志号

温纳(alpha)标志号1

单极-单极标志号2

偶极-偶极标志号3

温纳(beta)标志号4

温纳(gamma)标志号5

单极-偶极标志号6

温纳-施伦贝谢尔标志号7

赤道偶极标志号8

非常规排列标志号11

另外:

使用视电阻率值的跨孔排列标志号为12

使用电阻值的跨孔排列标志为13

中间梯度排列的标志号为15

高密度电法应用中的问题与思考

1 前言 近十年来,高密度电阻率法在工程勘察中的应用越来越广泛,尤其在岩溶、水文、构造、检测等领域,高密度电法的应用效果,已远远超过了理论上的预期。在国内,从事高密度电阻率法的单位和人员正呈逐年上升的趋势,可以说是形势喜人。 2 问题及分析 2.1 有效数据的分辨 这是个最基本的问题。不仅是本方法,其它的物探方法也是如此。在数据采集的现场,我们必需能有效地分辨:采集到的数据是不是有效的数据,用句简单的话就是:原始数据是否真实? 我曾不少次碰到这样的情况:一些技术人员需要得到高密度电阻率法解释方面的帮助,可实际上,其原始数据的质量太差,根本无法进行资料解释,原始数据不行,就是再高级的大师也无法帮忙。如果在得到此类数据却不自知的话,其后果可想而知。这种情况在初学者中很普遍,而在一些多年的“老手”也会存在,如果其未对此进行过深入思考的话。 图1是最近见到的两个剖面的数据:从A 剖面数据可以看出:在145m 处,数据明显出现异常,有两条非常有规律的高阻异常斜向右下角,其间距越来越大——这实际上是由于145m 附近,电极接地条件太差,形成的“假异常”;有时,如电缆的某一点或多路转换开关的某点断开也会形成类似的“八字异常”,如该点位位于观测剖面中间,则会出现“双八字”异常;点位在两端,则会出现“半八字”异常。在现场采样时,应及时发现此类异常并及时处理。 图1中B 剖面的问题则更为严重,图左侧出现了太多的漩涡状封闭异常,这在地电断面中是不真实的。一般而言,我们直流电法采集到的地电断面,其等值线的起伏会比较缓,较难形成小型的封闭异常,更不用说形成如图中的密集型“漩涡异常”。图中剖面形成的原因是:剖面左侧是水泥路面,接地条件很差,现场操作人员未对接地条件进行有效改善就进行了数据采集,其数据当然是不可信的。 X(m) A B /3(m )A 剖面 X(m)A B /3(m ) B 剖面 图1 典型的无效剖面 一般而言,有效的高密度电阻率法成果数据有如下特征:等值线较为平缓,没有突变

高密度电法实习报告(物探)

高密度电阻率法实习报告 专业: 姓名: 学号: 指导教师: 2014/11/5

一、实验目的 在实际地质勘察的工作中,物探技术是必不可少的,其具有使用方便、快捷、成本小的优点,可以迅速的获取工程区域的相关地层地质情况。高密度电阻率法又是其中使用非常广泛的一种物探方法,是工程地质人员在今后的工作中经常使用的一种技术手段,所以我们有必要熟练的掌握高密度电阻率法的试验方法和数据解释。 二、实验原理 高密度电阻率法是结合电剖面和电测深的直流勘探方法,它是在常规电阻率法的基础上发展起来的,仍然以岩土体的电性差异的为基础,研究在施加电场的作用下,地下传导电流的变化规律。但它相对传统电阻率法而言,具有观测精度高、数据采集量大、地质信息丰富、生产效率高等优点。一次布极可以完成纵、横向二维勘探过程,既能反应地下某一深度沿水平方向岩土体的电性变化,同时又能提供地层岩性纵向的电性变化的情况,具备电剖面法和电测深法的综合探测能力。 高密度电阻率法的探测深度随着供电电极距的增大而增大,当隔离系数n主次增大时电极距也逐次增大,对地下深部介质的反应能力亦逐步增加。由于岩土剖面的测点总数是固定的,因此,当极距扩大时,反映不同勘探深度的测点将依次减少。通常把高密度电阻率法的测量结果记录在观测电极的中点、深度为na的点位上,整条剖面的测量结果就表示成为一种倒三角梯形的电性分布及工作剖面。 此次试验高密度电法用到两种装置: α排列(温纳装置AMNB):Kα=2πa β排列(偶极装置AMBN):Kβ=6πa

三、实验内容及步骤 测区:兰州大学榆中校区东区教学楼南侧草坪,测区地势平坦,地表植被除傍边有一排行道树外均为矮小杂草,见图1。 图1 测线布置方式:沿正东的方向布置单条侧线,电极间距a=8m,共n=32个电极。装置方式为温纳四极和偶极法依次进行。 步骤: (1)检查实验仪器; (2)将所用钢钎沿测线方向间隔一定距离插入土层中,要求与土层良好接触,将测线固定在钢钎上,使其相互接触; (3)将测线与仪器连接,进行电阻检测,检查各段测线与钢钎是否良好接触; (4)根据布设情况,选定参数及试验方法,开始测量; (5)将所得的视电阻率数据运用反演软件RES2DINV进行数据处理; (6)根据数据处理得到的地层剖面情况结合所测区域的地质情况,做出合理的

