一种新型MEMS矢量水听器的设计

一种新型MEMS矢量水听器的设计
一种新型MEMS矢量水听器的设计

光纤水听器综述

光纤水听器及阵列综述 马宏兰周美丽 (天津师范大学电子与通信工程学院) 摘要:为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基 础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。全光光纤水听器系统的湿端采用全光实现,信号传感与传输皆基于光纤技术。具有抗电磁干扰、重量轻和造价低等优点。文章简述了光纤水听器的发展历史、现状 ,论述了光纤水听器阵列的原理及其应用前景。 关键词:光纤水听器多路复用技术阵列 0引言:在光纤水听器的实际应用中,由于水下声场的复杂性,单元水听器很难获得目标的详细信息,因而需要将数百乃至上千个探测基元组成大的阵列,以获得更多水声场信息,通过水听器阵列完成声场信号的波束形成,实现对水下目标的定位与指向。在2003年8月下水的美国最新型攻击核潜艇上,装备的舷侧阵就由2 700个光纤水听器基元组成【1】。对于大规模的光纤水听器阵列,多达数十上百基元的光纤水听器光信号都是由同一根光纤传输的,在实际系统中,这种性能就是由光纤水听器的多路复用技术实现的。可见多路复用是光纤水听器的核心技术。 1 光纤水听器的开发 自1976年美国Bucar等人发表第一篇有关光纤水听器的论文【2】以来, 各工业发达国家的海军研究部门以及有关的研究和工业部门都在积极从事光纤水听器的研究和开发,尤其以美国最为突出。美国海军研究实验室、美国海军研究生院和Litton制导和控制公司等先后研究开发了Maeh一Zehnder、Michelson 干涉仪的光纤水听器, 主要结构有心轴型、互补型(推挽式) 、平面型和椭球弯 张式等光纤水听器。这些结构水听器达到的归一化灵敏度(△。/ 。△P)为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。各国对光纤水听器的研究投入了大量人力和物力,技术也日益娴熟。 2、多路复用的阵列体系结构 阵列体系分为以下六大部分,其中时分/ 波分混合复用技术是其关键有效手段。 1 ) 频分复用(FDM) 【3】相位产生载波(PGC)问询的体系结构—美国海军研究实验室已用此方案对总数48 个单元水听器成网组成的阵列成功地进行了海上试验, 证实了这种体系结构的低阐值检测能力和低的串扰。 2) 时分复用(TDM) 相位产生载波问询的体系结构—美国海军研究实验室已作了10 单元的光纤水听器阵列演示, 证实了其低的光背景噪声和低的串扰。

压电式MEMS仿生结构矢量水听器设计 开题报告

毕业设计开题报告 学生姓名:学号: 学院: 专业: 设计(论文)题目:压电式MEMS仿生结构矢量水听器 封装及性能测试研究指导教师: 2013年12月10日

开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.学生写文献综述的参考文献应不少于15篇(不包括辞典、手册)。文中应用参考文献处应标出文献序号,文后“参考文献”的书写,应按照国标GB 7714—87《文后参考文献著录规则》的要求书写,不能有随意性; 4.学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字; 5. 有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年3月15日”或“2004-03-15”; 6. 指导教师意见和所在专业意见用黑墨水笔工整书写,不得随便涂改或潦草书写。