高密度电法在水面勘查中的应用

高密度电法在水面岩土勘查中的应用 李瑞华伍群才 (江西省勘察设计研究院江西南昌) 1 前言 江西某高速公路选线岩土勘察中。勘察线路穿越了多处水域,最宽水面2km。为不影响当地农民的渔业养殖环境。设计方确定在穿越水域部分勘察线路进行高密度电法勘查工作。目的是通过开展高密度电法工作,初步查明场内岩土层的分布,为确定下一步工作方案提供依据。 2、高密度电法勘探的基本基本原理 高密度电阻率法是近几十年发展起来的一种电法勘探新技术,它在工程勘察领域得到了广泛的应用,其基本原理与传统的电阻率法完全相同,所不同的是高密度电法在观测中设置了较高密度的测点,现场测量时,只需将全部电极布置在一定间隔的测点上,然后进行观测。在设计和技术实施上,高密度电测系统采用先进的自动控制理论和大规模集成电路,使用的电极数量多,而且电极之间可自由组合,这样就可以提取更多的地电信息,使电法勘探能像地震勘探—样使用覆盖式的测量方式。与常规电法相比,高密度电法具有以下优点:(1)电极布设一次性完成,减少了因电极设置引起的干扰和由此带来的测量误差;(2)能有效地进行多种电极排列方式的测量,从而可以获得较丰富的关于地电结构状态的地质信息;(3)数据的采集和收录全部实现了自动化(或半自动化),不仅采集速度快,而民避免了由于人工操作所出现的误差和错误;(4)可以实现资料的现场实时处理和脱机处理,根据需要自动绘制和打印各种成果图件,大大提高了电阻率法的智能化程度。由此可见,高密度电阻率法是一种成本低、效率高、信息丰富、解释方便且勘探能力显著提高的电法勘探新方法 3 基本地质概况 (1)地层 勘察区域出露的地层有:①第四系残坡积物(Q2el-dl)粉质粘土,岩性成分为褐黄、褐红色、棕红色粉质粘土夹碎石的粘土和粉土,厚度3.0~15.0米;②寒武系(∈)页岩:为灰黑色。隐晶质结构,泥质、碳质胶结,页理构造。③寒武系(∈)灰岩:为灰黑色。隐晶质结构,泥质、碳质胶结,中~厚层构造。 (2)地球物理特征 场地的岩土(水)体电性特征:湖水100~120Ω·M;粉质粘土层30~100Ω·M;页岩、炭质页岩30~60Ω·M;灰岩、炭质灰岩100~300Ω·M。本区各地层存在一定的电性差异,具备较好的地球物理勘察前提。 4 现场施工 (1)仪器设备 本次高密度电法工作使用的仪器为重庆地质仪器厂生产的DZD-6型/DUK-2型电法测量系统及配套辅助设备。 (2)装置技术 高密度电法的电极装置采用温纳装置。最小间隔系数为1,最大间隔系数为14,电极点距5米。探测深度为60米,满足勘查工作要求。 (3)野外作业 水上作业采用干毛竹作为载体,将一个排列的测量电极按一定的电极距固定在毛竹上,利用机动船牵引至勘探剖面处,左右两端利用船体抛锚固定。示意图见下图1。 图1 水面高密度电法勘查示意图

高密度电法资料处理及解释

《高密度电法资料处理及解释》实习报告 (姓名:范畅 班号:061084 指导老师:王传雷 成绩: ) 一、实习要求 (1) 每人选择相邻的两个排列的高密度测量数据文件进行处理; (2) 处理内容包括数据圆滑、格式转换、二维反演计算; (3) 二维反演计算误差要求%20 ; (4) 每人提交一份实习报告。报告内容包括: 地质任务;测线位置及地下情况;高密度电法数据资料质量评价;高密度电法资料处理及地球物理-地质解释(岩溶、裂隙发育情况调查,发育深度识别,基岩面的岩性划分); 二、实习内容与过程 1.地质任务 对广西合浦公馆石灰石矿区进行地球物理调查,探明岩溶、裂隙发育情况,发育深度识别,并进行基岩面等岩性划分。 2.侧线位置及地下情况 公馆矿区南邻北部湾,地表主要为虾池和荒地,地层比较单一。上覆为第四系地层,局部基岩出露,揭露的第四系地层厚度为0-9米,其下为灰岩。 【地层】 区内出露的地层有上泥盆统天子岭组(D 3t )、帽子峰组(D 3m )和下石炭统孟公坳组(C 1ym )。简述如下: A.天子岭组(D 3t ) 上部薄层条带泥灰岩、粉砂质灰岩、厚层状灰岩互层;下部主要为灰绿色含磷细砂岩。厚413m 。主要分布于矿区东南一带。 B.帽子峰组(D 3m ) 灰、灰绿色细砂岩、粉砂岩、页岩互层,夹薄层泥质灰岩、钙质页岩等,底部带有一层灰绿色含磷细砂岩。表层风化严重,呈砖红色泥质砂岩、砂质泥岩。厚63-167m 。主要分布于矿区东西两侧。

C.孟公坳组(C1ym) 上部主要为中厚层状微粒生物灰岩;下部薄层-中层状隐晶质灰岩、泥质灰岩夹生物灰岩,局部相变为细砂岩、粉砂岩互层。根据矿区钻孔揭露,表层灰岩质地相对较纯,颜色也较浅,下部炭质含量增加,颜色逐渐变深,局部地区转变成炭质页岩。该层厚403m,为主要水泥用石灰岩。 【构造】 区内主要为一向斜构造。轴部走向为北东向,向斜核部地层为下石炭孟公坳组(C1ym),两翼地层微上泥盆统帽子峰组(D3m)和天子岭组(D3t)。 矿区内发现有一条断层通过,断层走向北北西向。该断层将上泥盆统和下石炭统地层错断。其断层性质不详。 3.高密度电法数据处理及资料质量评价 A.首先利用软件ZH38对高密度电法资料进行数据圆滑处理,手工圆滑的基本原则是:电场不能突变。 B.其次将圆滑后的数据进行格式转换,可以转换为sufer格式,也可以转化为二维数据反演格式。 C.利用已有二维数据反演软件继续进行二维数据反演,使用的最小二乘法。最后记录三次迭代误差。 图1 一号测线第一排列最小二乘法反演结果