毕业设计开题报告

矢量水听器由于体积小、重量轻、布放方便等特点,在实际应用中已经受到重视。近年来,在MEMS仿生器件研究方面,国外已有多家研究机构通过模仿鱼类侧线器官、蟋蟀的听觉纤毛等,设计并制造出了多种压电式、压阻式以及电容式的MEMS纤毛仿生微传感器,如德国的Nest-erov和Brand于2005年研制出了压阻式MEMS仿生微探测器,美国伊利诺斯州立大学微米纳米技术研究中心的Chen等于2006年通过模仿鱼类的侧线器官工作原理,研制出了纤毛式MEMS仿生微流量传感器。荷兰的Krijnen等在2006年通过模仿蟋蟀的听觉纤毛,制作出了纤毛式仿生微声传感器[5]。 目前,在美国和俄罗斯,性能稳定的矢量水听器已经进入了工程应用阶段。美国在SURTASS系统中已经应用矢量水听器,解决了左右舷模糊问题;前苏联利用其研制的矢量水听器托线阵,系统地研究了矢量水听器托线阵的姿态、拖拽速度和流噪声对矢量水听器检测性能的影响。国外的纤毛仿生传感器也主要为微触觉传感器或微流量传感器,关于纤毛式的仿生MEMS水声传感器还未见报道[6]。 1.2.2 国内本课题的发展现状及前景 国内从“八.五”期间开始矢量水听器的研究,并取得了丰硕的成果,先后研发了以双迭片为敏感元件的不动外壳型矢量水听器和以加速度计为敏感元件的同振球型矢量水听器。十年来,我国在矢量水听器的研制方面取得了长足的进步,先后研制出多种结构具有自主产权的矢量水听器,包括动圈式矢量水听器、悬臂梁式多维测振传感器、压电圆盘弯曲式同振型矢量水听器以及中、高频二维柱形、三维球型矢量水听器等,从而实现了水声测量中不同场合的不同需求[7]。 目前,国内关于纤毛式仿生MEMS传感器的研究还比较少,主要研究成果是中北大学微米纳米研究中心设计并制造的压阻式MEMS仿生结构矢量水听器,如图1所示[8]。该水听器是通过模仿鱼类侧线器官的神经丘感觉器,完成了以压敏电阻为敏感单元的水声传感器仿生组装设计;利用新型精巧的仿生结构和压阻敏感机理设计制作新型的矢量水声传感器;利用MEMS批量制造技术,实现矢量水声传感器的小型化和一致性;结合MEMS工艺和组装工艺技术,解决复杂结构的仿生制造问题。该矢量水声传感器的低频特性、灵敏度、小尺寸以及水声传感器的一致性等方面带来好处,为水声传感器的设计提供一种新方法[9]。

用MSp430进行微功耗数据采集

用MSp430进行微功耗数据采集 0 引言 ?以电池作为电源的水下数据采集系统,若要长时间工作必然要为其配备大 量的电池作为电源,如果能降低系统的功耗,那么将减少电池的数量,不仅能降低系统的成本而且能大大缩小系统的体积和重量,也更有利于水下数据采集系统的布放。本文介绍了一种基于微功耗单片机MSP430F1611和CF卡的水下微功耗数据采集系统的设计与实现,总功率仅150mW。相比传统的以DSP为 处理器、IDE硬盘为存储介质的数据采集系统,功耗大大降低。 ?1 系统总体构成 ?本系统是应用在矢量水听器噪声测量试验中,要求实时采集并存储矢量水 听器4通道信号,每通道采样率为10kHz,在水下不间断工作7小时。 ?鉴于本系统采样率不高,7个小时总的数据量不超过2个G,所以没必要采用功耗和体积都比较大的IDE硬盘,采用容量为2G的CF卡完全可以满足系 统要求。CF卡的全称为Compact Flash,兼容3.3V和5V工作电压,工作时没有运动部件,其体积小、耗电量小、容量大,具有很高的性价比。目前,CF 卡的容量可高达12GB,CF卡由控制芯片和闪存模块组成,闪存用于存储信息,控制芯片用于实现与主机的连接及数据的传输。CF卡可工作在TRUEIDE模式下,并且与普通IDE硬盘接口完全兼容,所以很容易进行开发使用。 ?系统对采集的数据只存储而不做信号处理,在处理器的选取上也就不必一 味追求高速度,本系统采用TI公司的超低功耗单片机MSP430F1611作为系统的处理器,负责AD的采集,并把采集的数据写入CF卡。这是一款高性价比 的单片机,具有以下特点:丰富的片内外设;超低功耗,在电压3.3V主频 1MHz时工作电流仅600μA;强大的处理能力,在8MHz晶体驱动下,指