高密度电法应用中的问题与思考

.
1 前言 近十年来,高密度电阻率法在工程勘察中的应用越来越广泛,尤其在岩溶、水文、构
造、检测等领域,高密度电法的应用效果,已远远超过了理论上的预期。在国内,从事高
密度电阻率法的单位和人员正呈逐年上升的趋势,可以说是形势喜人。
2 问题及分析
2.1 有效数据的分辨
这是个最基本的问题。不仅是本方法,其它的物探方法也是如此。在数据采集的现场,
我们必需能有效地分辨:采集到的数据是不是有效的数据,用句简单的话就是:原始数据
是否真实?
我曾不少次碰到这样的情况:一些技术人员需要得到高密度电阻率法解释方面的帮助,
可实际上,其原始数据的质量太差,根本无法进行资料解释,原始数据不行,就是再高级
的大师也无法帮忙。如果在得到此类数据却不自知的话,其后果可想而知。这种情况在初
学者中很普遍,而在一些多年的“老手”也会存在,如果其未对此进行过深入思考的话。
图 1 是最近见到的两个剖面的数据:从 A 剖面数据可以看出:在 145m 处,数据明显出
现异常,有两条非常有规律的高阻异常斜向右下角,其间距越来越大——这实际上是由于
145m 附近,电极接地条件太差,形成的“假异常”;有时,如电缆的某一点或多路转换开
关的某点断开也会形成类似的“八字异常”,如该点位位于观测剖面中间,则会出现“双
八字”异常;点位在两端,则会出现“半八字”异常。在现场采样时,应及时发现此类异
常并及时处理。
图 1 中 B 剖面的问题则更为严重,图左侧出现了太多的漩涡状封闭异常,这在地电断
面中是不真实的。一般而言,我们直流电法采集到的地电断面,其等值线的起伏会比较缓,
较难形成小型的封闭异常,更不用说形成如图中的密集型“漩涡异常”。图中剖面形成的
原因是:剖面左侧是水泥路面,接地条件很差,现场操作人员未对接地条件进行有效改善
就进行了数据采集,其数据当然是不可信的。
X(m)
0
50 100 150 200 250 300 350 400 450 500 550
0
-50
AB/3(m)
-100
-150
A 剖面
AB/3(m)
-50
-100
-150 50 100 150 200 250 300 350 400 450 500 550 X(m)
可编辑

10种插值方法在物探数据处理中的对比_以电法和磁法资料中的应用为例

2009年9月第29卷第4期 四川地质学报 Vol.29 No.4 Dec,2009 474 10种插值方法在物探数据处理中的对比 ——以电法和磁法资料中的应用为例 李富,王永华 (成都地质矿产研究所,成都 610082) 摘要:介绍了10种常用的网格化方法的基本原理,对比了其优缺点。以电阻率法与磁法测量的物探数据对 10种网格化方法进行对比,得出了几点认识。 关键词:等值线;插值方法;克里金 中图分类号:O174.42 文献标识码:A 文章编号:1006-0995(2009)04-0474-03 物探工作中,常以等值线图研究各种电性、磁性等特征。制作等值线图前,应对数据网格化。网格 化数据的方法可以分三类:距离加权平均法、方位取点法和曲面样条插值网格化法。距离加权平均法包括反距离加权法、克里金法、改进谢别德法和自然邻点插值法;方位取点法包括方位加权法和趋势面法;曲面样条插值法包括最小曲率法、三角网/线性插值法、局部多项式法、局部多项式法和趋势面法。 1 常用10种插值法介绍 1.1 反距离加权插值法 首先是由气象学家和地质工作者提出的。计算的权值随结点到观测点距离的增加而下降。配给的权重是一个分数,所有权重总和等于1.0。该法综合了泰森多边形的邻近点法和多元回归法的长处,通过权重调整空间插值结构;缺点是在格网区域内要产生围绕观测点的“牛眼”,给电法与磁法数据解释带来不便,因此,实际应用较少。 1.2 克里金(Kriging)插值法 又称空间自协方差最佳插值法,是一种特定的滑动加权平均法,广泛地应用于地下水模拟、土壤制图、矿床中金属品位估计等领域 [1]。该法根据不同情况分类:按在满足二阶平稳(或本征) 假设时可用普通克里金法;在非平稳(或有漂移存在) 现象中可用泛克里金法。计算可采储量时要用非线性估计量,就可用析取克里金法;在区域化变量服从对数正态分布时,可用对数克里金法;当数据较少,分布不大规则,对估计精度又要求不太高时,可用随机克里金法等。近年来,还新发展了因子克里金法、指示克里金法。对于有磁异常偏移的磁法数据,采用泛克里金法比较合适;对于电法数据,由于数据量小,采用普通克里金法就能满足要求。 1.3 最小曲率法 广泛应用于地球科学。该法的特点是在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数,而且最小曲率法要求至少有四个点[2]。实际应用中该法用于平滑估值,绘出的等值线主要用于定性研究。 1.4 改进谢别德法 使用距离倒数加权的最小二乘法,做了两方面的改进:①通过修改反距离加权插值法权函数wi(x,y)= 1/[di(x, y)]u ,以改变反距离加权插值法的全局插值,利用局部最小二乘法来消除或减少等值线的“牛眼”外观。②用节点函数Qi(x,y) 来代替离散点(xi,yi)的属性值zi,Qi (x,y)是一个插值于(xi,yi)点的二次多项式,即有Qi(xi, yi)= zi(i= 1, 2, ?, n)。而且Qi(x,y) 在点(xi, yi) 附近与函数属性值z(x, y)具有局部近似的性质。改进谢别德法可以是一个准确或圆滑插值器。在用改进谢别德法作为格网化方法时要涉及到圆滑参数的设置。圆滑参数是使改进谢别德法能够象一个圆滑插值器那样工作,增加圆滑参数的值可增强圆滑的效果[2]。可以看出,改进谢别德法明显优于反距离加权插值法。 收稿日期:2009-03-19 作者简介:李富(1980—),男,四川遂宁人,助理工程师,从事应用物理研究

高密度电法工作方式

高密度电法工作方式 2008年08月29日星期五 06:30 P.M. 一、电极检查。 将测线上的电极依次两个一组地与M、N测量输入端接通,每步的电极转换规律如下: 第一步: M=1#,N=2# 第二步: M=2#,N=3# …… 第五十九步: M=59#,N=60#. 二、工作方式 1、(WN)温纳 它的电极排列规律是:A,M,N,B(其中A,B是供电电极,M,N是测量电极),随着极距系数n由n(MIN)逐渐增大到n(MAX),四个电极之间的间距也均匀拉开,设电极总数60,n(MIN)=1,n(MAX)=16,每步电极转换的规律如下所述: 首先,n=n(MIN)=1,测量数据为57个: 第一步: A=1#,M=2#,N=3#,B=4#; 第二步: A=2#,M=3#,N=4#,B=5#; …… 第五十七步: A=57#,M=58#,N=59#,B=60#; 接着,n=n+1=2,测量数据为54个: 第一步: A=1#,M=3#,N=5#,B=7#; 第二步: A=2#,M=4#,N=6#,B=8#; …… 第五十四步: A=54#,M=56#,N=58#,B=60#; 最后,n=n(MAX)=16,测量数据为12个: 第一步:A=1#,M=17#,N=33#,B=49#; 第二步: A=2#,M=18#,N=34#,B=50#; …… 第十二步: A=12#,M=28#,N=44#,B=60#; 显然,对应每一层位(n)的测量数据个数=(60-n×3),如果n=1~16,16个层位全部测量得到的完整的一个剖面,数据总数应该是552个。 2、(SB1)施伦贝尔1 电极排列规律是:A,M,N,B测量过程中: MN固定不动,AB按隔离系数由小到大的顺序逐次移动,然后将MN 向前移动一个点距,再重复上诉过程。 数据按隔离系数由下到大的顺序分层存储,结果为矩形区域。 例如测定16层时,M=17#,N=18#,A=16#—1#移动,B=19#—34#移动(第一测深点)。当第二测深点时,A=17#开始,M=18#,N=119#,B=20#开始,方式同上。之后,以此类推。 这种方法分辨率高,效率高,劳动力低。 3、(SB2)是施伦贝尔2

高密度电法(1)

实验二高密度电法实验 一、实验目的 1.学习高密度电阻率法数据采集工作方法;了解数据处理的基本流程。 二、高密度电法的勘探原理 高密度电法的基本工作原理与常规电阻率法大体相同。它是以岩土体的电性差异为基础的一种电探方法,根据在施加电场作用下地中传导电流的分布规律,推断地下具有不同电阻率的地质体的赋存情况。高密度电法数据采集系统由主机、多路电极转换器、电极系 3 部分组成。多路电极转换器通过电缆控制电极系各电极的供电与测量状态。主机通过通讯电缆、供电电缆向多路电极转换器发出工作指令、向电极供电并接收、存贮测量数据。数据采集结果自动存入主机,主机通过通讯软件把原始数据传输给计算机。计算机将数据转换成处理软件要求的数据格式,经相应处理模块进行畸变点剔除、地形校正等预处理后,做视电阻率等值线图。在等值线图上根据视电阻率的变化特征结合钻探、地质调查资料作地质解释,并绘制出物探成果解释图。 三、实验内容及步骤 (一)实验内容 本实验在室外采用温纳装置做剖面观测,学习电法勘探的野外工作过程和仪器操作,对观测的数据进行整理,编写实验报告。 (二)仪器 高密度电阻率勘探工作仪器包括测量系统和反演软件系统。测量系统包括WDJD-3多功能数字直流激电仪(测控主机)和WDZJ-3多路电极转换器。该系统具有存储量大、测量准确快速、操作方便等特点,并且可方便地与国内常用高密度电法处理软件配合使用。(三)装置形式 采用的装置形式为:固定断面扫描装置α排列(温纳装置AMNB)见图1-1。测量时,AM=MN=NB为一个电极间距,A、B、M、N逐点同时向右移动,得到一条剖面线;接着AM、MN、NB增大一个电极间距,A、B、M、N逐点同时向右移动,得到另一条剖面线;依此不断扫描下去,得到倒梯形断面,由于供电电极AB和MN均按一定比例增大,所以在反映深部信息是

高密度电法的发展与应用_董浩斌

高密度电法的发展与应用 董浩斌, 王传雷 (中国地质大学地球物理系,湖北武汉430074) 摘 要:文中从电极排列、反演处理方法、仪器等几个方面,介绍了高密度电法的发展,说明了所有电极排列方式是从对称四极、单极偶极和单极单极发展而来。在反演方法软件方面,介绍了基于圆滑约束最小二乘法及计算机反演快速计算程序。同时,提出供电时间、极化补偿和电极转换开关是高密度电法仪器发展的关键技术。文中列举了高密度电法在多个领域的应用简况,最后提出了高密度电法在今后发展的趋势为高密度激发极化法、三维高密度电阻率法。关键词:高密度电法;电极排列;反演软件;仪器;电阻率成像 中图分类号:P631.3 文献标识码:A 文章编号:10052321(2003)01017106 收稿日期:2003 01 10;修订日期:2003 0220 基金项目:国家“九五”重点攻关项目(96-221-01-02) 作者简介:董浩斌(1964— ),男,博士,教授,地球物理及智能化仪器专业,主要从事地学、工控等智能化仪器仪表的研究开发、信号处理等研究和教学工作。 1 高密度电法发展概况 这里的高密度电法指的是直流高密度电阻率法,但由于从中发展出直流激发极化法,所以统称高 密度电法。高密度电阻率法实际上是一种阵列勘探 方法,野外测量时只需将全部电极(几十至上百根)置于测点上,然后利用程控电极转换开关和微机工程电测仪便可实现数据的快速和自动采集。当测量结果送入微机后,还可对数据进行处理并给出关于地电断面分布的各种物理解释的结果。显然,高密度电阻率勘探技术的运用与发展,使电法勘探的智能化程度大大向前迈进了一步。由于高密度电阻率法所具备的上述优势,因此相对于常规电阻率法而言,它具有以下特点:(1)电极布设是一次完成的,这不仅减少了因电极设置而引起的故障和干扰,而且为野外数据的快速和自动测量奠定了基础。(2)能有效地进行多种电极排列方式的扫描测量,因而可以获得较丰富的关于地电断面结构特征的地质信息。(3)野外数据采集实现了自动化或半自动化,不仅采集速度快(大约每一测点需2~5s ),而且避免了由于手工操作所出现的错误。(4)可以对资料进 行预处理并显示剖面曲线形态,脱机处理后还可以自动绘制和打印各种成果图件。(5)与传统的电阻率法相比,成本低、效率高,信息丰富,解释方便,勘探能力显著提高。 关于阵列电探的思想在20世纪70年代末期就有人开始考虑实施,英国学者所设计的电测深偏置 系统实际上就是高密度电法的最初模式,80年代中期,日本地质计测株式会社曾借助电极转换板实现了野外高密度电阻率法的数据采集,只是由于整体设计的不完善性,这套设备没有充分发挥高密度电 阻率法的优越性。80年代后期,我国原地质矿产部系统率先开展了高密度电阻率法及其应用技术研究,从理论与实际结合的角度,进一步探讨并完善了方法理论及有关技术问题,也研制成了几种类型的仪器。 目前,研究高密度电法的方法技术和仪器的主要有中国地质大学等,生产仪器的还有原长春地质学院、重庆的有关仪器厂家。 近年来该方法先后在重大场地的工程地质调查、坝基及桥墩选址、采空区及地裂缝探测等众多工程勘察领域取得了明显的地质效果和显著的社会经济效益。 2 高密度电法电极排列的发展 (1)高密度电阻率法测量方式:高密度电法开始 时,研究的排列方式主要有3种:α,β和γ[1~8]。现 第10卷第1期2003年3月 地学前缘(中国地质大学,北京) Earth Science Frontiers (China University of Geosciences ,Beij ing )Vol .10No .1 M ar .2003