光纤矢量水听器研究进展

光纤矢量水听器研究进展+ 倪明*张振宇孟洲胡永明 (国防科技大学光电科学与工程学院长沙410073) 摘要:阐述了光纤矢量水听器拾取声波振速信号的基本原理。介绍了国内外矢量水听器研究现状与发展趋势,国防科大研制的同振球型光纤矢量水听器探头尺寸为Φ110mm,工作带宽20~2000Hz,加速度灵敏度大于35dB(ref 1rad/g),指向性呈现“8”字自然指向性,工作水深大于500m。海上初步实验结果表明,光纤矢量水听器可有效拾取水声信号,实现对目标的定向处理。最后展望了光纤矢量水听器可应用的领域。 关键词:光纤矢量水听器矢量水听器 目前水声探测所用的水听器一般都是声压水听器,它只能得到声场的声压标量。光纤矢量水听器(fiber optic vector hydrophone, FOVH)是一种新型水声探测器,它在一个点上的测量信号中就已包含了声场的标量信息和三维矢量信息,通过这些信息的互相关处理,能极大地抑制干扰,提高信噪比。传感单元具有指向性,抑制环境噪声4.8~6.0dB,这样在相同阵增益的情况下可大大减小阵列的孔径。单个传感器具有指向性,可有效解决声压水听器阵列的左右弦模糊问题。 光纤矢量水听器是一种建立在光纤、光电子技术基础上的水下三维声场信号传感器[1]。它通过高灵敏度的光学相干检测,将声波振速信号转换为光信号,并通过光纤传至信号处理系统提取声波信息。相对于传统压电矢量水听器,干涉型光纤矢量水听器灵敏度高、信号经光纤传输损耗小、免电磁干扰、无串扰、能在恶劣的环境中实现长期稳定工作,系统具有光纤网络的特点,可大规模组阵实现水下大范围声学监测。 1 基本原理 干涉型光纤矢量水听器基于光纤干涉仪原理构造,拾取声信号的原理基于声压对干涉仪两臂的调制,全光光纤矢量水听器系统则是湿端基于光纤矢量水听器探测单元,信号传输采用光缆传输,以湿端无任何电子器件为特性的先进水下声测量系统。 1.1 光纤干涉仪原理 图1是Michelson光纤干涉仪基本结构图。由激光器发出的激光经3dB光纤耦合器分为两路,一路构成光纤干涉仪的传感臂,接受声波的调制,另一路则构成参考臂,两臂的光信号经后端反射膜反射后返回光纤耦合器,发生干涉,干涉的光信号经光电探测器转换为电信号,由信号处理就可以拾取声波的信息。 +国家863计划资助(2006AA09Z121) * 通讯作者。Email: niming_1@https://www.360docs.net/doc/309559428.html,

光纤矢量水听器

光纤矢量水听器的设计与研究 XX (安徽大学xxxxxxxxxxxxXX学院,安徽合肥) 摘要:光纤矢量水听器是建立在光纤技术,光电子技术基础上的水下声信号传感器。本文在介绍了强度型、干涉型和光纤光栅型矢量水听器原理的基础上,比较了它们的灵敏度、测量范围和抗干扰能力等参数。干涉型光纤矢量水听器是通过水中声波对光纤的压力来改变纤芯折射率或长度,从而引起光纤中传播光束光程的变化,通过检测其相位差得到水声信息。光纤矢量水听器被广泛的用于拖曳阵、固定阵、船壳阵和声呐浮标中,是现代海洋技术不可或缺的一部分。关键词:光纤矢量水听器,强度型,干涉型,光纤光栅型,潜艇拖曳阵 Design of Optical Fiber Vector Hydrophone Ge Xin (Anhui University ,physics and Material science College,AnHui HeFei)Abstract:Optical fiber vector hydrophone is the underwater acoustic signal sensor,which is based on optical fiber technology and photoelectron technology.This paper compared their sensitivity, measuring range ,Anti-jamming capability and other Parameter, based on describing Strength Type,Interference type and optical fiber grating type.Interferometric fiber optic vector hydrophone obtain acoustic information by detecting the water pressure.Acoustic pressure of the water changes the length of the fiber core refractive index,which force the optical path difference changing.Optical fiber vector hydrophone is widely used for Towed Array,Fixed array ,Hull array and Sonar buoy,which is an integral part of marine technology Key words:Optical fiber vector hydrophone,Strength Type,Interference Type, Optical fiber Grating Type,Towed Array 光纤矢量水听器是建立在光纤技术,光电子技术基础上的水下声信号传感器,其信号的探测与传输均以光作为传输媒介,更具有体积小,重量轻,抗电磁干扰,灵敏度高等特性,被广泛的用于水下打捞作业,军事侦察,国防等重要方面。光纤水听器经过将近20多年的发展与研究,其技术已日臻成熟,一些领域内已广泛应用,前景广阔]1[。 光纤矢量水听器最基本的功能就是探测由被测物体发出的声场。被探测物体在水中移动会产生声波,声波在三维空间上发散开来形成声场。水声技术中要想准确的描述声场并探知声场信息,不仅需要声场的标量信息如声压,还需要声场

相关文档
最新文档