高密度电法实习报告

高密度电法勘探实习报告 一、基本原理 高密度电法指的是直流高密度电阻率法,但由于从中发展出直流激发极化法,所以统称高密度电法。高密度电阻率法实际上是一种阵列勘探方法,野外测量时只需将全部电极(几十至上百根)置于测点上,然后利用程控电极转换开关和微机工程电测仪便可实现数据的快速和自动采集。当测量结果送入微机后,还可对数据进行处理并给出关于地电断面分布的各种物理解释的结果。显然,高密度电阻率勘探技术的运用与发展,使电法勘探的智能化程度大大向前迈进了一步。由于高密度电阻率法所具备的上述优势,因此相对于常规电阻率法而言,它具有以下特点: (1) 电极布设是一次完成的,这不仅减少了因电极设置而引起的故障和干扰,而且为野外数据的快速和自动测量奠定了基础。(2) 能有效地进行多种电极排列方式的扫描测量,因而可以获得较丰富的关于地电断面结构特征的地质信息。(3) 野外数据采集实现了自动化或半自动化,不仅采集速度快(大约每一测点需2~5 s) ,而且避免了由于手工操作所出现的错误。(4) 可以对资料进行预处理并显示剖面曲线形态,脱机处理后还可以自动绘制和打印各种成果图件。(5) 与传统的电阻率法相比,成本低、效率高,信息丰富,解释方便,勘探能力显著提高。 高密度电法的基本原理与传统的电阻率法完全相同,不同的是在观测中设置了较高密度的测点,现场测量时,只需将全部电极布置在一定间隔的测点上,然后进行观测。由于使用电极数量多,而且电极之间可以自由组合,这样可以提供更多的地电信息,使电法勘探能像地震勘探一样使用覆盖式的测量方式。与常规电法相比,高密度电法具有以下优点:(1)电极布设一次性完成,减少了因电极设置引起的干扰和由此带来的测量误差;(2)能有效地进行多种电极排列方式的测量,从而可以获得较丰富的关于地电结构状态的地质信息;(3)数据的采集和收录全部实现了自动化,不仅采集速度快,而且避免了由于人工操作所引起的误差和错误;(4)可以实现资料的现场实时处理和脱机处理,大大提高了电阻率法的智能化程度。 按布线方式分类。一、集中式高密度电法测量系统:如WGMD-3 WGMD-4高密度电法测量系统,它以WDJD系列多功能数字直流激电仪为测控主机,再配以WDZJ系列多路电极转换器。二、分布式高密度电法测量系统:如WGMD-9超级高密度电法测量系统,它以WDA系列超级数字直流电法仪为测控主机,在配以分布式开关电缆,即可完成测量工作。

跨孔高密度电阻率成像及反演

跨孔高密度电阻率成像 在大地表面布设电极的高密度电法测量的分辨率是随着深度呈指数规律减小的,想在深度上合理的获得一个较高分辨率的一个方法便是使用电极在钻孔中测量,这样能很好的反映出井周围及井间的地质状况。跨孔高密度电阻率与地表高密度测量相比,它较少使用,因此布极方式也与地表高密度布极方式有很大的不同。 跨孔高密度电阻率成像也称为井地电法勘探,井井地勘探,跨孔高密度CT 法等。国内的电法仪器一般也不支持此方法的测量。但实际使用的装置与地面电法无异,也分为单极,偶极,三极,四极等方式。因此可以用现有的高密度仪器将数据测出来,然后通过相应的转换软件变换为跨孔高密度的数据格式,再用国内使用比较广泛的高密度电法反演软件RES2DINV进行反演处理。 跨孔高密度电阻率的布极方式: 1、 跨孔高密度成像电极位置示意图(单孔+地表电极) 2、

跨孔高密度成像电极位置示意图(双孔+无地表电极) 3、 钻孔1 钻孔2钻孔N 跨孔高密度成像电极位置示意图(多孔+地表电极 ) 地面电极 使用RES2DINV 软件反演结果图: 双孔带地形校正结果图

孔中电极深度不一致反演结果:

孔中电阻率和极化率反演结果: 多孔反演结果: 野外实测钻孔反演结果:

用现有的高密度仪器做跨孔测量,可以使用温纳排列,斯伦贝尔排列,三极排列,偶极等排列方式测量,因井中视电阻率计算方法与地面不一样,因此需要保留测量时的电压电流值,然后用转换软件重新计算。因内容较多,转换繁琐,这儿先简单介绍一下跨孔高密度的测量效果,有这方面需要的朋友可以在我博客中留言,如果需求者较多,笔者再详细介绍测量方式,并编写转换程序。 博客地址:https://www.360docs.net/doc/308920236.html,/u/2274611685

高密度电法

高密度电法 高密度电法即是高密度电阻率法,它是以岩、土导电性的差异为基础,研究人工施加稳定电流场的作用下地下传导电流分布规律的一种电探方法 (一)特点:( 1 ) 电极布设是一次完成的, 这不仅减少了因电极设置而引起的故障和干扰, 而且为野外数据的快速和自动测量奠定了基础。( 2 ) 能有效地进行多种电极排列方式的扫描测量, 因而可以获得较丰富的关于地电断面结构特征的地质信息。(3) 野外数据采集实现了自动化或半自动化, 不仅采集速度快( 大约每一测点需2~5s) ,而且避免了由于手工操作所出现的错误。(4)可以对资料进行预处理并显示剖面曲线形态, 脱机处理后还可自动绘制和打印各种成果图件。(5)与传统的电阻率法相比, 成本低, 效率高, 信息丰富, 解释方便。 (二)高密度电阻率法采集系统:随着技术的发展,高密度电法仪日趋成熟。表现在:采用嵌入式工控机,大大提高系统的稳定性与可靠性;采用笔记本硬盘存储数据,可以满足野外长时间施工的工作需求;系统采用视窗化、嵌入式实时控制与处理软件,便于野外操作;可实现多种工作模式的转换,计算机与电测仪一体化,携带方便。新一代高密度电法仪多采用分布式设计。所谓分布式是相对于集中式而言的,是指将电极转换功能放在电极上。分布式智能电极器串联在多芯电缆上,地址随机分配,在任何位置都可以测量;实现滚动测量和多道、长剖面的连续测量

图高密度电阻率法测量系统结构示意图 系统可以做高密度电阻率测量,又可以同时做高密度极化率测量,应用范围宽。 常用装置:高密度电阻率法在一条剖面上布置一系列电极时可组合出十多种装置。高密度电阻率法的电极排列原则上可采用二极方式,即当依次对某一电极供电时,同时利用其余全部电极依次进行电位测量,然后将测量结果按需要转换成相应的电极方式。但对于目前单通道电测仪来讲,这样测量所费时间较长。其次,当测量电极逐渐远离供电电极时,电位测量幅值变化较大,需要不断改变电源,不利于自

高密度电法反演软件Res2dinv使用说明

二维高密度电法反演程序 ver.3.6 for WIN98/Me/2000/XP/2003 使 用 说 明

一、安装软件 当您拿本软件光盘后,双击2DRES,将软件解压至C:\2DRES目录中,插入USB加密锁后,双击2DRES.EXE即可运行该二维高密度电法反演程序。 如果你的操作系统是Windows98,则需安装USB加密锁驱动程序。 (1)点击DONGLE.exe,安装USB加密锁驱动程序。 (2)在98下插入USB加密狗后,提示寻找驱动程序,点击下一步,选择“搜索设备的最新驱动程序(推荐)”再点击下一步,找到C:\windows 目录,点击下一步,提示“请插入标签为......”点击确定后找到 C:\windows\system32\drivers”点击确定便可找到并安装该驱动程序。 以下是软件自带的一些示例数据可用于测试软件的全部功能: LANDFILL.DAT 有50个电极的温纳排列 GRUNDFOR.DAT 不规则数据分布的温纳排列 ODARSLOV.DAT 高阻体上的温纳排列 ROMO.DAT 另一个大型温纳排列 DUFUYA.DAT 有300根电极且超过1200个数据的温纳排列 GLADOE2.DAT 含有地形信息温纳排列 BLOCKWEN.DAT 带有坏数据点的温纳排列 BLOCKDIP.DAT 偶极-偶极排列 BLOCKTWO.DAT 单极-单极排列 RATHCRO.DAT 带有地形信息的温纳排列 PIPESCHL.DAT 温纳—施伦贝谢尔排列 WATER.DAT 水下测量 MODEL101.DAT 一个很大的数据文件,需64兆内存以上 DIPOLEN5.DAT 偶极排列方式,“n”为非整数 BLUERIDGE.DAT 不同“n、a”的偶极排列方式 WENSCHN5.DAT n为非整数的温纳-施伦贝谢尔排列方式 PDIPREV.DAT 单极-偶极排列方式 POLDPIN5.DAT n为非整数的的单极-偶极排列方式 OHMMAPPER.DAT 移动测量系统 KNIVSAS.DAT 中间梯度排列 IPMODEL.DAT 极化数据(IP) IPSHAN.DAT PFE的极化数据 IPMAGUSI.DAT 含金属因子的极化数据 IPKENN.DAT 带有相位角度的极化数据

复杂条件下瞬变电磁法数据处理技术

一、项目名称 复杂条件下瞬变电磁法数据处理技术 二、项目简介 本项目属于煤矿安全领域,针对勘探区不同程度存有的地形和电磁噪声对瞬变电磁法勘探效果的影响展开研究。随着煤炭开采技术的进步,对危险源勘探精度等安全指标的要求随之提高。因此,消除地形及电磁噪声因素影响,进一步提高瞬变电磁法精细化探测技术显得极为迫切。中煤科工集团西安研究院有限公司以2015年度技术创新项目“地面TEM数据地形校正及电磁干扰压制技术研究(2015XAYZD14)”为依托,旨在开发解决复杂条件下瞬变电磁法数据处理技术。 项目研究突破常规复杂条件的认识,从理论基础出发深入研究地形和电磁干扰影响机理,通过对不同地电模型和干扰特征的模拟与噪声提取,针对性开发地形影响与电磁干扰校正技术。主要取得以下创新成果: 1)纯地形自适应的校正技术 采用三维正演数值模拟方法,研究带地形地电模型和激发场源畸变特征,进而分析各典型地形条件下二次场响应特征,总结纯地形影响机理。基于上述研究,根据地表起伏形态,引入各测点实际高程进行计算校正,形成自适应的地形较正技术。 2)基于缓变地层条件的电磁干扰校正技术 基于含煤地层横向上电性变化相对均一、纵向亦有统一规律的认识,参考相邻测点未受干扰数据,通过线性采样密集数据在限差、拟合的技术下对夹杂的电磁干扰进行噪声去除,使数据回归应有的地电特征。 项目取得已授权发明专利1项,软件著作权6项,发表论文15篇。提高了复杂条件下瞬变电磁法数据处理能力和适用性,为保障煤矿安全高效生产起到了积极作用。项目研究的数据处理技术在陕北、黄陵、临汾、新疆、宁夏等矿区大量应用,经超过70次钻探和井下揭露证明,探测结果准确率超过80%。项目研究成果应用效果好,提高勘探解释可靠性,促进处理技术发展,取得了明显的经济和社会效益。

高密度电法在工程物探中的应用

高密度电法在工程物探中的应用 摘要:近几年,高密度电法由于其经济性、快速性、简易性等优点,在工程勘察中的应用程度越来越广。本文首先对高密度电法的原理进行了简要描述,并举出应用的实例加以分析,阐述了对反演成果的评价问题,展望了高密度电法大力发展的美好前景。 关键词:高密度电法;工程物探;应用;反演处理 前言 高密度电法作为一种先进的直流电法勘探技术,具有测点密度高,信息量大,对探测对象不造成损伤,成果直观、准确、高效等特点,己被广泛应用于我国的矿产开发及工程建设中。而由于地球物理反演方法在不断地完善,高密度电法的电阻率成像水准己经有了很大提高,从曾经的一维跨度到了三维,极精确地的完成了解释精度的跨越。高密度电法己经相对成熟,具有快速、经济、渐变、有效、应用广泛的优点。它的应用领域很广,特别是工程物探领域。 1高密度电法工作原理及特征识别 1. 1工作原理 高密度电法是根据水文、工程及环境地质调查的实际需要而研制的一种电阻率法,是以岩、矿石之间电阻率差异为基础,通过观测和研究与这些差异有关的电场在空间上的分布特点和变化规律,来查明地下地质构造和寻找地下不均匀电性体(岩溶、风化层、滑坡体等)的一类勘查地球物理方法。高密度电法在数据采集过程中组合电阻率剖面和电阻率测深的两种方法观测系统,因而,采集数据量大,数据观测精度高,在电性不均匀体的探测中取得良好的地质效果。 如图1所示,当以地面A1 、B1为供电点,向地下输入电流强度为I的电流时,地下形成稳定电场E,以A1 、B1的中点()为中心,1/3A1 B1长的范围内电场为均匀场,在此范围内安置测量电极M、N得到电位差△U,其中k为装置系数,不同的测量装置的装置系数不同,由此可得视电阻率计算公式: 高密度观测系统包括数据的采集和资料处理两部分,现场测量时,只需要将全部电极设置在一定间隔的测点上,观测密度远比常规的电阻率法大,测点间隔一般为1-10m。采用多芯电缆连接到程控式多路电极开关上,电极开关式一种由单片机控制的电极自动转换装置,可以根据需要自动进行电极装置形式、极距及测点的转换。不同装置电极逐点同时向右移动的得到第一条剖面;增大一个电极距离,电极再次逐点由左向右移动,得到另外一条剖面,这样不断扫描得到倒梯形剖面。

高密度电法工作报告全解

烈山污水截流管道提工程 物探报告 二0一六年六月

报告名称:烈山污水截流管道提工程物探报告单位:物探院 项目负责:嵇星华 编写人:嵇星华 物探院 二0一六年六月

目录 1、工程概况 (4) 1.1、探测区地质概况 (5) 1.2、探测区地质概况 (5) 2、探测对象地球物理前提分析 (5) 3、探测依据的标准和规范 (6) 4、仪器设备 (6) 5、工作布置及完成工作量统计 (6) 6、探测原理及数据处理解释 (7) 6.1、探测原理 (7) 6.2、质量评价 (7) 6.3、数据处理与资料解释 (8) 7、剖面解释 (8) 7.1、雷河物探横剖面图 (9) 7.2、致富路物探横剖面图 (10) 7.3、琪嘉物探横剖面图 (11) 8、结论及建议 (14)

前言 1、工程概况 烈山污水截流管道提工程位于烈区,本次工作分别为雷河、致富路、琪嘉路道路两旁的绿化带内,地势较平坦,交通便利,见物探工作示意图(图1)。我院受委托开展该项目的工程物探工作。2016年6月9号设备、仪器进场开始野外工作,2015年6月11日结束野外转入室内数据处理,综合分析报告编写工作,2016年6月13提交物探成果报告。 (图1)

1.1、探测区地质概况 本区地下水动态变化主要受大气降水和蒸发因素的影响,地下水丰水期多现于6~9月份,枯水期多出现于12月至第二年2月。年水位变幅2.0m左右。本次勘查期水位埋深大约为4.0~4.3m。 根据以往地质资料,场地内埋深10.0m以浅地基土自上而下可分为四个地层,主要特性分析如下: ①层杂填土(Q4ml):灰黄、黄褐色,松散,潮湿,主要由混泥土路面、石块及煤矸石结 构组成。本层厚度1.0~2.1m。 ②层黏土(Q4al):黄褐色,可塑,光泽反应有光泽,干强度高,韧性中等,夹薄层粉土, 本层层底埋深3.5.0~4.4m。本层厚度1.3~3.4m。 ③层粉质黏土(亚黏土)(Q4al):黄褐~青黄杂,可~硬塑状态,干强度高,韧性中等, 含砂礓,本层层底埋深3.5~4.4m,厚度4.2~5.0m。 ④层粉砂(Q3al):浅黄色,饱和,中密状态,土质均匀。本层层底埋深4.4m以下(未揭 穿),最大揭露厚度1.9米。 1.2、探测区地质概况 本次烈山污水截流管道提工程物探勘察的目的主要是查明污水管道铺设路线地下隐伏的管线等地质情况,为该污水截流管道提工程管道的铺设路径及施工方法提供指导性科学依据。 2、探测对象地球物理前提分析 城市地下管道主要包括煤气、自来水、污水、雨水、通讯、暖气管线等等。地下管线在地面以下层层交错,错综复杂,形成了网状的地下管网。从制作材质上来说,地下管道可分为金属和非金属管道,其中非金属管道占据了很重要的一部分,施工过程中,为避免损坏地下管线,需要查阅施工区域的地下管线资料,但实际中,往往查阅不到精确、详细的资料,因此,地下管道的探测是一项很重要的任务。一般说来,在淮北平原地区,无论是金属材质的管道还是混凝土管道,在视电阻率或反演模型电阻率剖面上都呈现高阻反映。因为在埋设金属管道时,要在其表面包裹防锈防腐塑料布或涂复具有同样效果的涂层,管道沟内及管道周围大量投放碎石和砂土,完全覆盖后还要进行夯实碾压。反映在实际探测中,与管道周围的土层相比,应当呈现出相对高阻的闭合圈。此外,如钢质供水管道和钢质煤气管道的外面都包裹有塑料防腐材料,供热的钢质管道更包裹有一定厚度的泡沫海绵及橡胶保护层,地下集束型通讯电缆、光缆的塑料外皮毫无疑问属于高绝缘材质,其铺设需要事先埋置塑料材质的外保护管,这些外管也都是高绝缘物质,与周围相对低阻土层有明显的电性差异。因此,通过这种地电性质,我们可以很轻易的利用电阻率方法来找到管线的分界面。这一特性构成

电法正演理论

《电法数据处理与解释》课程教学大纲 课程编码:0801523098 课程名称:电法数据处理与解释 课程英文名称:Data processing and Interpretation of Electrical Method 总学时:44(讲授36学时,实验8学时) 学分:2.5 开课单位:地球探测科学与技术学院 授课对象:勘查技术与工程专业(应用地球物理方向)本科生 前置课程:高等数学、电磁场论、应用地球物理Ⅱ:电法勘探原理与方法 一、教学目的与要求 本课程是勘查技术与工程专业(应用地球物理方向)本科生的专业教育课程。本课程以深化电法勘探理论、复杂情况下电法数据处理,正、反演计算及电法资料解释为重点。在本课程中,使学生系统学习复杂情况下电阻率法资料数据处理原理与方法;电法勘探反演理论、反演算法,并将其运用到电阻率法、激发极化法和电磁感应法的数据处理及反演解释中。通过本课程的学习使学生掌握利用计算机处理电法勘探资料的理论基础和计算技术,进一步提高学生对电测资料的处理、反演和地质解释能力。为参加实际工作打下扎实的基础。 二、教学内容 第一章电阻率法的地形影响及其校正 §1. 获取纯地形异常的方法 §2.比较法进行电阻率法的地形影响校正 内容提示: 获取纯地形异常的方法有多种,如物理模拟、数值计算等,这里主要介绍利用角域叠加的方法获得地形纯异常的方法。并利用获得的纯地形异常对电测深、联合剖面、中间梯度观测数据进行地形改正。其他

的数值方法作为一般的了解,如边界元法,有限元法等。 第二章电法勘探数据反演理论基础 §1 反演问题的描述 §2 广义反演问题 §3 非线性反演问题的线性化 内容提示: 本章重点内容是广义反演方法,详细介绍基于最小二乘法的各种反演方法的反演算法与程序实现。 第三章电测深曲线数字解释法 数值正演计算 §1. 层状模型ρ s §2. 实际观测数据的一维反演 §3. 弯曲测线的电测深曲线处理 §4. 二维反演简介 一般内容: 采用滤波方法的计算思路以及滤波系数的计算,弯曲测线的数据处理,二维反演基本过程及结果。 重点内容: 利用滤波方法计算层状模型ρs数值计算思路以及算法实现,在此基础上将广义反演应用到电测深数据的反演中,并给出反演中偏导数计算的详细公式。 第四章频谱激电法数据处理与解释 §1. 频谱激电的柯尔——柯尔模型 §2.复电阻率谱的最优化反演解释 一般内容: 复电阻率的反演技术 重点内容: 复电阻率的计算理论基础:柯尔-柯尔模型的应用;利用该模型获取视极化率的方法。 第五章频率域电磁测深数据处理与解释

高密度电法在工程勘察中的应用

高密度电法在工程勘察中的应用 在建设发展中,遇到越来越多的复杂岩土地基,传统的勘察测量方法很难满足实际需要。因此,本文分析了高密度电法的原理、特点,列举高密度电法在工程实例。浅述了高密度电法的实际应用。 标签:高密度电法工程勘察应用 随着工程勘察市场竞争日益激烈,很多的勘察单位为了提升自身综合实力,不断引进各种先进的原位测试方法,以提高勘察的技术水平和精度。其中高密度电法能够对整个场地进行全方位的测深勘察,对岩土地层进行合理的划分,可以有效保证实际工作中的准确、效率。因此,本文就针对高密度电法在工程勘察中的应用展开浅述。 1高密度电法法系 高密度电法兴起与上个世纪80年代,随着科学技术的发展,电极转换器的研发成功,使得数据采集效率不断提高。与传统的电法相比,高密度电法的信息量更大,可以充分利用实测数据进行反复的分析。 1.1高密度电法的工作原理 在实际勘察测量过程中,采用高密度电法最重要的前提就是岩土工程介质中在导电性能方面,存在不同程度的差異。在使用过程中,高密度电法会通过A 和B两个电极向地下通电,从而建立一个人工电场,通过工作人员对地上M和N的电极测量电位差,然后记录下每个记录点的视电阻率值。把测量出来的实测视电阻率值输入到电脑中,再经过合理有效的处理和解释后,进行地层的划分。与其他一般电法不同,高密度电法是一种阵列勘探。工作原理及工作系统示意详见图1、图2。 1.2高密度电法的主要特点 高密度电法就是高密度条件下的电阻法,主要根据岩石和土壤不同的导电性为基础,是一种在施加稳定电流场的前提下,分析和研究地下传导电流分布规律的方法,其测排点距离小。高密度电法能够进行二维地电断面测量,还可以进行多种电极排列方式的扫描探测,具有点距小、采样密度高的特点;另外,高密度电法的另一个重要特点就是可以采用交叉测量和供电方式,最大限度的提高分辨能力,降低外界因素的干扰。 1.3高密度电法的优势 高密度电法需要的成本较低、效率很高,信息采集全面。尤其适合完成目标体埋深较浅、规模较小、工程量不大的地质勘察任务。其稳定性和可靠性不断提

相关文档
最新文档